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THE COLOR-BALANCED SPANNING TREE PROBLÉM 

ŠTEFAN BEREŽNÝ AND VLADIMÍR LACKO 

Suppose a graph G = (V,E) whose edges are partitioned into p disjoint categories 
(colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for 
that minimizes the variability in the number of edges from different categories. 

We show that polynomiality of this problem depends on the number p of categories and 
present some polynomial algorithm. 

Keywords: spanning tree, matroids, algorithms, NP-completeness 

AMS Subject Classification: 05C05, 05C85, 90C27 

1. INTRODUCTION 

Suppose a graph G = (V, E) with nonnegative edge weights w(e) for e G E is given 
and suppose its edges are partitioned into disjoint categories 5 i , . . . , 5 p . Denote 
by T(G) the family of all spanning trees of graph G. Now consider the following 
objective function: 

f(T) = maxKK P ( £ e e 5 i n r ™ ( e ) ) - m i n ^ K p (J2eeSinT
w^) 

and optimization problem 

/(Г) —• min 
Г <E T(G). (1) 

In the definition of function / we assume that maximum over the empty set is 0. 
In [2] it was shown, that problem (1) is NP-complete even if the number of cate

gories p is equal to 2 and the underlying graph G is outerplanar. It is showen there 
that the spanning tree, matching and path problems considered with the L3 objec
tive function (this function is in fact the same as objective function / of this paper) 
are NP-complete already on bipartite outerplanar graphs even for two categories, 
similarly the L3-travelling salesman problem is NP-complete on Halin graphs even 
for two categories. Some other optimization problems (e.g. matchings, Hamilton 
circuits etc.) with objective functions similar to / were treated in [3]. For most of 
functions, they were shown polynomial, if the number of categories p is fixed and 
NP-complete in general case. Some other problems with categorization of edges 
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and with objective functions using the operators min, max and ]T). were treated in 
[1, 2, 3, 4, 7, 8]. 

More general review of color-balanced problems can be found in [5]. In this paper 
we show a reduction of problem (1) to problem 1-CCOP which is a special case of 
problem K-CCOP treated in [5]. 

In this paper we deal with the following special case of the problem (1): we let 
all weights of edges be equal, i.e. (Ve G E) w(e) = 1 and we restrict the number 
of categories to p = 2 (Section 2) or let p be constant (Section 3). We show that 
the problem with constant weights belongs to the class P , in contrast to the original 
problem (1) with arbitrary weights which is ATP-complete. 

2. COLOR-BALANCED SPANNING TREE PROBLEM 

Let us consider the special case of the problem (1) where p=2 and (Ve G E) w(e) = l, 
i.e. /(T) = max{|5inT|,|52nT|}-min{|5inT|,|52nT|} = | | 5 i n T | - | 5 2 n T | | 
and the problem (1) in this special case can be written as: 

| | s i П T | - | s 2 П T | | —• min 
TeT(G). (2) 

For the sake of simplicity assume for the time being that the graph G is connected. 
Disconnected graphs will be treated later. Under our assumption, since T is a 
spanning tree of G, \T\ = |V| — 1 and thus let \T\ = k. The objective function f(T) 
attains its minimum possible value if | 5 i n T | and | 5 2 n T | are as close to each other as 
possible, which occurs if one of them is equal to [ | ] and the other to |_f J- Minimum 
value of f(T) is then either 0 if k is even or 1 otherwise. On the other hand, if one 
of \S\ n T\ and \S2 n T\ is equal to k and the other is 0, f(T) attains its maximum, 
f(T) = k. The range of possible optimum values for given graph is then limited to 
the set {0,1,. . . , k}. If we are able to check for each I G {0,1,. . . , fc}, whether there 
exists a spanning tree T with f(T) = /, as a consequence we will immediately have 
the desired optimum spanning tree of the problem (2). 

