MULTIPLICATION, DISTRIBUTIVITY AND FUZZY-INTEGRAL II 1

Wolfgang Sander and Jens Siedekum

Based on results of generalized additions and generalized multiplications, proven in Part I, we first show a structure theorem on two generalized additions which do not coincide. Then we prove structure and representation theorems for generalized multiplications which are connected by a strong and weak distributivity law, respectively. Finally - as a last preparation for the introduction of a framework for a fuzzy integral - we introduce generalized differences with respect to t-conorms (which are not necessarily Archimedean) and prove their essential properties.
Keywords: fuzzy measures, distributivity law, restricted domain, pseudo-addition, pseudomultiplication, Choquet integral, Sugeno integral
AMS Subject Classification: 28A25, 20M30

7. INTRODUCTION

We assume that the reader is familiar with the notations and results in Part I of this paper where we have introduced generalized additions and multiplications which we called pseudo-additions and pseudo-multiplications, respectively together with a strong and a weak distributivity law.

If we now weaken appropriately the existence of a unit element then we can show that under weak assumptions the structure of the ordinal sum of Δ is 'finer' than the corresponding structure of \amalg, which means, that

Archimedean t-conorms of \amalg are also Archimedean t-conorms of \triangle.
In addition, strict t -conorms of \amalg are also strict t -conorms of \triangle.
We start with the definition of an 'individual unit'.

Definition 5. Let \diamond be a pseudo-multiplication.
$\left(\mathrm{RU}^{*}\right)$ For all $a \in(A, B]$ there is $e(a) \in(A, B]$ such that: $a \diamond e(a)=a$. (individual right unit)

[^0]$\left(\mathrm{LU}^{*}\right)$ For all $a \in(A, B]$ there is $\tilde{e}(a) \in(A, B]$ such that: $\tilde{e}(a) \diamond a=a$ (individual left unit).

In the case of $\left(\mathrm{RU}^{*}\right)$ we define $E(a):=\sup \{e \in[A, B]: a \diamond e=a\}$ (maximal right unit for a).
In the case of $\left(\mathrm{LU}^{*}\right)$ we define $\tilde{E}(a):=\sup \{\tilde{e} \in[A, B]: \tilde{e} \diamond a=a\}$ (maximal left unit for a).

It is easy to show that $E(a)$ and $\tilde{E}(a)$ are individual right units and individual left units for a, respectively.

Moreover, there is the following connection with boundary conditions:
If \diamond satisfies (Z) and (CRZ), then:
$\left(\mathrm{RU}^{*}\right) \Longleftrightarrow a \diamond B \geq a$ for all $a \in(A, B]$.
If \diamond satisfies (Z) and (CLZ), then:
$\left(\mathrm{LU}^{*}\right) \Longleftrightarrow B \diamond \ddot{a} \geq a$ for all $a \in(A, B]$.
We prove only the first statement. If $\left(\mathrm{RU}^{*}\right)$ is valid then we get $a \diamond B \geq a \diamond e(a)=a$.
If $a=B$ then $B \diamond B \geq B$ implies $B \diamond B=B$.
If $a \in(A, B]$ then we have that $a \diamond A=A<a \leq a \diamond B$, and by the intermediate value theorem there is $e(a) \in(A, B]$ with $a \diamond e(a)=a$.

Some often used results are contained in the following Lemma.
Lemma 4. Let \triangle, \amalg be pseudo-additions, and let \diamond be a pseudomultiplication satisfying (DL^{*}) and (RU^{*}).

Let $m \in K_{\Delta}$ and let $b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right.$] be \amalg-idempotent. Then we have:
(a) $\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{x \in(E(b), B]} a \diamond x>b$.
(b) $b_{m}^{\Delta} \diamond E(b)=b$.
(c) $E(b)<B \Rightarrow \bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}\right)} a \diamond E(b)=b$.
(d) $b \in\left(a_{m}^{\triangle}, b_{m}^{\triangle}\right) \Rightarrow E(b)<E\left(b_{m}^{\triangle}\right) \wedge \bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} a \diamond E(b)=b$.

Proof. (a) Let us assume $\bigvee_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigvee_{x \in(E(b), B]} a \diamond x \leq b$. Then Lemma 2 (d) and (RU^{*}) imply

$$
b=b \diamond E(b) \leq b \diamond x \leq b_{m}^{\triangle} \diamond x \leq \amalg_{i=1}^{\infty}(a \diamond x) \leq \lim _{n \rightarrow \infty}\left(\amalg_{i=1}^{n} b\right)=b,
$$

so that $b \diamond x=b$ contradicts the maximality of $E(b)$.
(b) Again, using Lemma 2 (d) and (RU^{*}) the following inequalities imply the desired result:

$$
b=b \diamond E(b) \leq b_{m}^{\Delta} \diamond E(b) \leq \amalg_{i=1}^{\infty}(b \diamond E(b))=\lim _{n \rightarrow \infty}\left(\amalg_{i=1}^{n} b\right)=b
$$

(c) W.l.o.g. let $a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)$ (see (b)). Then we get by (a) and (b)

$$
b=b_{m}^{\triangle} \diamond E(b) \geq a \diamond E(b)=\lim _{x \rightarrow E(b)+}(a \diamond x) \geq b
$$

(d) Because of (c) we have only to show that $E(b)<E\left(b_{m}^{\triangle}\right)$. We assume $E\left(b_{m}^{\Delta}\right) \leq$ $E(b)$ and get the contradiction (using (b) and ($\left.\mathrm{RU}^{*}\right)$)

$$
b_{m}^{\Delta} \diamond E\left(b_{m}^{\Delta}\right) \leq b_{m}^{\Delta} \diamond E(b)=b<b_{m}^{\Delta} \diamond E\left(b_{m}^{\Delta}\right)
$$

This proves Lemma 4.
Let us now present the following structure theorem for two pseudo-additions, which do not coincide, but which have at least the same structure of ordinal sums. Again, the proof for this result is very technically, but it seems to be a completely unknown result.

Theorem 5. Let \triangle and \amalg be pseudo-additions, and let \diamond be a pseudo-multiplication satisfying (DL^{*}) and (RU^{*}).
(I) If $l \in K_{\amalg}$ and if we have

$$
\begin{equation*}
\left(a_{l}^{\mathrm{U}}>A \vee[(\mathrm{Z}) \wedge(\mathrm{CLZ})]\right) \wedge\left(b_{l}^{\mathrm{\amalg}}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})]\right) \tag{78}
\end{equation*}
$$

then
(a) Δ and \amalg have the same structure on $\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]^{2}$, that is, $\left.\Delta\right]_{\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]^{2}}$ is Archimedean, and $\left[a_{l}^{\Delta}, b_{l}^{\Delta}\right]=\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]=\left[a_{l}, b_{l}\right]$.
(b) $\bigwedge_{x \in(A, B]} a_{l} \diamond x=a_{l}$.
(c) $\bigwedge_{x \in(A, B]} b_{l} \diamond x=b_{l}$.
(d) $\bigwedge_{a \in\left[a_{l}, b_{l}\right]} \bigwedge_{x \in(A, B]} a \diamond x \in\left[a_{l}, b_{l}\right]$.
(e) If $\left.\amalg\right|_{\left[a_{l}, b_{l}\right]^{2}}$ is strict, then $\left.\Delta\right|_{\left[a_{l}, b_{l}\right]^{2}}$ is also strict.
(II) Let

$$
\left(\left[\bigwedge_{l \in K_{\mathrm{L}}} a_{l}^{\mathrm{U}}>A\right] \vee[(\mathrm{Z}) \wedge(\mathrm{CLZ})]\right) \wedge\left(\left[\bigwedge_{l \in K_{\mathrm{U}}} b_{l}^{\mathrm{U}}<B\right] \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})]\right)
$$

Then the structure of the ordinal sum of Δ is 'finer' than the corresponding structure of \amalg, which means, that

Archimedean t-conorms of \amalg are also Archimedean t-conorms of \triangle. In addition, strict t-conorms of \amalg are also strict t-conorms of \triangle.

The above two pictures, where the left one represents Δ and the right one represents \amalg, give an interpretation of the relation 'finer'.

Note also, that the condition (78) in (I) of Theorem 5 and the corresponding condition in (II) of Theorem 5 are rather weak assumptions.

Now we present the proof of Theorem 5.
Proof of Theorem 5. (a) To prove (a) we show 3 statements:
(a1) $\bigwedge_{a \in[A, B]}[a \triangle$-idempotent $\Rightarrow a \amalg$-idempotent $]$.
(a2) If $m \in K_{\Delta}, a_{m}^{\triangle}=A$ then we have: $\left.(\mathrm{Z}) \wedge(\mathrm{CLZ}) \Rightarrow \amalg\right|_{\left[a_{m}^{\triangle}, b_{m}\right]^{2}}$ is Archimedean.
(a3) If $m \in K_{\Delta}, a_{m}^{\Delta}>A$ then we have:

$$
b_{m}^{\triangle}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})] \Rightarrow\left(\left.\amalg\right|_{\left[a_{m}^{\Delta}, b_{m}^{\triangle}\right]^{2}} \text { is Archimedean }\right) \vee\left(\left.\amalg\right|_{\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]^{2}}=\vee\right)
$$

Proof of (a1). Again, w.l.o.g. we may assume $a \in(A, B)$ (since $A \triangle A=A=$ $A \amalg A, B \triangle B=B=B \amalg B$). But then the first statement of Lemma 2 (a) yields that $a=a \diamond E(a)$ is \amalg-idempotent.

Proof of (a2). Let us assume that $\left.\amalg\right|_{\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]^{2}}$ is not Archimedean. Then there is a \amalg-idempotent, element $b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)$ and Lemma 4 (d), (Z) and (CLZ) yield the contradiction $b=\lim _{a \rightarrow a_{m}+}(a \diamond E(b))=a_{m}^{\Delta} \diamond E(b)=A \diamond E(b)=A$.

Proof of (a3). Let $\left(\left.\Delta\right|_{\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]^{2}}\right.$ Archimedean) $\wedge\left(\amalg_{\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]^{2}} \neq \vee\right)$.
Using (a1) we get: $\bigvee_{l \in K_{\mathrm{L}}}\left[a_{m}^{\mathrm{U}}, b_{m}^{\amalg}\right] \subset\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]$. We are done, if we show
$(\alpha) a_{l}^{\amalg}=a_{m}^{\Delta}$ and $b_{l}^{\amalg}=b_{m}^{\Delta}$.

At first we prove:
(β) $a_{m}^{\Delta}>A \Rightarrow b_{l}^{\amalg}=b_{m}^{\Delta}$.
If we assume in contrary that $b_{l}^{\amalg} \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)$, then Lemma 4 (d) and (RU*) show that $E\left(b_{l}^{\amalg}\right) \in(A, B)$ and thus $a_{m}^{\Delta} \diamond E\left(b_{l}^{\amalg}\right)=\lim _{a \rightarrow a_{m}}\left[a \diamond E\left(b_{l}^{\amalg}\right)\right]=b_{l}^{\amalg}>a_{m}^{\Delta}=$ $a_{m}^{\triangle} \diamond E\left(a_{m}^{\triangle}\right)$.

