
K Y B E R N E T I K A — V O L U M E 41 (2005) , NUMBER 4, P A G E S 5 3 9 - 5 4 6

THE COLOR-BALANCED SPANNING TREE PROBLÉM

ŠTEFAN BEREŽNÝ AND VLADIMÍR LACKO

Suppose a graph G = (V,E) whose edges are partitioned into p disjoint categories
(colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for
that minimizes the variability in the number of edges from different categories.

We show that polynomiality of this problem depends on the number p of categories and
present some polynomial algorithm.

Keywords: spanning tree, matroids, algorithms, NP-completeness

AMS Subject Classification: 05C05, 05C85, 90C27

1. INTRODUCTION

Suppose a graph G = (V, E) with nonnegative edge weights w(e) for e G E is given
and suppose its edges are partitioned into disjoint categories 5 i , . . . , 5 p . Denote
by T(G) the family of all spanning trees of graph G. Now consider the following
objective function:

f(T) = maxKK P (£ e e 5 i n r ™ (e)) - m i n ^ K p (J2eeSinT
w^)

and optimization problem

/(Г) —• min
Г <E T(G). (1)

In the definition of function / we assume that maximum over the empty set is 0.
In [2] it was shown, that problem (1) is NP-complete even if the number of cate

gories p is equal to 2 and the underlying graph G is outerplanar. It is showen there
that the spanning tree, matching and path problems considered with the L3 objec
tive function (this function is in fact the same as objective function / of this paper)
are NP-complete already on bipartite outerplanar graphs even for two categories,
similarly the L3-travelling salesman problem is NP-complete on Halin graphs even
for two categories. Some other optimization problems (e.g. matchings, Hamilton
circuits etc.) with objective functions similar to / were treated in [3]. For most of
functions, they were shown polynomial, if the number of categories p is fixed and
NP-complete in general case. Some other problems with categorization of edges

540 Š. BEREŽNÝ AND V. LACKO

and with objective functions using the operators min, max and]T). were treated in
[1, 2, 3, 4, 7, 8].

More general review of color-balanced problems can be found in [5]. In this paper
we show a reduction of problem (1) to problem 1-CCOP which is a special case of
problem K-CCOP treated in [5].

In this paper we deal with the following special case of the problem (1): we let
all weights of edges be equal, i.e. (Ve G E) w(e) = 1 and we restrict the number
of categories to p = 2 (Section 2) or let p be constant (Section 3). We show that
the problem with constant weights belongs to the class P , in contrast to the original
problem (1) with arbitrary weights which is ATP-complete.

2. COLOR-BALANCED SPANNING TREE PROBLEM

Let us consider the special case of the problem (1) where p=2 and (Ve G E) w(e) = l,
i.e. /(T) = max{|5inT|,|52nT|}-min{|5inT|,|52nT|} = | | 5 i n T | - | 5 2 n T | |
and the problem (1) in this special case can be written as:

| | s i П T | - | s 2 П T | | —• min
TeT(G). (2)

For the sake of simplicity assume for the time being that the graph G is connected.
Disconnected graphs will be treated later. Under our assumption, since T is a
spanning tree of G, \T\ = |V| — 1 and thus let \T\ = k. The objective function f(T)
attains its minimum possible value if | 5 i n T | and | 5 2 n T | are as close to each other as
possible, which occurs if one of them is equal to [|] and the other to |_f J- Minimum
value of f(T) is then either 0 if k is even or 1 otherwise. On the other hand, if one
of \S\ n T\ and \S2 n T\ is equal to k and the other is 0, f(T) attains its maximum,
f(T) = k. The range of possible optimum values for given graph is then limited to
the set {0,1,. . . , k}. If we are able to check for each I G {0,1,. . . , fc}, whether there
exists a spanning tree T with f(T) = /, as a consequence we will immediately have
the desired optimum spanning tree of the problem (2).

The test we need to perform, even in more specific form, is described in the
following lemma:

Lemma 2.1. (Check(iJ)) Given a graph G = (V, E), a partition of E to Si, 5 2

and i, j G TV, s.t. i + j = \V\ — 1 = fc, it is possible to find a spanning tree Tij of G
with T n Si = i and T n 5 2 = j or to determine that such a spanning tree does not
exist. In the latter case it is possible to find a maximum cardinality forest Tij of G
satisfying T n Si < i and T n 5 2 < j . This can be done in polynomial time.