The test we need to perform, even in more specific form, is described in the 
following lemma: 

Lemma 2.1. (Check(iJ)) Given a graph G = (V, E), a partition of E to Si, 5 2 

and i, j G TV, s.t. i + j = \V\ — 1 = fc, it is possible to find a spanning tree Tij of G 
with T n Si = i and T n 5 2 = j or to determine that such a spanning tree does not 
exist. In the latter case it is possible to find a maximum cardinality forest Tij of G 
satisfying T n Si < i and T n 5 2 < j . This can be done in polynomial time. 

P r o o f . Let Mi = (E,T{) be the matroid with the base set E (edges of the 
graph G) and independent sets Ti being families of edge sets of all acyclic subgraphs 
of G. Matroid Mi is therefore the graph matroid of graph G. Let M 2 ( i , j ) = (E, T2) 
be another matroid defined on the same base set E with independent sets T2 which 
are defined as follows: X G T2 & X C E, XnSi<i, X n S2 < j . Matroid M 2 is 
thus the partition matroid over partition Si, S2 with limits i and j respectively. 
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Using the Cardinality Intersection Algorithm (Cl-algorithm) described e. g. in 
[6] it is possible to determine the maximum cardinality intersection Tij of matroids 
Mi and M2(i, j ) . The intersection T{j is, from its definition, independent in both 
matroids, i.e. it is an acyclic subgraph of G having T^ n S\ < i and T^ n S2 < j . 
CI-algorithm runs in 0(m2R + mRc(m)) time (see [6]), where m = \E\} R is the 
cardinality of the resulting intersection and c(m) is the complexity of independence 
tests in both matroids. Clearly R is at most |V| — 1 and independence tests in both 
Mi and M2 can be performed in 0(m) time giving 0(m2R + mRc(m)) = 0(m2\V\) 
for the total complexity of Cl-algorithm in this case. 

Acyclic subgraph T{j of G is a spanning tree of G if and only if |T^| = | V̂ | — 1, 
otherwise it is just a maximum cardinality forest for which TC\S\ <i and T n S 2 < j 
holds. Since matroids Mi and M2 can be constructed in 0(m) time, the lemma 
follows. • 

Now we can write down the algorithm for solving the problem (2): 

Algorithm f-SpanningTree 

Input : Graph G = (V, E), partition of E to Si and .S2. 
Output : /-optimal spanning tree T o p t . 
KO : T° D t :== 0, LODt := 00 
K l : for each i, j , s.t. i + j = \V\ — 1 do 

begin 
K 2 : T^ = Check(i,j) 
K3 : if \T{j\ = \V\ - 1 & \i - j \ < Lop t then 
K 4 : T^'^Tij, L°^ = \i-j\ 

end 

Lemma 2.2. Algorithm /-SpanningTree runs in 0(m2\V\2) time. 

P r o o f . There are exactly |V |̂ possibilities for expressing \V\ — 1 as a sum of 
two integers k = \V\ — 1 = i + j in step Kl of the algorithm, namely [fc,0], [k — 
1,1],. . . , [ [ | J , ["!]],..., [0, fc], thus there are k + 1 invocations of Check(i,j) in step 
K2. The total complexity is then \V\ • 0(m2\V\) = 0(m2\V\2). • 

3. CONSTANT NUMBER OF CATEGORIES GREATER THAN 2 

Let us consider a less relaxed case of the problem (1) where edge weights are still 
uniform (w.l.o.g. (Ve G £ ) w(e) = 1). The number of categories p is, however, no 
more restricted to p = 2, but it must be constant, i. e. p does not depend on G. 

The problem (1) in this special case can be written as: 

f(T) = maxi==i,...)P {\Si n T\] - mini=i,...,p { |£ n T\) —> min ( 

T e T(G). W 

The problem (3) can be solved using a similar approach as in Section 2. At first, 
let us show the p-partition analogue of Check(i,j): 
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Lemma 3.1. (Check(i\,... ,ip)) Given a graph G = (V,E), a partition E to 
S\,..., Sp and ii,..., ip £ N, s.t. ~~^=i ij = | ^ | — 1? it is possible to find a spanning 
tree T of G s.t. (V j ) |T fl Sj\ = ij or to determine that such a spanning tree does 
not exist. This decision can be done and T can be found in polynomial time. 