We choose now $a:=a_{m}^{\Delta} \in(A, B)$ as \triangle-idempotent element, $x_{0}:=E\left(b_{l}^{\amalg}\right), x:=$ $E\left(a_{m}^{\triangle}\right) \in(A, B]$. Then the last inequality together with the monotonicity of \diamond leads to $\left(a \diamond x_{0}=b_{l}^{\mathrm{U}}>a \diamond x\right) \wedge\left(x<x_{0}\right)$.

This contradicts the third statement of Lemma 3 (a) and proves (β).
To prove (α) we still show:
$(\gamma) b_{m}^{\triangle}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})] \Rightarrow a_{l}^{\mathrm{II}}=a_{m}^{\triangle}$.
Again we assume that $a_{l}^{\amalg} \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)$ and get by Lemma $4(\mathrm{~d})$ and (RU*) $b_{m}^{\Delta} \diamond$ $E\left(a_{l}^{\amalg}\right)=a_{l}^{\amalg}<b_{m}^{\triangle}=b_{m}^{\triangle} \diamond E\left(b_{m}^{\triangle}\right)$.

Choosing now $a:=b_{m}^{\Delta}$ as \triangle-idempotent element, $x_{0}:=E\left(a_{l}^{\amalg}\right) \in(A, B], x:=$ $E\left(b_{m}^{\Delta}\right)$ the last inequality yields $\left(a \diamond x_{0}=a_{l}^{\amalg}<a \diamond x\right) \wedge\left(x>x_{0}\right)$.

This contradicts the second statement of Lemma 3 (a) (if $b_{m}^{\triangle}<B$) and the second statement of Lemma 1 (if $(\mathrm{DL}) \wedge(\mathrm{CRB})$), respectively. Thus (γ) is proven.

Now we can show (a).
Let $\left.\amalg\right|_{\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]^{2}}$ be Archimedean. Then (a1) implies $\bigvee_{m \in K_{\Delta}}\left[a_{m}^{\amalg}, b_{m}^{\amalg}\right] \subset\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]$.
Case 1: If $a_{m}^{\Delta}>A$ then (β) yields $\left(b_{m}^{\triangle}=b_{l}^{\amalg}\right) \wedge\left(b_{m}^{\Delta}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})]\right)$. Moreover, (γ) now gives $\left(a_{m}^{\triangle}=a_{l}^{\amalg}\right)$.
Case 2: If $a_{m}^{\Delta}=A \wedge[(Z) \wedge(\mathrm{CLZ})]$ then (a2) shows that $\left.\amalg\right|_{\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]^{2}}$ is Archimedean.
Since $\left.\amalg\right|_{\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]^{2}}$ is Archimedean, (a3) leads to (α), and (a) is proven.
(b) To prove (b) we consider 2 cases. If $a_{l}=A \wedge[(\mathrm{Z}) \wedge(\mathrm{CLZ}]$ then (b) is obviously satisfied.

Let us now consider the case $a_{l}>A$. In this case we show at first 4 statements:
(b1) $a_{l}>A \Rightarrow E\left(a_{l}\right)=B$,
(b2) $a_{l}>A \vee[(\mathrm{Z}) \wedge(\mathrm{CLZ})] \Rightarrow E\left(b_{l}\right)=B$,
(b3) $b_{l}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})] \Rightarrow \bigwedge_{x \in\left(A, E\left(b_{l}\right)\right]} b_{l} \diamond x=b_{l}$,
(b4) $\left(a_{l}>A\right) \wedge\left(b_{l}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})]\right) \Rightarrow \bigwedge_{x \in\left(A, E\left(a_{l}\right)\right]} a_{l} \diamond x=a_{l}$.
To prove (b1) it is sufficient to prove $a_{l} \diamond B=a_{l}$. We put $a:=a_{l} \in(A, B)$ as \triangle-idempotent element, $x_{0}:=E\left(a_{l}\right) \in(A, B]$ and apply the second statement of Lemma 3 (a) to get $\bigwedge_{x \in\left[E\left(a_{l}\right), B\right]} a_{l} \diamond x=a_{l}$.

Proof of (b2). We assume that $E\left(b_{l}\right)<B$. Then Lemma 4 (c) gives $\bigwedge_{a \in\left(a_{l}, b_{l}\right]} a \diamond$ $E\left(b_{l}\right)=b_{l}$.

If $a_{l}>A$ then we arrive at the contradiction (using (b1)) $b_{l}=\lim _{a \rightarrow a_{l}+}(a \diamond$ $\left.E\left(b_{l}\right)\right)=a_{l} \diamond E\left(b_{l}\right) \leq a_{l} \diamond B=a_{l}$.

If $a_{l}=A \wedge(\mathrm{Z}) \wedge(\mathrm{CLZ})$ then (b1) again leads to the contradiction $b_{l}=\lim _{a \rightarrow a_{l}+}(a \diamond$ $\left.E\left(b_{l}\right)\right)=a_{l} \diamond E\left(b_{l}\right)=a_{l}$.
(b3) To show (b3) we choose $a:=b_{l} \in(A, B]$ as \triangle-idempotent element and put $x_{0}:=E\left(b_{l}\right) \in(A, B]$. Then the third statement of Lemma 3 (a) (if $b_{l}<B$) and the third statement of Lemma $1(\mathrm{a})$ (if (DL) $\wedge(\mathrm{CRB}))$ yield $\bigwedge_{x \in\left(A, E\left(b_{l}\right)\right]} b_{l} \diamond x=b_{i}$.

The proof for (b4) is similar to the proof of statement (IV) in the proof of Lemma 3. Assume that (b4) is not true, then we have $\bigvee_{x \in\left(A, E\left(a_{l}\right)\right)} a_{l} \diamond x \neq a_{l}$.

Using (RU^{*}) we get $a_{l} \diamond x<a_{l} \diamond E\left(a_{l}\right)=a_{l}$. Because of the monotonicity of \diamond we may assume that $x \in\left(A, E\left(b_{l}\right)\right)$ Using (b3) we get $a_{l} \diamond x<a_{l}<b_{l}=b_{l} \diamond x$, and by the intermediate value theorem there exists $a \in\left(a_{l}, b_{l}\right)$ with $a \diamond x=a_{l}$. Now we again apply Lemma 2 (d) to get the contradiction
$a_{l}<b_{l} \diamond x \leq \amalg_{i=1}^{\infty}(a \diamond x)=\lim _{n \rightarrow \infty}\left(\amalg_{i=1}^{n} a_{l}\right)=a_{l}$.
Now we prove the second case of (b), where $a_{l}>A$. But then (b1) and (b4) result in (b).
(c) Statement (c) follows directly from (b2) and (b3).
(d) We use the following implication:

$$
\begin{aligned}
& \left(a_{l}^{\mathrm{\amalg}}>A \vee[(\mathrm{Z}) \wedge(\mathrm{CLZ})]\right) \wedge\left(b_{l}^{\mathrm{\amalg}}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})]\right) \\
\Rightarrow \quad & {\left[a_{l}>A \wedge\left(b_{l}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})]\right)\right] \vee\left[a_{l}=A \wedge(\mathrm{Z}) \wedge(\mathrm{CLZ})\right] . }
\end{aligned}
$$

To prove (d) we get in the case $a_{l}>A \wedge\left(b_{l}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})]\right)$:
$a_{l}=a_{l} \diamond x \leq a \diamond x \leq b_{l} \diamond x=b_{l}$ (here we have used (b1) and (b4) in the first equality and (b2) and (b3) in the last equality).

In the case $a_{l}=A \wedge(\mathrm{Z}) \wedge(\mathrm{CLZ})$ we get by (b2): $a_{l}=A \leq a \diamond x \leq b_{l} \diamond B=b_{l}$.
To prove (e), we first show:
(e1) $\left(\left.\triangle\right|_{\left[a_{l}, b_{l}\right]^{2}}\right.$ not strict) $\left.\wedge\left(b_{l}<B \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})]\right) \Rightarrow \amalg\right|_{\left[a_{l}, b_{l}\right]^{2}}$ not strict.
We assume that $\left.\amalg\right|_{\left[a_{l}, b_{l}\right]^{2}}$ is strict. Let $a \in\left(a_{l}, b_{l}\right)$ be fixed. Then (55) gives: $\bigwedge_{n \in \mathbb{N}} \amalg_{i=1}^{n} a<b_{l}$. Now we use the assumption that $\left.\Delta\right|_{\left[a_{l}, b_{l}\right]^{2}}$ is not strict by applying Lemma 2 (e) to get: $\bigvee_{s \in \mathbb{N}} b_{l} \diamond E(a) \leq \amalg_{i=1}^{s}(a \diamond E(a))=\amalg_{i=1}^{s} a$.

Thus we arrive on the one hand at $b_{l} \diamond E(a) \leq \amalg_{i=1}^{s} a<b_{l}=b_{l} \diamond E\left(b_{l}\right)$. By monotonicity we may assume that $E(a) \in\left(A, E\left(b_{l}\right)\right)$ and so we get on the other hand (using (b3)) $b_{l} \diamond E(a)=b_{l}$, which is impossible.

Now (e) follows from (e1) by contraposition and (f) is a consequence of of (I), (a) and (e). Thus Theorem 5 is proven.

We remark that the properties of \diamond are also valid if (RU^{*}) is replaced by (RU). Moreover, the following problem is unsolved:

Present assumptions for the implication: $\left.\Delta\right|_{\left[a_{l}, b_{l}\right]^{2}}$ strict $\left.\Longrightarrow \amalg\right|_{\left[a_{l}, b_{l}\right]^{2}}$ strict.
We believe that the assumptions must be so strong, that already $\Delta=\amalg$ holds.

8. PSEUDO-MULTIPLICATIONS

After these considerations concerning pseudo-additions we now show a general representation theorem for pseudo-multiplications. The only assumption is the weak distributivity, but no unit element, no zero element is required.

We here give the left distributivity version of the result, but there is also a right distributivity version.