P r o o f . Let Mi = (E,T{) be the matroid with the base set E (edges of the
graph G) and independent sets Ti being families of edge sets of all acyclic subgraphs
of G. Matroid Mi is therefore the graph matroid of graph G. Let M 2 (i , j) = (E, T2)
be another matroid defined on the same base set E with independent sets T2 which
are defined as follows: X G T2 & X C E, XnSi<i, X n S2 < j . Matroid M 2 is
thus the partition matroid over partition Si, S2 with limits i and j respectively.

The Color-Balanced Spanning Tree Problem 5 4 1

Using the Cardinality Intersection Algorithm (Cl-algorithm) described e. g. in
[6] it is possible to determine the maximum cardinality intersection Tij of matroids
Mi and M2(i, j) . The intersection T{j is, from its definition, independent in both
matroids, i.e. it is an acyclic subgraph of G having T^ n S\ < i and T^ n S2 < j .
CI-algorithm runs in 0(m2R + mRc(m)) time (see [6]), where m = \E\} R is the
cardinality of the resulting intersection and c(m) is the complexity of independence
tests in both matroids. Clearly R is at most |V| — 1 and independence tests in both
Mi and M2 can be performed in 0(m) time giving 0(m2R + mRc(m)) = 0(m2\V\)
for the total complexity of Cl-algorithm in this case.

Acyclic subgraph T{j of G is a spanning tree of G if and only if |T^| = | V̂ | — 1,
otherwise it is just a maximum cardinality forest for which TC\S\ <i and T n S 2 < j
holds. Since matroids Mi and M2 can be constructed in 0(m) time, the lemma
follows. •

Now we can write down the algorithm for solving the problem (2):

Algorithm f-SpanningTree

Input : Graph G = (V, E), partition of E to Si and .S2.
Output : /-optimal spanning tree T o p t .
KO : T° D t :== 0, LODt := 00
K l : for each i, j , s.t. i + j = \V\ — 1 do

begin
K 2 : T^ = Check(i,j)
K3 : if \T{j\ = \V\ - 1 & \i - j \ < Lop t then
K 4 : T^'^Tij, L°^ = \i-j\

end

Lemma 2.2. Algorithm /-SpanningTree runs in 0(m2\V\2) time.

P r o o f . There are exactly |V |̂ possibilities for expressing \V\ — 1 as a sum of
two integers k = \V\ — 1 = i + j in step Kl of the algorithm, namely [fc,0], [k —
1,1],. . . , [[| J , ["!]],..., [0, fc], thus there are k + 1 invocations of Check(i,j) in step
K2. The total complexity is then \V\ • 0(m2\V\) = 0(m2\V\2). •

3. CONSTANT NUMBER OF CATEGORIES GREATER THAN 2

Let us consider a less relaxed case of the problem (1) where edge weights are still
uniform (w.l.o.g. (Ve G £) w(e) = 1). The number of categories p is, however, no
more restricted to p = 2, but it must be constant, i. e. p does not depend on G.

The problem (1) in this special case can be written as:

f(T) = maxi==i,...)P {\Si n T\] - mini=i,...,p { |£ n T\) —> min (

T e T(G). W

The problem (3) can be solved using a similar approach as in Section 2. At first,
let us show the p-partition analogue of Check(i,j):

542 Š. BEREŽNÝ AND V. LACKO

Lemma 3.1. (Check(i\,... ,ip)) Given a graph G = (V,E), a partition E to
S\,..., Sp and ii,..., ip £ N, s.t. ~~^=i ij = | ^ | — 1? it is possible to find a spanning
tree T of G s.t. (V j) |T fl Sj\ = ij or to determine that such a spanning tree does
not exist. This decision can be done and T can be found in polynomial time.

P r o o f . Let Mi be the graphic matroid defined as in Lemma 2.1 and let M2(ii,...
. . . , ip) = (E, T2) be the partition matroid over the partition Si,..., Sp with limits
z i , . . . , ip respectively.

Let T be a maximum cardinality intersection of matroids Mi and M2 determined
using the Cl-algorithm [6]. T is an acyclic subgraph of G satisfying (Vj)TnSj < ij.
Using the similar arguments as in Lemma 2.1 the proof of this lemma follows. •

The algorithm for solving the problem (3) is thus straightforward:

Algorithm f-SpanningTree(p)

Input : Graph G = (V, E), partition of E to S i , . . . , Sp

Output : /-optimal spanning tree T o p t .
KO : T°^ := 0, copt := 00
K l : for each ii,..., ip, s.t. Y%=i h = 1̂ 1 ~* 1 do

begin
K 2 : T = Check(ii,...,ip)
K3 : if \T\ = \V\ - 1 & f(T) < cP-3* then
K4 : To p t := T, copt = f(T)

end

Lemma 3.2. Algorithm /-SpanningTree(p) runs in 0(m2 |V r |p) time.