P r o o f . Let Mi be the graphic matroid defined as in Lemma 2.1 and let M2(ii,... 
. . . , ip) = (E, T2) be the partition matroid over the partition Si,..., Sp with limits 
z i , . . . , ip respectively. 

Let T be a maximum cardinality intersection of matroids Mi and M2 determined 
using the Cl-algorithm [6]. T is an acyclic subgraph of G satisfying (Vj)TnSj < ij. 
Using the similar arguments as in Lemma 2.1 the proof of this lemma follows. • 

The algorithm for solving the problem (3) is thus straightforward: 

Algorithm f-SpanningTree(p) 

Input : Graph G = (V, E), partition of E to S i , . . . , Sp 

Output : /-optimal spanning tree T o p t . 
KO : T°^ := 0, copt := 00 
K l : for each ii,..., ip, s.t. Y%=i h = 1̂ 1 ~* 1 do 

begin 
K 2 : T = Check(ii,...,ip) 
K3 : if \T\ = \V\ - 1 & f(T) < cP-3* then 
K4 : To p t := T, copt = f(T) 

end 

Lemma 3.2. Algorithm /-SpanningTree(p) runs in 0(m2 |V r |p) time. 

P r o o f . There are ( - j = OdV^I25-1) possibilities for expressing 

I V\ — 1 in the form of sum of p integers | V\ — 1 = $3?=i h m s t e P Kl of the algorithm 
(see e.g. [9]), thus there are 0 ( | F | P _ 1 ) invocations of Check(ii,... ,ip) in step K2. 
The total complexity is then O d ^ " 1 ) • 0(m2\V\) = 0(m2\V\p). • 

Remark 3.1. The range of ij in step Kl of the previous algorithm is limited to 
interval [0, \Sj\]. However, as a special case, cardinality of all sets Sj could be as 
close to -^- as possible and thus for p < Ty\Zj w e have \Sj\ > \V\ — 1. Therefore 
ij < \Sj\ is of no use in this special case and the number of iterations in step Kl 
remains O^V^1). 

4. A COMPUTATIONAL COMPLEXITY IMPROVEMENT IN CASE p = 2 

Let us look closer at the complexity of determining the /-optimal spanning tree. The 
maximum cardinality matroid intersection, which can be performed in 0(R(m2 + 
mRc(m))) steps, consists of R < \V\ — 1 iterations, of complexity 0(m2 + mRc(m)) 
each. According to [6], each iteration consists of two steps: 
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Step 1: construction of the so-called Border Graph (BG) with complexity 0(mRc(m)) 

Step 2: determining the so-called Augmenting Path in BG with complexity 0(m2). 

Each iteration increases the cardinality of matroid intersection J by 1. In Step 1 
for a given independent set J with \I\ < \R\ and for each e e E — I independence 
of J U {e} is determined and the unique cycle (in the sense of matroid theory) in 
JU{e} is found, if it exists. This needs in case of graphic and partition matroids only 
0(1^1) operations, provided that |J| < \V\ - 1. In Step 2 a search for Augmenting 
Path is performed in bipartite graph BG. Vertices of BG are exactly elements of 
base set E and edges are only between vertices of J and vertices of E — J, thus at 
most |J| • |_7 — J| < (|V| — 1) • ra edges are present in BG. Consequently, the search 
for Augmenting Path in BG can be performed in OdV^ra) time. 

The previous discussion summs up to the following lemma: 

Lemma 4 .1 . One iteration of CI-algorithm for graphic and partition matroid (as 
defined in Lemma 2.1) can be done in OdV^ra) time giving the overall complexity 
of the algorithm 0(\V\2m). 