Theorem 6. Let \triangle and I be pseudo-additions.
Let \diamond satisfy the weak left distributivity law (DL*).
Then there exists for all $m \in K_{\Delta}$ and for all $l \in K_{\mathrm{L}}$ a monotone increasing, continuous function $g_{m, l}:(A, B] \rightarrow[0, \infty]$ satisfying

$$
\begin{equation*}
\bigwedge_{:\left(a^{\Delta} \Delta \Delta_{l}\right.} \bigwedge_{x \in(A, B)}\left[a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right] \Longrightarrow a \diamond x=h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(x)\right)\right] . \tag{79}
\end{equation*}
$$

Proof. We choose an arbitrary but fixed $m \in K_{\Delta}$ and denote temporarily k_{m} and $\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)$ (cf. (50)) by $k=k_{m}$ and $\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)=\left(a^{\Delta}, b^{\Delta}\right)$. In a first step we show

$$
\begin{gather*}
\bigwedge_{l \in K_{\mathrm{U}}} \bigvee_{g_{l}:(A, B) \rightarrow[0, \infty], g_{l} \uparrow, g_{l} \text { continuous }} \bigwedge_{a \in\left(a \Delta, b^{\Delta}\right)} \bigwedge_{x \in(A, B)}\left[a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]\right. \\
\left.\Longrightarrow a \diamond x=h_{l}^{(-1)}\left(k(a) \cdot g_{l}(x)\right)\right] . \tag{80}
\end{gather*}
$$

(1) This first result (80) will be proven in several steps. We define

$$
\bigwedge_{l \in K_{\mathrm{U}}} \bigwedge_{x \in(A, B)} g_{l}(x):=\left\{\begin{array}{lll}
0 & \text { if } & \bigwedge_{a \in\left(a^{\Delta}, b^{\Delta}\right)} a \diamond x \leq a_{l}^{\amalg} \\
\frac{h_{l}(a \diamond x)}{k(a)} & \text { if } & \bigvee_{a \in\left(a^{\Delta}, b^{\Delta}\right)} a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right) \\
\infty & \text { if } & \bigwedge_{a \in\left(a^{\Delta}, b^{\Delta}\right)} a \diamond x \geq b_{l}^{\amalg} .
\end{array}\right.
$$

(2) We remark that in (1) the subcases are complete, for otherwise, if we assume that none of the three cases occur, then there exist $a_{1}, a_{2} \in\left(a^{\Delta}, b^{\Delta}\right)$ satisfying $a_{1} \diamond x \leq a_{l}^{\amalg}<\frac{a_{l}^{\amalg}+b_{\perp}^{\amalg}}{2}<b_{l}^{\amalg} \leq a_{2} \diamond x$. But then the intermediate value theorem shows that there is $a \in\left(a_{1}, a_{2}\right)$ with $a \diamond x=\frac{a_{\perp}^{\amalg}+b_{\perp}^{\amalg}}{2}$, and the second case occurs, which is a contradiction.
(3) Now we investigate the second case in (1) and show, that it is well-defined. Let us consider from now on an arbitrary, but fixed $l \in K_{\mathrm{L}}$.
Let $x \in(A, B)$, and the second case in (1) occurs, that is $\bigvee_{a \in(a \Delta, b \Delta)} a \diamond x \in$ $\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$. Let us define
($\gamma) M_{x}:=\left\{a \in\left(a^{\Delta}, b^{\Delta}\right) \mid a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)\right\} \neq \emptyset, a_{x}:=\sup M_{x} \in\left(a^{\Delta}, b^{\Delta}\right]$.
(3a) Obviously $\bigwedge_{a \in M_{x}} \frac{h_{1}(a \diamond x)}{k(a)} \in(0, \infty)$, since $a \in\left(a^{\Delta}, b^{\Delta}\right), a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$, and thus $k(a), h_{l}(a \diamond x) \in(0, \infty)$.
(3b) We prove $\bigwedge_{a \in\left(a^{\Delta}, a_{x}\right)} a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$.
Using the definition of a_{x} and $a<a_{x}$ we get $\bigvee_{b \in(a, b \Delta)} b \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$. The monotonicity of \diamond gives $a \diamond x<b_{l}^{\amalg}$. We still have to show $a \diamond x>a_{l}^{\mathrm{U}}$. In contrary, we assume $a \diamond x \leq a_{l}^{\amalg}$. But then the assumptions of Lemma 2 are satisfied and Lemma $2(\mathrm{~b})$ gives $\bigvee_{s \in \mathbb{N}} b \diamond x \leq \amalg_{i=1}^{s}(a \diamond x)$. so we arrive at the contradiction $a_{l}^{\amalg}<b \diamond x \leq \amalg_{i=1}^{s}(a \diamond x) \leq \amalg_{i=1}^{s} a_{l}^{\amalg}=a_{l}^{\amalg}$.
(3c) We show $\bigvee_{\alpha \in(0, \infty)} \bigwedge_{a \in\left(a^{\Delta}, a_{x} \cap\left(a^{\Delta}, b^{\Delta}\right)\right.} \frac{h_{l}(a \circ x)}{k(a)}=\alpha$.
Let $u, v \in(0, \infty)$ with $u+v \in\left(0, k\left(a_{x}\right)\right)$. Using $k\left(a^{\Delta}\right)=0<u, v<u+v<k\left(a_{x}\right)$ and the intermediate value theorem we get: $\bigvee_{a, b \in\left(a^{\Delta}, a_{x}\right)}(k(a)=u) \wedge(k(b)=v)$. Thus $k(a)+k(b) \in\left(0, k\left(a_{x}\right)\right)$ and $a^{\Delta}=k^{(-1)}(0)<a \triangle b=k^{(-1)}(k(a)+k(b))<$ $a_{x} \leq b^{\Delta}$, so that ($\mathrm{DL}^{* *}$) and (3b) imply $b_{l}^{\amalg}>(a \Delta b) \diamond x=(a \diamond x) \amalg(b \diamond x)=$ $h_{l}^{(-1)}\left(h_{l}[a \diamond x]+h_{l}[b \diamond x]\right)>a_{l}^{\amalg}$ and so $h_{l}[(a \Delta b) \diamond x]=h_{l}[a \diamond x]+h_{l}[b \diamond x]$ (note that here $\left.h_{l}^{(-1)}=h_{l}^{-1}\right)$. This implies $h_{l}\left[k^{(-1)}(k(a)+k(b)) \diamond x\right]=h_{l}\left[k^{(-1)} k(a) \diamond\right.$ $x]+h_{l}\left[k^{(-1)} k(b) \diamond x\right]$, or $h_{l}\left[k^{(-1)}(u+v) \diamond x\right]=h_{l}\left[k^{(-1)} u \diamond x\right]+h_{l}\left[k^{(-1)} v \diamond x\right]$. This means, that the function $h_{l}\left[k^{(-1)}(\cdot) \diamond x\right]$ is additive on the restricted domain $\{(u, v) \in$ $\left.(0, \infty)^{2} \mid u+v<k\left(a_{x}\right)\right\}$ satisfying $\bigwedge_{u \in(0, \infty)} h_{l}\left[k^{(-1)}(u) \diamond x\right] \geq 0$, the solution of which is given by $\bigvee_{\alpha \in[0, \infty]} \bigwedge_{u \in\left(0, k\left(a_{x}\right)\right)} h_{l}\left[k^{(-1)}(u) \diamond x\right]=\alpha \cdot u$ (see [1], p.48).

Because k is strictly monotonic increasing and satisfies $k\left(a^{\Delta}\right)=0$ we get $\bigwedge_{a \in\left(a^{\Delta}, a_{x}\right)} h_{l}\left[k^{(-1)} k(a) \diamond x\right]=\alpha \cdot k(a)$ and using the continuity of $(\cdot) \diamond x$ we arrive at $\bigwedge_{a \in\left(a^{\Delta}, a_{x}\right] \cap\left(a^{\Delta}, b^{\Delta}\right)} h_{l}[a \diamond x]=\alpha \cdot k(a)$. Because of $k(a) \in(0, \infty)$ and (3a) we get $\bigwedge_{a \in\left(a^{\Delta}, a_{x} \cap \cap\left(a^{\Delta}, b \Delta\right)\right.} \frac{h_{l}(a \diamond x)}{k(a)}=\alpha \in(0, \infty)$.
(3d) Thus we have shown that the second case in (1) is well-defined, and

$$
\bigwedge_{a \in\left(a^{\Delta}, a_{x}\right] \cap\left(a^{\Delta}, b \Delta\right)} \frac{h_{l}(a \Delta x)}{k(a)}=g_{l}(x)\left(\text { see (3c) and } M_{x} \subset\left(a^{\Delta}, a_{x}\right] \cap\left(a^{\Delta}, b^{\triangle}\right)\right)
$$

Before we show (80) we still prove:
(3e) $a_{x}<b^{\Delta} \Rightarrow a_{x} \diamond x=b_{l}^{\dot{\amalg}}$.
By (γ) there exists a sequence $\left(a_{n}\right) \subset\left(a^{\Delta}, a_{x}\right)$ with $a_{n} \uparrow a_{x}$, and (3b) implies $a_{x} \diamond x=\sup _{n \in \mathbb{N}}\left(a_{n} \diamond x\right) \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right]$. If we suppose that $a_{x} \diamond x<b_{l}^{\amalg}$ then by the continuity of $(\cdot) \diamond x$ there is $a \in\left(a_{x}, b^{\triangle}\right)$ such that $b_{l}^{\amalg}>a \diamond x \geq a_{x} \diamond x>a_{l}^{\amalg}$, which is a contradiction to the definition of $a_{x}=\sup M_{x}$.
(4) Now we prove (80) (but first without the properties of g_{l}).

We distinguish 3 subcases.

Case 1. $\bigwedge_{a \in(a \Delta, b \Delta)} a \diamond x \leq a_{l}^{\mathrm{H}}$:
Let $a \in\left(a^{\Delta}, b^{\Delta}\right)$ be arbitrary. Because of $a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]$ we have of course $a \diamond x=a_{l}^{\amalg}$, and thus (1) implies $h_{l}^{(-1)}\left(k(a) g_{l}(x)\right)=h_{l}^{(-1)}(k(a) \cdot 0)=a_{l}=a \diamond x$.
Case 2. $\bigvee_{a \in\left(a^{\Delta}, b \Delta\right)} a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right):$
Case 2a: If $a \in\left(a^{\Delta}, a_{x}\right)$, then $h_{l}^{(-1)}\left(k(a) g_{l}(x)\right)=h_{l}^{(-1)}\left[k(a) \cdot \frac{h_{l}(a \circ x)}{k(a)}\right]=a \diamond x$.
Case 2b: If $a \in\left[a_{x}, b^{\Delta}\right)$, then 3e) gives (because of $\left.a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]\right)$
$b_{l}^{\amalg} \geq a \diamond x \geq a_{x} \diamond x=b_{l}^{\amalg}$. Thus we obtain, using (3d):

$$
h_{l}^{(-1)}\left(k(a) g_{l}(x)\right)=h_{l}^{(-1)}\left(k(a) \frac{h_{l}\left(a_{x} \diamond x\right)}{k\left(a_{x}\right)}\right)=h_{l}^{(-1)}\left(k(a) \frac{h_{l}\left(b_{l}^{\amalg}\right)}{k\left(a_{x}\right)}\right)=b_{l}^{\mathrm{U}}=a \diamond x .
$$

Here we have used that $k(a) \frac{h_{l}\left(b_{l}^{\amalg}\right)}{k\left(a_{x}\right)} \geq h_{l}\left(b_{l}^{\amalg}\right)$.
Case 3. $\Lambda_{a \in(a \Delta, b \Delta)} a \diamond x \geq b_{l}^{\amalg}$.
If $a \in\left(a^{\Delta}, b^{\Delta}\right)$ is arbitrary, then now (because of $a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]$) we have $a \diamond x=b_{l}^{\amalg}$, and thus we obtain from (1) $h_{l}^{(-1)}\left(k(a) g_{l}(x)\right)=h_{l}^{(-1)}(k(a) \cdot \infty)=$ $h_{l}^{(-1)}(\infty)=b_{l}^{\mathrm{U}}=a \diamond x$.