P r o o f . There are (- j = OdV^I25-1) possibilities for expressing

I V\ — 1 in the form of sum of p integers | V\ — 1 = $3?=i h m s t e P Kl of the algorithm
(see e.g. [9]), thus there are 0 (| F | P _ 1) invocations of Check(ii,... ,ip) in step K2.
The total complexity is then O d ^ " 1) • 0(m2\V\) = 0(m2\V\p). •

Remark 3.1. The range of ij in step Kl of the previous algorithm is limited to
interval [0, \Sj\]. However, as a special case, cardinality of all sets Sj could be as
close to -^- as possible and thus for p < Ty\Zj w e have \Sj\ > \V\ — 1. Therefore
ij < \Sj\ is of no use in this special case and the number of iterations in step Kl
remains O^V^1).

4. A COMPUTATIONAL COMPLEXITY IMPROVEMENT IN CASE p = 2

Let us look closer at the complexity of determining the /-optimal spanning tree. The
maximum cardinality matroid intersection, which can be performed in 0(R(m2 +
mRc(m))) steps, consists of R < \V\ — 1 iterations, of complexity 0(m2 + mRc(m))
each. According to [6], each iteration consists of two steps:

The Color-Balanced Spanning Tree Problem 5 4 3

Step 1: construction of the so-called Border Graph (BG) with complexity 0(mRc(m))

Step 2: determining the so-called Augmenting Path in BG with complexity 0(m2).

Each iteration increases the cardinality of matroid intersection J by 1. In Step 1
for a given independent set J with \I\ < \R\ and for each e e E — I independence
of J U {e} is determined and the unique cycle (in the sense of matroid theory) in
JU{e} is found, if it exists. This needs in case of graphic and partition matroids only
0(1^1) operations, provided that |J| < \V\ - 1. In Step 2 a search for Augmenting
Path is performed in bipartite graph BG. Vertices of BG are exactly elements of
base set E and edges are only between vertices of J and vertices of E — J, thus at
most |J| • |_7 — J| < (|V| — 1) • ra edges are present in BG. Consequently, the search
for Augmenting Path in BG can be performed in OdV^ra) time.

The previous discussion summs up to the following lemma:

Lemma 4 .1 . One iteration of CI-algorithm for graphic and partition matroid (as
defined in Lemma 2.1) can be done in OdV^ra) time giving the overall complexity
of the algorithm 0(\V\2m).

If we take a closer look at Lemma 2.1 and compare two checks, namely Check(i,j)
and Check(i — 1, j + 1), we see that they both operate on the same graphic matroid
Mi and two very similar partition matroids M2(i,j) and M2(i — 1, j +1) . Therefore
it is immediate to try to use the result of Check(i,j) in the computation of Check(i —
1,^ + 1). The complexity improvement that can be obtained in this way is described
in the next lemma:

Lemma 4.2. Let Tij be the result of Check(i,j) (as defined in Lemma 2.1). Then
Check(i — 1, j + 1) can be performed and its result Ti_ij+i can be found using at
most 2 iterations of the maximum cardinality matroid intersection algorithm.

P r o o f . Let us denote T*_lj+1 = Ty in case \Tij Ci Si\ < i - 1. Otherwise
l-̂ ij HiSil = i and there exists e G TijDSi; in this case let T*_lj+1 = T^ — {e}. Such
set T*__x -+1 clearly belongs to the intersection of matroids Mi and M2vi, j). Thus, let
us start the intersection algorithm in Check(i — l , j +1) with the initial intersection
T*_lj+1. The cardinality of T*__lj+1 is at least \T{j\ - 1 and the cardinality of
Ti_ij+i is at most \Tij\ + 1 from which it is immediate, that we need at most two
iterations of intersection algorithm in Check(i — 1, j + 1). ---

As we can see, the algorithm /-spanning tree can be made faster by suitable
ordering of Check(i,j) calls and by reusing the result of previous Check(i,j) calls. If
we denote by Check(iJ,T) the Check(i,j) call where maximum matroid cardinality
intersection starts with intersection T, we could formalize the faster version of the
algorithm:

544 g. BEREŽNÝ AND V. LACKO

Algorithm f-SpanningTree(+)

Input : Graph G = (V, E), partition of E to Si and £2.
Output : /-optimal spanning tree T o p t .
KO : T o p t := 0, Lo p t := 00, Tieft := 0, Tr ight := 0

K l : for i from L 1 ^ 1] to 0 do
begin

K2 : Tieft := Check(i, \V\ - 1 - i, Tleft)
K 3 : if|Tieft| = | V | - l t h e n
K4 : T o p t := Tieft, Lo p t = |V| - 1 - 2 * t, STOP
K5 : T r ight := C.faeck(|^ | - 1 - i, i, Tright)
K 6 : if |T r i g h t | = | F | - 1 then
K7 : T o p t := T r igh t, Lo p t = \V\ - 1 - 2 * i, STOP

end

Steps K2 and K5 are performed |_ 2~J ~*~ * times e a c h . The first time they
are performed they need 0(|V|2ra) time (see Lemma 4.1) to compute the result of
Check(i,j, T), since T = 0 in this case. However all subsequent calls of Check(i,j, T)
in steps K2 and K5 use the precomputed sets Tieft and Tr ight and thus require
just 0(|V|ra) time (see Lemma 4.2). To sum up, algorithm /-SpanningTree(-f)

needs 0(\V\2m) + 2 * (l . 1 1 ^] + 1) * 0(|V1m) time for steps K2 and K5. The
remaining steps are trivial, thus overall complexity of algorithm /-SpanningTree(-f)
is 0(\V\2m).

5. FURTHER IMPROVEMENT

It might look promising to use some kind of binary search in step Kl of Algorithm
/-SpanningTree to determine optimal i, j pair instead of invoking Check(i,j) on
all possible i, j pairs. However, this approach is of no use for finding the optimum
spanning tree: after invocation of Check(i,j) for some values of i and j exactly one
of the following is true:

1. We have found a spanning tree Tij. Thus Lo p t is at most \i — j \

2. There is no spanning tree T!y s.t. \Tij\ = \i — j \ , implying Lopt ^ \i — j \ .
However, it is easy to see that for Lo p t we may have Lo p t < \i — j \ as well as
L o p t > | i - j | .

The latter case makes binary search unapplicable.
Let us now look closer at the structure of (i,j) pairs for which a spanning

tree Tij exists. Let imax = max{i : T^ is a spanning tree} and j m a x = max{j :
T^ is a spanning tree}. To determine value of imaLX, it is enough to determine the
maximum forest F 1 of G1 = (V,Si); Since G was assumed to be connected, the
forest F 1 , if not itself being a spanning tree of G, must be extendable by edges of
52 to some spanning tree of G. i m a x then equals to the number of edges of F1 and
corresponds to a spanning tree Timaxjfc_imax. The value of j m a x can be determined
in the same way.

The Color-Balanced Spanning Tree Problem 5 4 5

The following lemma shows that spanning trees Timax>fc_imax and Tfc_imax,jmax are
sufficient to describe the structure of feasible (z, j) pairs:

Lemma 5.1. Let k — j <i and Tiyk-i and Tk-jj are spanning trees of G having
\Ti}k-i H S\\ = i and \Tk-jj fl S2\ = j . Then for each I : k — j <l <i there exists a
spanning tree Ti^-i of G having \Tijk-i n Si | = /.

P r o o f . The statement trivially holds if k — j = i. Otherwise let e be any edge
from Tk-jj — T^k-i- T^k-i U {e} contains a unique cycle Ce and let / be any edge
from Ce — Tk-jj. Then T ^ = Tiyk-i U {e} — {/} is also a spanning tree which
has more edges in common with Tk-j,i than Ti^-i, more precisely \T^ fl Tk-jj\ =
iT^fc-iflTfc-jj | + 1. By repeating this construction we get a sequence Seq of spanning
trees Seq = {T<°> = T^-uT^ ,T&\ ... , 7 ^ - ^)) = T , ^ } . If we look at two
consecutive spanning trees T (x) and T (x + 1 \ cardinalities of T (x) n S i and T (x + 1) n S i
are either equal or differ by 1. Thus sequence Seq contains for each / : k — j<l<i
a spanning tree Ti^-i of G having \Ti,k-i 0 511 = /. •

Using the previous results we know that (i, j) pairs for which a spanning tree 7\j
exists are exactly pairs {(/, k — /); k — jmax < I < ^max}- Now on it requires only a
constant amount of time to determine the optimum pair (zopt, j o p t) and the optimum
value |zopt — Jopt| of problem (2). But, even if we know the optimum pair (i o p t ,J o p t) ,
to determine the optimum spanning tree Tioptjopt we need to call Check(iopt, j o p t)
once. The complexity of determining the optimum spanning tree is then OdVpra) ,
the same as of algorithm /-SpanningTree(-f).