If we take a closer look at Lemma 2.1 and compare two checks, namely Check(i,j) 
and Check(i — 1, j + 1), we see that they both operate on the same graphic matroid 
Mi and two very similar partition matroids M2(i,j) and M2(i — 1, j +1) . Therefore 
it is immediate to try to use the result of Check(i,j) in the computation of Check(i — 
1,^ + 1). The complexity improvement that can be obtained in this way is described 
in the next lemma: 

Lemma 4.2. Let Tij be the result of Check(i,j) (as defined in Lemma 2.1). Then 
Check(i — 1, j + 1) can be performed and its result Ti_ij+i can be found using at 
most 2 iterations of the maximum cardinality matroid intersection algorithm. 

P r o o f . Let us denote T*_lj+1 = Ty in case \Tij Ci Si\ < i - 1. Otherwise 
l-̂ ij HiSil = i and there exists e G TijDSi; in this case let T*_lj+1 = T^ — {e}. Such 
set T*__x -+1 clearly belongs to the intersection of matroids Mi and M2vi, j). Thus, let 
us start the intersection algorithm in Check(i — l , j +1) with the initial intersection 
T*_lj+1. The cardinality of T*__lj+1 is at least \T{j\ - 1 and the cardinality of 
Ti_ij+i is at most \Tij\ + 1 from which it is immediate, that we need at most two 
iterations of intersection algorithm in Check(i — 1, j + 1). ---

As we can see, the algorithm /-spanning tree can be made faster by suitable 
ordering of Check(i,j) calls and by reusing the result of previous Check(i,j) calls. If 
we denote by Check(iJ,T) the Check(i,j) call where maximum matroid cardinality 
intersection starts with intersection T, we could formalize the faster version of the 
algorithm: 
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Algorithm f-SpanningTree(+) 

Input : Graph G = (V, E), partition of E to Si and £2. 
Output : /-optimal spanning tree T o p t . 
KO : T o p t := 0, Lo p t := 00, Tieft := 0, Tr ight := 0 

K l : for i from L 1 ^ 1 ] to 0 do 
begin 

K2 : Tieft := Check(i, \V\ - 1 - i, Tleft) 
K 3 : if|Tieft| = | V | - l t h e n 
K4 : T o p t := Tieft, Lo p t = |V| - 1 - 2 * t, STOP 
K5 : T r ight := C.faeck(|^ | - 1 - i, i, Tright) 
K 6 : if |T r i g h t | = | F | - 1 then 
K7 : T o p t := T r igh t, Lo p t = \V\ - 1 - 2 * i, STOP 

end 

Steps K2 and K5 are performed |_ 2~J ~*~ * times e a c h . The first time they 
are performed they need 0( |V|2ra) time (see Lemma 4.1) to compute the result of 
Check(i,j, T), since T = 0 in this case. However all subsequent calls of Check(i,j, T) 
in steps K2 and K5 use the precomputed sets Tieft and Tr ight and thus require 
just 0(|V|ra) time (see Lemma 4.2). To sum up, algorithm /-SpanningTree(-f) 

needs 0(\V\2m) + 2 * ( l . 1 1 ^ ] + 1 ) * 0(|V1m) time for steps K2 and K5. The 
remaining steps are trivial, thus overall complexity of algorithm /-SpanningTree(-f) 
is 0(\V\2m). 

5. FURTHER IMPROVEMENT 

It might look promising to use some kind of binary search in step Kl of Algorithm 
/-SpanningTree to determine optimal i, j pair instead of invoking Check(i,j) on 
all possible i, j pairs. However, this approach is of no use for finding the optimum 
spanning tree: after invocation of Check(i,j) for some values of i and j exactly one 
of the following is true: 

1. We have found a spanning tree Tij. Thus Lo p t is at most \i — j \ 

2. There is no spanning tree T!y s.t. \Tij\ = \i — j \ , implying Lopt ^ \i — j \ . 
However, it is easy to see that for Lo p t we may have Lo p t < \i — j \ as well as 
L o p t > | i - j | . 