To prove the monotonicity of g_{l}, we further fix $l \in K_{\mathrm{U}}$ and introduce J_{l}, the set of all x, for which the second case in the definition of g_{l} (see (1)) is valid.
(5) $J_{l}:=\left\{x \in(A, B) \mid \bigvee_{a \in(a \Delta, b \Delta)} a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{U}\right)\right\}$.
(6) We show: $x, y \in J_{l} \wedge x \leq y \Rightarrow a_{y} \leq a_{x}$.

Assume that $a_{x}<a_{y}$. By the definition of a_{y} there is $a_{1} \in\left(a_{x}, a_{y}\right)$ such that $a_{1} \diamond y \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$. Because of $x \in J_{l}$ we get: $\bigvee_{a_{2} \in(a \Delta, b \Delta)} a_{2} \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\mathrm{U}}\right)$. But then we obtain $a_{2} \leq a_{x}<a_{1}$ and $a_{l}^{\amalg}<a_{2} \diamond x<a_{1} \diamond x<a_{1} \diamond y<b_{l}^{\amalg}$. But this means that $a_{1} \in M_{x}$, which contradicts $a_{x}<a_{1}$.
(7) We prove that g_{l} is monotonic increasing.

Let $x, y \in(A, B)$ and let $x \leq y$.
Case 1: If $\bigwedge_{a \in(A, B)} a \diamond y \leq a_{l}^{\amalg}$ then the monotonicity of \diamond yields $a \diamond x \leq a \diamond y \leq a_{l}^{\amalg}$ and (1) leads to $g_{l}(x)=0$.

Case 2: If $\bigwedge_{a \in(A, B)} a \diamond x \geq b_{l}^{\amalg}$ then we get in the same manner (using again (1)) $g_{l}(y)=\infty$.

Case 3: Let $x, y \in J_{l}$ (note that because of (2) all possible cases are covered). By $y \in J_{l}$ we obtain $\bigvee_{a_{1} \in\left(a^{\Delta}, b^{\Delta}\right)} a_{1} \diamond y \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$ and $a_{1} \in\left(a^{\Delta}, a_{y}\right] \cap\left(a^{\Delta}, b^{\Delta}\right)$. But (6) and (3d) imply $g_{l}(x)=\frac{h_{l}\left(a_{1} \triangleright x\right)}{k\left(a_{1}\right)} \leq \frac{h_{l}\left(a_{1} \circ y\right)}{k\left(a_{1}\right)}=g_{l}(y)$.
The continuity of $g_{l}, l \in K_{\mathrm{U}}$ will be proved in several steps.
(8) $J_{l}=\emptyset \Rightarrow\left[\bigwedge_{x \in\left(a^{\Delta}, b^{\Delta}\right)} g_{l}(x)=\infty\right] \vee\left[\bigwedge_{x \in\left(a^{\Delta}, b^{\Delta}\right)} \dot{g}_{l}(x)=0\right]$, so that g_{l} is obviously continuous. Let us suppose $\bigvee_{x, y \in\left(a^{\Delta}, b^{\Delta}\right)}\left(g_{l}(x)<\infty\right) \wedge\left(g_{l}(y)>0\right)$.

Using (1) and $J_{l}=\emptyset$ we get $\bigwedge_{a \in(a \Delta, b \Delta)} a \diamond x \leq a_{l}^{\amalg}<b_{l}^{\amalg} \leq a \diamond y$.
By the intermediate value theorem we have $\bigwedge_{x \in\left(a^{\Delta}, b \Delta\right)} \bigvee_{x(a) \in(A, B)} a \diamond x(a) \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$, which gives the contradiction $J_{l} \neq \emptyset$.
(9) Let now $l \in K_{\mathrm{L}}$ be fixed with $J_{l} \neq \emptyset$. We define $x_{m}:=\inf J_{l} \in[A, B)$ and $x_{M}:=\sup J_{l} \in(A, B]$.
(10) We show $x_{m}<x_{M}$. Indeed, because of $J_{l} \neq \emptyset$ we know: $\bigvee_{x_{1} \in(A, B)} \bigvee_{a \in(a \Delta, b \Delta)} a \diamond$ $x_{1} \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$. The continuity of $a \diamond(\cdot)$ implies $\bigvee_{x_{2} \in\left(x_{1}, B\right)} a \diamond x_{2} \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$ so that $\left\{x_{1}, x_{2}\right\} \subset J_{l}$.
(11) Let us prove $\bigwedge_{x \in\left(x_{m}, x_{M}\right)} x \in J_{l}$.

Let $x_{m}<x<x_{M}$, so that by (9): $\bigvee_{y, z \in J_{l}} y<x<z$. Choose now $a \in$ $\left(a^{\Delta}, a_{z}\right) \subset\left(a^{\Delta}, a_{y}\right)$ (see (6)) to get by (3b): $a \diamond y, a \diamond z \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$. But this implies $a_{l}<a \diamond y \leq a \diamond x \leq a \diamond z<b_{l}^{\amalg}$ so that by definition $x \in J_{l}$.
(12) We show: $z \in\left(x_{m}, x_{M}\right) \Rightarrow \bigwedge_{a \in\left(a \Delta, a_{z} \cap(a \Delta, b \Delta)\right.} \bigwedge_{x \in\left(x_{m}, z\right]} g_{l}(x)=\frac{h_{l}(a \circ x)}{k(a)}$.

Note, that $z \in J_{l}$ (see 11)) so that $a_{z}>a^{\Delta}$ is valid.
Now let $a \in\left(a^{\Delta}, a_{z}\right] \cap\left(a^{\Delta}, b^{\Delta}\right)$ and $x \in\left(x_{m}, z\right]$ be arbitrarily chosen. Then (11), (6) and (3d) imply $x \in J_{l},\left(a_{z} \leq a_{x} \Rightarrow a \in\left(a^{\Delta}, a_{x}\right] \cap\left(a^{\Delta}, b^{\Delta}\right)\right)$ and $g_{l}(x)=\frac{h_{l}(a \circ x)}{k(a)}$.
(13) Now we conclude that g_{l} is continuous on $\left(x_{m}, x_{M}\right)$.

Let $z \in\left(x_{m}, x_{M}\right)$ so that (12) shows: $\bigvee_{a \in\left(a^{\Delta}, a_{z}\right)} \bigwedge_{x \in\left(x_{m}, z\right]} g_{l}(x)=\frac{h_{l}(a \circ x)}{k(a)}$.
But $a \diamond(\cdot)$ and h_{l} are continuous, so that g_{l} is continuous at first on ($\left.x_{m}, z\right]$ and then also on $\left(x_{m}, x_{M}\right)=\bigcup_{z \in\left(x_{m}, x_{M}\right)}\left(x_{m}, z\right]$.
(14) We prove: $x_{m}>A \Rightarrow \bigwedge_{x \in\left(a^{\Delta}, x_{m}\right)} g_{l}(x)=0$.

Let $x \in\left(a^{\Delta}, x_{m}\right)$. By $J_{l} \neq \emptyset$ we see: $\bigvee_{x_{1} \in J_{l}} \bigvee_{a \in\left(a^{\Delta}, b^{\Delta}\right)} a \diamond x_{1} \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$. Because of $x<x_{m} \leq x_{1}$ we have $a \diamond x<b_{l}^{\amalg}$. Since $x \notin J_{l}$ and since the third case in (1) doesn't occur we get $g_{l}(x)=0$.
In completely the same manner we can show:
$x_{m}<B \Rightarrow \bigwedge_{x \in\left(x_{m}, b \Delta\right)} g_{l}(x)=\infty$.
(16) Let us prove: $x_{m}>A \Rightarrow \lim _{x \rightarrow x_{m}+} g_{l}(x)=0$.

Choose $z \in\left(x_{m}, x_{M}\right)$ so that again $\bigvee_{a \in\left(a^{\triangle}, a_{z}\right)} \bigwedge_{x \in\left(x_{m}, z\right]} g_{l}(x)=\frac{h_{l}(a \circ x)}{k(a)}$ (see (12)).

But (6) and (3b) give $a<a_{z} \leq a_{x}$ and $\bigwedge_{x \in\left(x_{m}, z\right]} a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$. Thus $a \diamond x_{m} \geq a_{l}^{\amalg}$ and 14) implies $\bigwedge_{x \in\left(a^{\Delta}, x_{m}\right)} g_{l}(x)=0$. By (1) and the continuity
of $a \diamond(\cdot)$ we get $\bigwedge_{x \in\left(a \Delta, x_{m}\right)} a \diamond x \leq a_{l}^{\amalg}$ and $a \diamond x_{m} \leq a_{l}^{\amalg}$ so that we arrive at $\lim _{x \rightarrow x_{m}+} g_{l}(x)=\lim _{x \rightarrow x_{m}+} \frac{h_{l}(a \circ x)}{k(a)}=\frac{h_{l}\left(a \circ x_{m}\right)}{k(a)}=\frac{h_{l}\left(a_{l}^{\mathrm{H}}\right)}{k(a)}=0$.
(17) We show: $x_{M}<B \Rightarrow \lim _{x \rightarrow x_{M}+} g_{l}(x)=\infty$.