The last algorithm which we present is better than algorithm /-SpanningTree(+)
in the sense that it determines the optimum value of problem (2) in 0(m + n) time
and needs only one call of Check(i,j) to determine the optimum spanning tree.

Algorithm f-SpanningTree(++)

Input : Graph G = (V,E), partition of E to Si and S2.
Output : optimum value copt and an /-optimal spanning tree T o p t .
KO : k := \V\
K l : Find the maximum forest F1 of G1 = (V, Si); w := \Fl\
K2 : Find the maximum forest F2 of G2 = (V, 52); Jmax := \F2\
K 3 : i f (imax - (k - W x)) ((f c - Jmax) - .7max) < 0 t h e n

(**.J-):=(L|J.r|l)
e l s e i f |imax - (k - W x) | < \(k - jmax) - Jmaxl t h e n

(} yj) '=z rmaxj & ^rnaxy
else

[} -J) ' = \k -" Jmaxjjmaxj
K5 : cPP* := \i* - j * \ , OUTPUT <***
K 6 : r°Pe := Check(i*,j*), STOP.

We have postponed dealing with disconnected graphs until now. The disconnected
case only requires small changes in the algorithms given above: we are dealing with

546 g. BEREŽNÝ AND V. LACKO

spanning forests instead of spanning trees. T h e cardinality of spanning forests is
|V | — c(G), where c(G) is the number of connected components of the graph G.
Lemmas 2.1 and 3.1 remain valid in case of disconnected graphs since graphical
matroid is defined in the same way in this case. Therefore all complexity results
s tated above hold in t h e disconnected case as well.

A C K N O W L E D G E M E N T

This work was supported by Science and Technology Assistance Agency under the contract
No. APVT-20-004104 and by the Slovak Grant Agency grant No. 1/2168/05.

(Received June 18, 2004.)

REFERENCES

[1] I. Averbakh and O. Berman: Categorized bottleneck/minisum path problems on net
works. Oper. Res. Lett. 16 (1994), 291-297.

[2] S. Berezny, K. Cechlarova, and V. Lacko: Optimization problems on graphs with cat
egorization of edges. In: Proc. SOR 2001 (V. Rupnik, L. Zadnik-Stirn, and S. Drobne,
eds.), Slovenian Society Informatika - Section for Operational Research, Predvor Slove
nia 2001, pp. 171-176.

[3] S. Berezny, K. Cechlarova, and V. Lacko: A polynomially solvable case of optimization
problems on graphs with categorization of edges. In: Proc. 17th Internat. Conference
Mathematical Methods in Economics '99 (J. Plesingr, ed.), Czech Society for Opera
tions Research, Jindfichuv Hradec 1999, pp. 25-31.

[4] S. Berezny and V. Lacko: Balanced problems on graphs with categorization of edges.
Discuss. Math. Graph Theory 23 (2003), 5-21.

[5] H.W. Hamacher and F. Rendl: Color constrained combinatorial optimization prob
lems. Oper. Res. Lett. 10 (1991), 211-219.

[6] E. L. Lawler: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, New York 1976.

[7] A. P. Punnen: Traveling salesman problem under categorization. Oper. Res. Lett. 12
(1992), 89-95.

[8] M. B. Richey and A. P. Punnen: Minimum weight perfect bipartite matchings and
spanning trees under categorizations. Discrete Appl. Math. 39 (1992), 147-153.

[9] K. H. Rosen and J. G. Michaels: Handbook of Discrete and Combinatorial Mathemat
ics. CRC Press, New York 1997.

Stefan Berežný, Department of Mathematics, Technical University in Košice, Boženy
Němcovej 32, 040 01 Košice. Slovák Republic.
e-mail: Stefan.Berezny@tuke.sk

Vladimír Lacko, P. J. Šafárik University in Košice, Institute of Computer Science, Je-
senná 5, 041 54 Košice. Slovák Republic.
e-mail: lacko@science.upjs.sk