The latter case makes binary search unapplicable. 
Let us now look closer at the structure of (i,j) pairs for which a spanning 

tree Tij exists. Let imax = max{i : T^ is a spanning tree} and j m a x = max{j : 
T^ is a spanning tree}. To determine value of imaLX, it is enough to determine the 
maximum forest F 1 of G1 = (V,Si); Since G was assumed to be connected, the 
forest F 1 , if not itself being a spanning tree of G, must be extendable by edges of 
52 to some spanning tree of G. i m a x then equals to the number of edges of F1 and 
corresponds to a spanning tree Timaxjfc_imax. The value of j m a x can be determined 
in the same way. 
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The following lemma shows that spanning trees Timax>fc_imax and Tfc_imax,jmax are 
sufficient to describe the structure of feasible (z, j) pairs: 

Lemma 5.1. Let k — j <i and Tiyk-i and Tk-jj are spanning trees of G having 
\Ti}k-i H S\\ = i and \Tk-jj fl S2\ = j . Then for each I : k — j <l <i there exists a 
spanning tree Ti^-i of G having \Tijk-i n Si | = /. 

P r o o f . The statement trivially holds if k — j = i. Otherwise let e be any edge 
from Tk-jj — T^k-i- T^k-i U {e} contains a unique cycle Ce and let / be any edge 
from Ce — Tk-jj. Then T ^ = Tiyk-i U {e} — {/} is also a spanning tree which 
has more edges in common with Tk-j,i than Ti^-i, more precisely \T^ fl Tk-jj\ = 
iT^fc-iflTfc-jj | + 1. By repeating this construction we get a sequence Seq of spanning 
trees Seq = {T<°> = T^-uT^ ,T&\ ... , 7 ^ - ^ ) ) = T , ^ } . If we look at two 
consecutive spanning trees T ( x ) and T ( x + 1 \ cardinalities of T ( x ) n S i and T ( x + 1 ) n S i 
are either equal or differ by 1. Thus sequence Seq contains for each / : k — j<l<i 
a spanning tree Ti^-i of G having \Ti,k-i 0 511 = /. • 

Using the previous results we know that (i, j) pairs for which a spanning tree 7\j 
exists are exactly pairs {(/, k — /); k — jmax < I < ^max}- Now on it requires only a 
constant amount of time to determine the optimum pair (zopt, j o p t ) and the optimum 
value |zopt — Jopt| of problem (2). But, even if we know the optimum pair ( i o p t ,J o p t ) , 
to determine the optimum spanning tree Tioptjopt we need to call Check(iopt, j o p t ) 
once. The complexity of determining the optimum spanning tree is then OdVpra) , 
the same as of algorithm /-SpanningTree(-f). 

The last algorithm which we present is better than algorithm /-SpanningTree(+) 
in the sense that it determines the optimum value of problem (2) in 0(m + n) time 
and needs only one call of Check(i,j) to determine the optimum spanning tree. 

Algorithm f-SpanningTree(++) 

Input : Graph G = (V,E), partition of E to Si and S2. 
Output : optimum value copt and an /-optimal spanning tree T o p t . 
KO : k := \V\ 
K l : Find the maximum forest F1 of G1 = (V, Si); w := \Fl\ 
K2 : Find the maximum forest F2 of G2 = (V, 52); Jmax := \F2\ 
K 3 : i f (imax - (k - W x ) ) ( ( f c - Jmax) - .7max) < 0 t h e n 

(**.J-):=(L|J.r|l) 
e l s e i f |imax - (k - W x ) | < \(k - jmax) - Jmaxl t h e n 

(} yj ) '=z rmaxj & ^rnaxy 
else 

[} -J ) ' = \k -" Jmaxjjmaxj 
K5 : cPP* := \i* - j * \ , OUTPUT <*** 
K 6 : r°Pe := Check(i*,j*), STOP. 

We have postponed dealing with disconnected graphs until now. The disconnected 
case only requires small changes in the algorithms given above: we are dealing with 
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spanning forests instead of spanning trees. T h e cardinality of spanning forests is 
|V | — c(G), where c(G) is the number of connected components of the graph G. 
Lemmas 2.1 and 3.1 remain valid in case of disconnected graphs since graphical 
matroid is defined in the same way in this case. Therefore all complexity results 
s tated above hold in t h e disconnected case as well. 
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