Let us assume in contrary $\lim _{x \rightarrow x_{M}} g_{l}(x)<\infty$ (by (7) this limit exists). We prove first:
(17a) $\lim _{x \rightarrow x_{M}+} a_{x}=a^{\Delta}$ (the a_{x} exist by (11) for $x \in\left(x_{m}, x_{M}\right)$, the limit exists by (6)). We assume in contrary that $\lim _{x \rightarrow x_{M}+} a_{x}>a^{\Delta}$, so that we have $\bigvee_{\epsilon>0} \bigwedge_{x \in\left(x_{m}, x_{M}\right)} a_{x}>a^{\Delta}+\epsilon$. Now (3b) and the continuity of $a \diamond(\cdot)$ imply $\bigwedge_{x \in\left(x_{m}, x_{M}\right)}\left(a^{\Delta}+\epsilon\right) \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$ and $\left(a^{\Delta}+\epsilon\right) \diamond x_{M} \leq b_{l}^{\mathrm{U}}$. By (18) we have $\bigwedge_{x \in\left(x_{M}, b^{\Delta}\right)} g_{l}(x)=\infty$. Thus (1) and the continuity of $a \diamond(\cdot)$ yield $\bigwedge_{x \in\left(x_{M}, b^{\Delta}\right)}\left(a^{\Delta}+\frac{\epsilon}{2}\right) \diamond x \geq b_{l}^{\amalg}$ and
(*) $\quad b_{l}^{\amalg} \leq\left(a^{\Delta}+\frac{\epsilon}{2}\right) \diamond x_{M} \leq\left(a^{\Delta}+\epsilon\right) \diamond x_{M} \leq b_{l}^{\amalg}$.
Using (3d) we get $\bigwedge_{x \in\left(x_{m}, x_{M}\right)} \frac{h_{l}\left(\left(a^{\Delta}+\epsilon\right) \diamond x\right)}{k\left(a^{\Delta}+\epsilon\right)}=\frac{h_{l}\left(\left(a^{\Delta}+\frac{\epsilon}{2}\right) \circ x\right)}{k\left(a^{\Delta}+\frac{\epsilon}{2}\right)}=g_{l}(x)$ which leads to (using our above assumption) $\frac{h_{l}\left(\left(a^{\Delta}+\epsilon\right) \circ x_{M}\right)}{k\left(a^{\Delta}+\epsilon\right)}=\frac{h_{l}\left(\left(a^{\Delta}+\frac{\epsilon}{2}\right) \circ x_{M}\right)}{k\left(a^{\Delta}+\frac{\epsilon}{2}\right)}=$ $\lim _{x \rightarrow x_{M}+} g_{l}(x)<\infty$, that is $(\operatorname{see}(*)) \frac{h_{l}\left(b_{l}^{\mathrm{U}}\right)}{k\left(a^{\Delta}+\epsilon\right)}=\frac{h_{l}\left(b_{l}^{\mathrm{L}}\right)}{k\left(a^{\Delta}+\frac{\epsilon}{2}\right)}<\infty$. But $h_{l}\left(b_{l}^{\amalg}\right)>0$ implies $k\left(a^{\Delta}+\epsilon\right)=k\left(a^{\Delta}+\frac{\epsilon}{2}\right)$, which contradicts the strict monotonicity of k. Thus (17a) is proven.
If we now show
(17b) $\lim _{x \rightarrow x_{M}+} g_{l}(x)=\infty$, then this is a contradiction to our above assumption, and (17) is shown.
Let $\left(x_{n}\right) \subset\left(x_{m}, x_{M}\right)$ be an arbitrary sequence satisfying $\lim _{n \rightarrow \infty} x_{n}=x_{M}$. By (17a) we get $\bigvee_{n_{0} \in \mathbb{N}} \bigwedge_{n_{0} \leq n \in \mathbb{N}} a_{x_{n}}<b^{\Delta}$, and (3d), (3e), (17a) and $k\left(a^{\Delta}\right)=0$ imply

$$
\lim _{n \rightarrow \infty} g_{l}\left(x_{n}\right)=\lim _{n \rightarrow \infty} \frac{h_{l}\left(a_{x_{n}} \diamond x_{n}\right)}{k\left(a_{x_{n}}\right)}=\lim _{n \rightarrow \infty} \frac{h_{l}\left(\left(b_{l}^{\amalg}\right)\right.}{k\left(a_{x_{n}}\right)}=\frac{h_{l}\left(\left(b_{l}^{\amalg}\right)\right.}{k\left(\lim _{n \rightarrow \infty} a_{x_{n}}\right)}=\infty
$$

Now the continuity of g_{l} on the open interval (A, B) is shown:

- (14), (16) and (7) imply: $x_{m}>A \Rightarrow \lim _{x \rightarrow x_{m}} g_{l}(x)=0=g_{l}\left(x_{m}\right)$.
- (15), (17) and (7) imply: $x_{M}<B \Rightarrow \lim _{x \rightarrow x_{M}} g_{l}(x)=\infty=g_{l}\left(x_{M}\right)$.
- $\mathrm{By}(14),(13)$ and (15) we get: $J_{l} \neq \emptyset \Rightarrow g_{l}$ is continuous.

Thus (80) is proven.
Now we let vary $m \in K_{\Delta}$ and get (79) for all $a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)$ and for all $x \in(A, B)$.
In the next step we show
$\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{x \in(A, B)}\left(a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right] \Rightarrow a \diamond x=h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(x)\right)\right)$.
Let $a=b_{m}^{\Delta}, x \in(A, B)$ and $a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]$. By (80) we have only to show that $b_{m}^{\Delta} \diamond x=h_{l}^{(-1)}\left(k_{m}\left(b_{m}^{\Delta}\right) \cdot g_{m, l}(x)\right)$.

Case 1: Let $b_{m}^{\Delta} \diamond x=a_{l}^{\amalg}$. Then we get $g_{l}(x)=0$ by (1) which results in $h_{l}^{(-1)}\left(k_{m}\left(b_{m}^{\triangle}\right) g_{m, l}(x)\right)=h_{l}^{(-1)}(0)=a_{l}^{\text {ए }}=b_{m}^{\triangle} \diamond x$.
Case 2: $b_{m}^{\Delta} \diamond x \in\left(a_{l}^{\mathrm{I}}, b_{l}^{\amalg}\right]:$ By the continuity of $(\cdot) \diamond x$ there exists a sequence $\left(a_{n}\right) \subset\left(a_{m}^{\Delta}, b_{m}^{\triangle}\right)$ satisfying $a_{n} \uparrow b_{m}^{\triangle}$ and $\bigwedge_{n \in \mathbb{N}} a_{n} \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right]$ so that (using (80)) $b_{m}^{\triangle} \diamond x=\lim _{n \rightarrow \infty}\left(a_{n} \diamond x\right)=\lim _{n \rightarrow \infty} h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(x)\right)=$ $h_{l}^{(-1)}\left(k_{m}\left(b_{m}^{\triangle}\right) g_{m, l}(x)\right)$.
(19) Now we extend $g_{m, l}$ by $g_{m, l}(B):=\lim _{x \rightarrow B-}\left(g_{m, l}(x)\right)$.

This limit exists, since $g_{m, l}$ is monotonic increasing. Finally we prove
$\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{x \in(A, B]}\left(a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right] \Rightarrow a \diamond x=h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(x)\right)\right)$.
Let $a \in\left(a_{m}^{\Delta}, b_{m}^{\triangle}\right], x=B$ and let $a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right]$. We have to show $a \diamond B=$ $h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(B)\right)$.
Case 1. Let $a \diamond B=a_{l}^{\amalg}$. Then Lemma $2(\mathrm{~d})$ implies $b_{l}^{\amalg} \diamond B \leq \amalg_{i=1}^{\infty}(a \diamond B)=$ $\lim _{n \rightarrow \infty}\left(\amalg_{i=1}^{n} a_{l}^{\amalg}\right)=a_{l}^{\amalg}$, and the monotonicity of \diamond yields

$$
\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)} \bigwedge_{x \in(A, B)} a \diamond x \leq a_{l}^{\amalg}
$$

Thus (1) and (19) lead to $\bigwedge_{x \in(A, B)} g_{m, l}(x)=0$ and $g_{m, l}(B)=0$ so that $h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(B)\right)=h_{l}^{(-1)}(0)=a_{l}^{\mathrm{U}}=a \diamond B$.
Case 2. Let $a \diamond B \in\left(a_{l}^{\mathrm{I}}, b_{l}^{\mathrm{U}}\right]$. Since $a \diamond(\cdot)$ is continuous on $(A, B]$ there is a sequence $\left(x_{n}\right) \subset(A, B)$ satisfying $x_{n} \uparrow B$ and $\bigwedge_{n \in \mathbb{N}} a \diamond x_{n} \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right]$.

Thus we obtain (using (18) and (19))
$a \diamond B=\lim _{n \rightarrow \infty}\left(a \diamond x_{n}\right)=\lim _{n \rightarrow \infty} h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}\left(x_{n}\right)\right)=h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(B)\right)$.
Thus Theorem 6 is proven.
Let us add some remarks and examples.
(I) In the proof of Theorem 6 we have actually shown a more general result:

For the representation of \diamond on the open intervals in (80) only the following property of \diamond was used: $(\cdot) \diamond x$ is continuous and monotonic increasing on (a^{Δ}, b^{Δ}) for all $x \in(A, B)$.
(II) If in addition (Z) is supposed, then we can extend $g_{m, l}$ by $g_{m, l}(A)=0$. This extension is monotonic increasing, but not necessarily continuous.Moreover the representation (79) is valid also for $x=A$:

$$
a \diamond A \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right] \Rightarrow a \diamond A=A=a_{l}^{\amalg}=h_{l}^{(-1)}(0)=h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(A)\right) .
$$

(III) If the ordinal sum for \amalg contains at least two Archimedean parts, then an extension of the representation (79) to $a=a_{m}$ is not possible:
Consider $\Delta=\amalg, b_{l-1}^{\amalg}=a_{l}^{\amalg}$ and let e be a right unit for \diamond. Then

$$
a_{m}^{\Delta} \diamond e=a_{l}^{\mathrm{U}}=b_{l-1}^{\mathrm{U}} \in\left[a_{l-1}^{\mathrm{U}}, b_{l-1}^{\mathrm{U}}\right]
$$

but

$$
h_{l-1}^{(-1)}\left(k_{m}\left(a_{m}^{\Delta}\right) g_{m, l-1}(e)\right)=h_{l-1}^{(-1)}(0)=a_{l-1}^{\mathrm{U}} .
$$

(IV) Using the right distributivity version of Theorem 6 we can deduce the following result, which is contained in [20] (see Theorem 5.1):
Let $\perp=\amalg=\hat{+}:[0, \infty]^{2} \rightarrow[0, \infty]$ be a pseudo-addition with generator set $\left\{g_{k}:\left[a_{k}, b_{k}\right] \rightarrow[0, \infty] \mid k \in K_{\hat{+}}\right\}$, and let $\hat{:}:[0, \infty]^{2} \rightarrow[0, \infty]$ be a pseudomultiplication, which satisfies the right distributivity law (DR) (with respect to $(\hat{+}, \hat{+})$ and (CLB), (LU), (Z) and (CRZ). Then there exist monotonic increasing and continuous functions $H_{k}:(0, \infty] \rightarrow(0, \infty], k \in K_{\hat{+}}$ with $H_{k}(0, \infty] \subset(0, \infty]$ satisfying

$$
H_{k}(\tilde{e})=1 \quad \text { and } \quad \bigwedge_{a \in(0, \infty]} \bigwedge_{x \in\left[a_{k}, b_{k}\right]} a^{\hat{a}} x=g_{k}^{(-1)}\left(H_{k}(a) \cdot g_{k}(x)\right) .
$$

The following example will be needed for our next main result and gives the representation of a pseudo-multiplication, if in Theorem 6 the two pseudo-additions coincide and if the pseudo-additions are Archimedean t-conorms.

Corollary 1. Let $\triangle=\amalg$ be continuous, Archimedean t-conorms (on $[A, B]^{2}$), and let \diamond be a pseudo-multiplication satisfying the weak left distributivity law (DL^{*}) and (LU). Then the following is valid:
(a) Δ strict $\Rightarrow \tilde{e}<B$.
(b) There exists exactly one generator k of Δ with $k(\tilde{e})=1$ and
$\bigwedge_{a, x \in[A, B]}\left[(\mathrm{Z}) \vee(a, x) \notin\{(A, B),(B, A)\} \vee(\triangle\right.$ not strict $\left.) \Rightarrow a \diamond x=k^{(-1)}(k(a) k(x))\right]$.
(c) If $[(Z) \wedge(\triangle$ strict $)] \vee[\tilde{e}=B]$ then we have:

$$
\bigwedge_{a, x \in[A, B]} a \diamond x=k^{-1}(k(a) k(x))
$$

Thus, if $\tilde{e}=B$, then \diamond is a strict t-norm on $[A, B]^{2}$ with multiplicative generator k.
Proof. Let $k:[A, B] \rightarrow[0, \infty]$ be a generator of $\triangle=\amalg$. By Theorem 6 there is a continuous, monotonic increasing function $g:(A, B] \rightarrow[0, \infty]$ with $\bigwedge_{a, x \in(A, B]} a \diamond x=$ $k^{(-1)}(k(a) g(x))$.

To prove (a) let us assume that \triangle is strict, but $\tilde{e}=B$. By (55) we have $k(\tilde{e})=$ $k(B)=\infty$, and we get the contradiction

$$
\bigwedge_{x \in(A, B]} x=\tilde{e} \diamond x=k^{(-1)}(k(\tilde{e}) g(x)) \in\{A, B\}
$$

(since $k(\tilde{e}) g(x) \in\{0, \infty\}$). Thus $\tilde{e}<B$.
(b) By (a) we have $k(\tilde{e})<\infty$, and since a generator is determined up to a multiplicative constant we may choose $k(\tilde{e})=1$. But then we obtain $\bigwedge_{x \in(A, B)} x=$ $\tilde{e} \diamond x=k^{(-1)}(k(\tilde{e}) g(x))=k^{-1}(g(x) \wedge \dot{k}(B))$. Thus the strict monotonicity of k implies $\bigwedge_{x \in(A, B)} k(B)>k(x)=g(x) \wedge k(B)$, or $k(x)=g(x)$ for all $x \in(A, B)$. Since k, g are continuous we have $k=g$ on (A, B] and thus $a \diamond x=k^{(-1)}(k(a) k(x))$ for all $a, x \in(A, B]$.
To prove (b) we still have to show that the last equality holds for $(a=A) \vee(x=A)$.
Case 1: (Z): This case is obvious because of $k(A)=0$.
Case 2: $(a, x) \notin\{(A, B),(B, A)\} \vee(\triangle$ not strict $)$: By (55) we have $k(a), k(x) \in$ $[0, \infty)$.
Case 2a: If $(a=A) \wedge x \in(A, B]$ then we obtain: $A \leq A \diamond x \leq \lim _{b \rightarrow A+}(b \diamond x)=$ $\lim _{b \rightarrow A+} k^{(-1)}(k(b) k(x))=k^{(-1)}(k(A) k(x))=A$.
Case 2b: The case $a \in(A, B] \wedge(x=A)$ is similar to Case 2a.
Case 2c: If $(a=A) \wedge(x=A)$ the case 2 a implies $A \leq A \diamond A \leq \lim _{y \rightarrow A+}(A \diamond y)=A=k^{(-1)}(k(A) k(A))$.
(c) If (Z) $\wedge\left(\triangle\right.$ strict) then $k(B)=\infty$ and $k^{(-1)}=k^{-1}$, and (b) implies the representation of \diamond. Finally, if $\tilde{e}=B$, then Δ is not strict (see (a)).

Thus (b) gives $\bigwedge_{a, x \in[A, B]} a \diamond x=k^{(-1)}(k(a) k(x))$. But now $k(a) k(x)$ remains in the range of k because of $k(a) \leq k(B)=k(\tilde{e})=1$.

This finishes the proof of Corollary 1.
If the pseudo-addition has a unit element then we combine Theorem 6 with Theorem 3, Theorem 4 and Corollary 1 to get more information on the pseudo-additions and pseudo-multiplications under consideration. Thus the following result looks a little bit complicated for the first moment, but it is helpful, since it covers and generalizes many recent results of the literature (see for example the last statement (h) of the following Theorem 7).

Theorem 7. Let \triangle and \amalg be pseudo-additions.
Let \diamond satisfy the weak left distributivity law (DL*) and (RU) and (LU) (existence of a unit e).

We assume that $\Delta=\amalg=V$ is not valid. Then we have:
(a) $\Delta=\amalg\left|K_{\Delta}\right|=1, e \in\left(a_{1}, b_{1}\right], a \diamond x \in\left[a_{1}, b_{1}\right]$ for all $a, x \in\left[a_{1}, b_{1}\right]$ (multiplication is compatible with the structure of Δ).
(b) There exists exactly one generator k of \triangle with $k(e)=1$ and $\bigwedge_{a, x \in\left[a_{1}, b_{1}\right]}[(a, x) \notin$ $\left.\left\{\left(a_{1}, b_{1}\right),\left(b_{1}, a_{1}\right)\right\} \Longrightarrow a \diamond x=k^{(-1)}(k(a) \cdot k(x))\right]$.
(c) $\left[a_{1}=A \wedge(Z)\right] \vee\left[\left.\Delta\right|_{\left[a_{1}, b_{1}\right]^{2}}\right.$ not strict $] \Longrightarrow \bigwedge_{a, x \in\left[a_{1}, b_{1}\right]} a \diamond x=k^{(-1)}(k(a) \cdot k(x))$.
(d) $\left[a_{1}=\left.A \wedge(Z) \wedge \Delta\right|_{\left[a_{1}, b_{1}\right]^{2}}\right.$ strict $] \vee\left[e=b_{1}\right] \Longrightarrow \bigwedge_{a, x \in\left[a_{1}, b_{1}\right]} a \diamond x=k^{-1}(k(a)$ $\cdot k(x))$.
(e) $\left[b_{1}<B\right] \vee[(\mathrm{DL}) \wedge(\mathrm{CRB})] \Longrightarrow\left(a_{1}=A\right) \wedge\left(\left.\Delta\right|_{\left[a_{1}, b_{1}\right]^{2}}\right.$ strict. $)$
(f) $\left[a_{1}>A\right] \vee[(\mathrm{Z}) \wedge(\mathrm{CLZ})] \Longrightarrow b_{1}=B$.
(g) $\left[a_{1}>A \wedge(\mathrm{CRB})\right] \vee\left[e=b_{1}\right] \Longrightarrow\left(b_{1}=B\right) \wedge\left(\left.\Delta\right|_{\left[a_{1}, b_{1}\right]^{2}}\right.$ not strict.)
(h) Assuming in addition (CRB) and (Z) we get the following representation theorem.

Theorem.

(I) If $e=B$ then: $\left(\left.\triangle\right|_{\left[a_{1}, B\right]^{2}}\right.$ is not strict) $\wedge\left(\bigwedge_{a, x \in\left[a_{1}, B\right]^{2}} a \diamond x=k^{-1}(k(a) \cdot k(x))\right)$ (here $a_{1} \in[0, B)$; the assumptions (CRB), (Z) are not needed for statement (I)).
(II) If $e<B$, then $e \in\left(a_{1}, b_{1}\right)$, and there are only 3 possibilities:
$-\left.\Delta\right|_{\left[A, b_{1}\right]^{2}}$ is strict and \diamond satisfies (d) with $a_{1}=A, b_{1} \in(A, B)$,
$-\left.\Delta\right|_{\left[a_{1}, B\right]^{2}}$ is not strict and \diamond satisfies (c) with $a_{1} \in(A, B), b_{1}=B$, (here (Z) is not needed),

- Δ is an Archimedean pseudo-addition and \diamond satisfies (c) with $a_{1}=$ $A, b_{1}=B$.

Proof. Statement (a) follows from Theorem 4 (b), (c) (and thus Corollary 1 can be applied to $\left.\left.\diamond\right|_{\left[a_{1}, b_{1}\right]^{2}}:\left[a_{1}, b_{1}\right]^{2} \rightarrow\left[a_{1}, b_{1}\right]\right)$.

The statements (b) and (c) follow from Corollary 1 (c), whereas statement (d) follows from Corollary 1 (c).

If $b_{1}<B$ in (e) then the result follows from Theorem 4, and if (DL) $\wedge(C R B)$ in (e) then Theorem 3 (b) gives the result.

Statement (f) results from Theorem 4.
In the case ($a_{1}>A \wedge$ (CRB) Theorem 4(c) implies (g). If $e=b_{1}$ then Corollary 1 (a) shows that $\left.\Delta\right|_{\left[a_{1}, b_{1}\right]^{2}}$ is not strict. The contraposition of (e) yields $b_{1}=B$.

To prove (h), (I) let first $e=B$. Because of $e \in\left(a_{1}, b_{1}\right]$ (see (a)) we get $b_{1}=B=e$. Now (g) implies: $\left.\Delta\right|_{\left[a_{1}, b_{1}\right]^{2}}$ is not strict. Finally (b) and (d) imply the representation of k in (h).
(II) Now let $e<B$. If we assume that $e=b_{1}$ then (g) gives the contradiction $b_{1}=B=e$. Thus we obtain $e \in\left(a_{1}, b_{1}\right)$.

We distinguish the two cases $\left(a_{1}>A\right) \vee\left(b_{1}<B\right)$ and $\left(a_{1}=A\right) \wedge\left(b_{1}=B\right)$.
If $b_{1}<B$ then (e) implies that $a_{1}=A$ and $\left.\Delta\right|_{\left[A, b_{1}\right]^{2}}$ is strict.

If $a_{1}>A$ then (g) shows that $b_{1}=B$ and $\left.\Delta\right|_{\left[a_{1}, B\right]^{2}}$ is not strict (only here (CRB) is used).

If $\left(a_{1}>A\right) \wedge\left(b_{1}<B\right)$ then (f) implies the contradiction $b_{1}=B$.
Finally, the statement in the case $\left(a_{1}=A\right) \wedge\left(b_{1}=B\right)$ is obvious.
This finishes the proof of Theorem 7.

Example 3. We remark that Example 2 with $B=2$ shows that the associativity of \diamond doesn't follow in general from the representation $a \diamond x=k^{(-1)}(k(a) \cdot k(x)), a, x \in$ $[A, B]:$ In the example we have $k(x)=x$ for all $x \in[0,2]$, but $(2 \diamond 2) \diamond \frac{1}{2}=2 \diamond \frac{1}{2}=$ $1 \neq 2=2 \diamond 1=2 \diamond\left(2 \diamond \frac{1}{2}\right)$.

Theorem 7 means that, if we assume only a weak distributivity law (which is for example satisfied if the conditionally distributivity (74) is assumed) and the existence of a unit element e, then the pseudo-multiplication \diamond is completely determined on the only Archimedean square ($\left.a_{1}, b_{1}\right]^{2}$ by means of the uniquely determined generator k (with $k(e)=1$) of the pseudo-addition $\Delta(\Delta \neq \mathrm{V})$. If (CRB) and (Z) are satisfied then \diamond is completely determined on $\left[a_{1}, b_{1}\right]^{2}$.

Especially the representation result (h) of Theorem 7 can be applied to each pseudo-addition \triangle and to each pseudo-multiplication \diamond (satisfying (DL^{*}), (LU), (RU), (CRB) and (Z)).

For example, statement (h) (I) implies immediately the following result, which is Theorem 5.21 in [11].

Theorem 8. Let $T:[0,1]^{2} \rightarrow[0,1]$ be a continuous t-norm, and let $S:[0,1]^{2} \rightarrow$ $[0,1]$ be a continuous t-conorm with $S \neq \mathrm{V}$, satisfying the conditionally distributivity (74). Then there exists $c \in[0,1)$ such that $\left.S\right|_{[c, 1]^{2}}$ is Archimedean and non strict. For the additive generator s of $\left.S\right|_{[c, 1]^{2}}$ with $s(1)=1$ we have: $\bigwedge_{a, x \in[c, 1]} T(a, x)=$ $s^{-1}(s(a) \cdot s(x))$, that is, $\left.T\right|_{[c, 1]^{2}}$ is a strict t-norm on $[c, 1]^{2}$.

S

An additional advantage of Theorem 7 is that in many cases Theorem 7 implies the associativity and commutativity of the pseudo-multiplication:

Theorem 9. Let \triangle and \amalg be pseudo-additions.
Let \diamond satisfy the left distributivity law (DL), and in addition (CRB), (CLZ), (RU), (LU) and (Z$)$. We assume that $\Delta=\amalg=V$ is not valid.

Then $\Delta=\amalg$ is a strict (Archimedean) t-conorm on $[A, B]^{2}$, and there is exactly one generator k of \triangle satisfying $k(e)=1, k(B)=\infty$ and

$$
\begin{equation*}
\bigwedge_{a, x \in[A, B]} a \diamond x=k^{-1}(k(a) \cdot k(x)) . \tag{81}
\end{equation*}
$$

Moreover, \diamond is strictly monotone increasing in each place on $(A, B)^{2}$, and \diamond is associative and commutative.

Proof. The proof is an immediate application of Theorem 7. Theorem 7 (a) implies ($\triangle=\amalg$) and $\left|K_{\Delta}\right|=1$.

Theorem 7 (f) gives $b_{1}=B$ and Theorem $7(\mathrm{e})$ implies $a_{1}=A$ and $\left.\Delta\right|_{[A, B]^{2}}$ is strict.

Theorem 7 (d) implies (81).
This last result is an extension of a result of [13] where more assumptions were needed $(\triangle=\amalg$, the condition $a \diamond x=A \Rightarrow(a=A) \vee(x=A)$, associativity and commutativity of \diamond, and thus both distributivity laws (DL) and (DR)).

The following result gives the representation of pseudo-multiplications if we require both weak left distributivity (DL^{*}) and weak right distributivity (DR^{*}).

Theorem 10. Let \triangle, \perp and \amalg be pseudo-additions.
Let \diamond be a pseudo-multiplication satisfying (DL^{*}) and (DR^{*}). Moreover let $m \in$ K_{Δ} and $k \in K_{\perp}$.

Then there are only two possibilities:

$$
\begin{equation*}
\bigvee_{d \text { idempotent of }} \bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{x \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right]} a \diamond x=d . \tag{I}
\end{equation*}
$$

(II) There exist exactly one $l \in K_{\mathrm{L}}$ and $c_{m, k} \in(0, \infty)$ satisfying

$$
\begin{equation*}
\bigwedge_{a \in\left(a_{m}^{\triangle}, b_{m}^{\triangle}\right]} \bigwedge_{x \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right]} a \diamond x=h_{l}^{(-1)}\left(c_{m, k} \cdot k_{m}(a) \cdot g_{k}(x)\right) \in\left(a_{l}^{\mathrm{U}}, b_{l}^{\mathrm{U}}\right] . \tag{83}
\end{equation*}
$$

Proof. We start the proof by proving first 2 preliminary statements (1) and (2).
Let us fix $m \in K_{\Delta}$ and $k \in K_{\perp}$. Then we show: If $a_{0} \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right], x \in(A, B]$ and if $d \in(A, B]$ is \amalg-idempotent then we have:
(1) $\left(a_{0} \diamond x \leq d \Rightarrow \bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} a \diamond x \leq d\right) \wedge\left(a_{0} \diamond x>d \Rightarrow \bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} a \diamond x>d\right)$.

The first statement in (1) follows from Lemma 2 (d): $a \diamond x \leq b_{m}^{\triangle} \diamond x \leq \amalg_{i=1}^{\infty}\left(a_{0} \diamond x\right) \leq$ $\lim _{n \rightarrow \infty} \amalg_{i=1}^{n} d=d$.

Let us assume $\bigvee_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} a \diamond x \leq d$. Then Lemma 2 (d) leads to the contradiction $d<a_{0} \diamond x \leq b_{m}^{\Delta} \diamond x \leq \amalg_{i=1}^{\infty}\left(a_{0} \diamond x\right) \leq \lim _{n \rightarrow \infty} \amalg_{i=1}^{n} d=d$.

In exactly the same manner we prove:
If $x_{0} \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right], a \in(A, B]$ and if $d \in(A, B]$ is \amalg-idempotent then we have:

Now we distinguish two cases which will lead to (I) and (II) of Theorem 10.
Case (I): $\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)} \bigwedge_{x \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right)} a \diamond x$ is \amalg-idempotent.
Case (II): $\bigvee_{l \in K_{\mathrm{L}}} \bigvee_{a_{0} \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)} \bigvee_{x_{0} \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right)} a_{0} \diamond x_{0} \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$.
We treat case (I) and note: $[a \diamond x$ is \amalg-idempotent $] \Leftrightarrow\left[a \diamond x \in[A, B] \backslash \bigcup_{l \in K_{\mathrm{L}}}\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)\right]$.
Since $(\cdot) \diamond x$ and $a \diamond(\cdot)$ are left-continuous on $(A, B]$ we get:
$\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{x \in\left(a_{k}^{\perp}, b_{k}^{\frac{1}{k}}\right]} a \diamond x$ is \amalg-idempotent.
We choose $d:=b_{m}^{\Delta} \diamond b_{k}^{\perp}$ as \amalg-idempotent element and get for arbitrary $a \in$ ($a_{m}^{\Delta}, b_{m}^{\triangle}$] and arbitrary $x \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right]$ by applying (1) and (2): $a \diamond x \leq b_{m}^{\triangle} \diamond b_{k}^{\perp}=d \leq$ $a \diamond b_{k}^{\perp} \leq a \diamond x$ so that $a \diamond x=d$. Thus (I) is proven.

We now assume case (II). By applying (1) and (2) we obtain

$$
\text { (3) } \bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} a \diamond x_{0} \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right] \text { and } \bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{x \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right]} a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right]
$$

and thus $l \in K_{\mathrm{L}}$ is uniquely determined. But now we can apply Theorem 6 and the right distributivity version of Theorem 6 to get that there are continuous and strictly increasing functions $g_{m, l}, K_{k, l}:(A, B] \rightarrow \infty$ satisfying

$$
\begin{equation*}
\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{x \in(A, B]}\left[a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right] \Rightarrow a \diamond x=h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(x)\right)\right] \tag{4}
\end{equation*}
$$

and
(5) $\bigwedge_{x \in(A, B]} \bigwedge_{a \in\left(a_{k}^{\left.\frac{1}{k}, b_{k}^{\frac{1}{k}}\right]}\right.}\left[a \diamond x \in\left[a_{l}^{\amalg}, b_{l}^{\amalg}\right] \Rightarrow a \diamond x=h_{l}^{(-1)}\left(K_{k, l}(a) \cdot g_{k}(x)\right)\right]$
so that
(6) $\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{a \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right]} a \diamond x=h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(x)\right)=h_{l}^{(-1)}\left(K_{k, l}(a) \cdot g_{k}(x)\right)$.

We now define

$$
\text { (7) } I:=\left\{x \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right) \mid \bigvee_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)} a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)\right\} \text { and } x_{M}:=\sup I \in\left(a_{k}^{\perp}, b_{k}^{\perp}\right] .
$$

Then $I \neq \emptyset$, and we prove as next step

$$
\begin{equation*}
\bigwedge_{z \in\left(a_{k}^{\perp}, x_{M}\right)} \bigvee_{a_{z} \in\left(a_{m}^{\Delta}, b_{m}^{\triangle}\right)} \bigwedge_{a \in\left(a_{m}^{\Delta}, a_{z}\right)} \bigwedge_{x \in\left(a_{k}^{\perp}, z\right]} a \diamond x \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right) . \tag{8}
\end{equation*}
$$

If $z \in\left(a_{k}^{\perp}, x_{M}\right)$ is arbitrary then (7) implies

$$
\bigvee_{x_{z} \in\left(z, x_{M}\right)} \bigvee_{a_{z} \in\left(a_{m}^{\Delta}, b_{m}^{\triangle}\right)} a_{z} \diamond x_{z} \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)
$$

Now let $a \in\left(a_{m}^{\triangle}, a_{z}\right)$ and $x \in\left(a_{k}^{\perp}, z\right]$ be arbitrary elements. Using (3) we arrive at $a_{l}^{\amalg}<a \diamond x \leq a_{z} \diamond x_{z}<b_{l}^{\amalg}$, and (8) is shown. But (8) and (6) imply that for all $z \in\left(a_{k}^{\perp}, x_{M}\right)$ there exists $a_{z} \in\left(a_{m}^{\Delta}, a_{m}^{\Delta}\right)$ with

$$
\bigwedge_{a \in\left(a_{m}^{\triangle}, a_{z}\right)} \bigwedge_{x \in\left(a_{k}^{\perp}, z\right]} a \diamond x=h_{l}^{(-1)}\left(k_{m}(a) g_{m, l}(x)\right)=h_{l}^{(-1)}\left(K_{k, l}(a) g_{k}(x)\right) \in\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right) .
$$

But this implies (since here we have $h_{l}^{(-1)}=h_{l}^{-1}$)

$$
\bigwedge_{a \in\left(a_{m}^{\Delta}, a_{z}\right)} \bigwedge_{x \in\left(a_{\frac{⿺}{k}}^{+}, z\right]} k_{m}(a) g_{m, l}(x)=K_{k, l}(a) g_{k}(x) \in(0, \infty) \quad \text { or }
$$

$$
\bigwedge_{a \in\left(a_{m}^{\Delta}, a_{z}\right)} \bigwedge_{x \in\left(a_{k}^{\stackrel{\rightharpoonup}{k}, z]}\right.} \frac{g_{m, l}(x)}{g_{k}(x)}=\frac{K_{k, l}(a)}{\left.k_{m}(a)\right)}=\text { constant } \in(0, \infty)
$$

These constants are equal for all $z \in\left(a_{k}^{\perp}, x_{M}\right)$ because of $\left(a_{k}^{\perp}, x_{M}\right)=\bigcup_{z \in\left(a_{k}^{\prime}, x_{M}\right)}\left(a_{k}^{\frac{1}{k}}, z\right]$. Using also the continuity of $g_{m, l}$ and g_{k} we arrive at:

$$
\text { (9) } \bigvee_{c_{m, k} \in(0, \infty)} \bigwedge_{x \in\left(a_{k}^{\perp}, x_{M}\right]} g_{m, l}(x)=c_{m, k} \cdot g_{k}(x)
$$

(10) We now prove $x_{M}=b_{k}^{\perp}$.

Let us assume that $x_{M}<b_{k}^{\perp}$. Now let $x \in\left(x_{M}, b_{k}^{\perp}\right)$ be arbitrary. By definition of I and x_{M} we get first $\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)} a \diamond x \notin\left(a_{l}^{\amalg}, b_{l}^{\amalg}\right)$, and then (using (3) and (6)) $\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}\right)} b_{l}^{\amalg}=a \diamond x=h_{l}^{(-1)}\left(k_{m}(a) \cdot g_{m, l}(x)\right)$.

But this means that $\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right)} k_{m}(a) \cdot g_{m, l}(x) \geq h_{l}\left(b_{l}^{\amalg}\right)$.
Thus we obtain $g_{m, l}(x)=\infty$ (because of $\lim _{a \rightarrow a_{m}} k_{m}(a)=0$) and $g_{m, l}\left(x_{M}\right)=\infty$, since $g_{m, l}$ is continuous. By (9) we have the contradiction $g_{k}\left(x_{M}\right)=\infty$, that is $x_{M}=b_{k}^{\perp}$.

Because of (6), (9) and (10) the second statement (II) is proven. This finishes the proof.

We remark that in case (II) of Theorem $10, c_{m, k} \cdot k_{m}(a)$ is a generator of $\left.\Delta\right|_{\left[a_{m}, b_{m}\right]^{2}}$.

Thus there is (in dependence of g_{k} and h_{l}) a generator \bar{k}_{m} of $\left.\Delta\right|_{\left[a_{m}, b_{m}\right]^{2}}$ fulfilling

$$
\begin{equation*}
\bigwedge_{a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]} \bigwedge_{x \in\left(a_{\frac{⿺}{k}}, b_{k}^{\frac{1}{k}}\right]} a \diamond x=h_{l}^{(-1)}\left(\bar{k}_{m}(a) \cdot g_{k}(x)\right) \tag{84}
\end{equation*}
$$

Let us still mention the following Corollary, which is a generalization of Proposition 2.2 in [15].

Corollary 2. Let \triangle, \perp and \amalg be continuous, Archimedean t-conorms on $[A, B]^{2}$ with generators k, g and h, respectively.

Let the pseudo-multiplication \diamond satisfy (Z) and the weak left distributivity (DL*) and the weak right distributivity (DR^{*}).
(a) Then there are only two possible cases:
(I) $\bigwedge_{a, x \in[A, B]} a \diamond x=B \quad$ or $\quad \bigwedge_{a, x \in[A, B]} a \diamond x=A$.
(II) There exists a generator \bar{g} of \perp with

$$
\begin{equation*}
\bigwedge_{a, x \in[A, B]} a \diamond x=h^{(-1)}(k(a) \cdot \bar{g}(x)) \tag{85}
\end{equation*}
$$

(b) If $\Delta=\perp$, then \diamond is commutative.
(c) If $\Delta=\perp=\amalg$ is strict, then \diamond is associative and commutative.

Proof. (a) We apply Theorem 10:
(I) There is an \amalg-idempotent element d with $\bigwedge_{a, x \in(A, B]} a \diamond x=d$. Since \amalg is Archimedean we have $d \in\{A, B\}$.
(II) $\bigvee_{c \in(0, \infty)} \bigwedge_{a, x \in(A, B]} a \diamond x=h^{(-1)}(c k(a) g(x))$. But then $\bar{g}(x):=c g(x)$ is a generator of \perp. Because of (Z) and $k(A)=g(A)=h(A)=0$ the representation is also valid for $(a=A) \vee(x=A)$.
(b) In case (I) the statement is obvious, and in case (II) we have $\bar{g}=c \cdot k$ in (5), so that commutativity is clear.
(c) In case (I) the statement is again obvious, and in case (II) we have $g=k=h$ and $k^{(-1)}=k^{-1}$. Thus the corollary is proven.

9. PSEUDO-DIFFERENCES

We assume that the reader is familiar with the notions and results presented in Part I of this paper.

We remember the fact that it is essentially to have a "generalized difference" (which we denote from now on by pseudo-difference) for the introduction of an integral which leads in special cases to the Choquet integral (see Section 2).

In this section we introduce pseudo-differences $-\Delta$ of pseudo-additions Δ on arbitrary intervals which generalize pseudo-differences - Δ of Archimedean t-conorms Δ on $[0,1]$ (see (20)).

Definition 6. Let Δ be a pseudo-addition. Then the mapping $-\Delta:[A, B]^{2} \rightarrow$ $[A, B]$ is called a Δ-pseudo-difference (or a pseudo-difference with respect to \triangle) iff

$$
\begin{equation*}
\bigwedge_{a, b \in[A, B]} a-\Delta b=\inf \{c \in[A, B]: b \triangle c \geq a\} . \tag{86}
\end{equation*}
$$

Thus the definition is formally the same like in (20), and can be interpreted as coimplication with respect to a residuated implication $I_{T}(x, y)=\sup \{z: T(x, z) \leq$ $y\}$, where T is the associated t-norm (see [7]).

Because of this correspondence, the following results have applications for fuzzy logical connectives.

Note that $a-\Delta b \in[A, B]$ since $b \triangle B=B \geq a$.
If $\Delta=\vee$ then $a-\Delta b=a$ if $a>b$ and $a-\Delta b=A$ if $a \leq b$ (for all $a, b \in[A, B]$).
Moreover $-\Delta$ is monotonic increasing in the first place and monotonic decreasing in the second place.

It is clear that some further properties of $-\Delta$ are already known (but sometimes only in the Archimedean case of \triangle). Nevertheless, we give in the next Lemma a longer list of important properties because we think they are worth while to be included for handy reference in the future. The statements (a) - (o) concern pseudodifferences in general (for example (f) is the residual property and (g) the "exchange principle"), whereas the statements (p)-(s) show the connection of right boundary points of "Archimedean intervals" of a pseudo-addition with some properties of the corresponding pseudo-difference. These results become important when - like in Theorem 11 - pseudo-multiplications satisfying the weak left distributivity law (DL^{*}) occur.

Lemma 5. Let Δ be a pseudo-addition. Then the following statements are valid:
(a) $\bigwedge_{a \in[A, B]} a-\triangle A=a$.
(b) $\bigwedge_{a, b, c \in[A, B]}[a \geq b \Rightarrow a \geq b-\triangle c]$.
(c) $\bigwedge_{m \in K_{\Delta}} \bigwedge_{a, b \in\left[a_{m}^{\Delta}, b_{m}^{\triangle}\right]}\left[a>b \Rightarrow a-\Delta b=k_{m}^{-1}\left(k_{m}(a)-k_{m}(b)\right) \in\left(a_{m}^{\Delta}, a\right]\right]$.
(d) $\bigwedge_{a \in[A, B]}\left[\neg\left(\bigvee_{m \in K_{\Delta}} a, b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right) \wedge(a>b) \Rightarrow a-\Delta b=a\right]$.
(e) $\bigwedge_{a, b \in[A, B]}[a \leq b \Leftrightarrow a-\triangle b=A]$.
(f) $\bigwedge_{a, b, c \in[A, B]}[c \geq a-\Delta b \Leftrightarrow b \Delta c \geq a]$.
(g) $\bigwedge_{a, b, c \in[A, B]}[(a-\Delta b)-\Delta c=a-\Delta(b \triangle c)=(a-\Delta c)-\Delta b]$.
(h) $\bigwedge_{a, b \in[A, B]}(a-\triangle b) \triangle b=a \vee b$.
(i) $\bigwedge_{a, b, c \in[A, B]}[a \geq b \geq c \Rightarrow(a-\Delta c)-\Delta(b-\Delta c)=a-\Delta b]$.
(j) $\bigwedge_{a, b, c \in[A, B]}[a \geq b \geq c \Rightarrow(a-\Delta b) \triangle(b-\Delta c)=a-\Delta c]$.
(k) $\bigwedge_{a, b \in[A, B]}(a \triangle b)-\Delta b \leq a$.
(l) $\bigwedge_{a, b, c \in[A, B]}(a \Delta b)-\Delta c \leq a \Delta(b-\Delta c)$.
(m) If $a, b \in[A, B] \wedge \neg\left(\bigvee_{m \in K_{\Delta}} a, b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right)$ then we have:

$$
(a \Delta b)-\Delta b=a \Leftrightarrow(a>b) \vee(a=A)
$$

(n) If $\bigvee_{m \in K_{\Delta}} a, b \in\left(a_{m}^{\Delta}, b_{m}^{\triangle}\right]$ then: $\left.[(a \Delta b)-\Delta b)=a \Leftrightarrow \bigwedge_{c \in[A, a)} b \triangle c<b_{m}^{\triangle}\right]$.
(o) $\bigwedge_{a, b, c, d \in[A, B]}(a \triangle b)-\triangle(d \triangle c) \leq(a-\triangle d) \triangle(b-\Delta c)$.
(p) $\bigwedge_{a, b \in[A, B]}\left[a-\Delta b \in D_{\Delta} \Rightarrow b<a-\triangle b=a=a \Delta b \in D_{\Delta}\right]$.
(q) $\bigwedge_{a, b \in[A, B]}\left[a \Delta b \notin D_{\Delta} \wedge(a \Delta b>b) \Rightarrow(a \Delta b)-\Delta b=a\right]$.
(r) $\bigwedge_{a, b, c \in[A, B]}\left[a \triangle b \notin D_{\Delta} \wedge(b>c) \Rightarrow(a \Delta b)-\Delta c=a \triangle(b-\triangle c)\right]$.
(s) $\bigwedge_{a, b, c, d \in[A, B]}\left[a \triangle b \notin D_{\triangle} \wedge(a>d) \wedge(\bar{b}>c) \Rightarrow(a \triangle b)-\triangle(d \triangle c)\right.$

$$
=(a-\Delta d) \Delta(b-\Delta c)] .
$$

Proof.
(a) $a-\Delta A=\inf \{c \in[A, B]: A \Delta c \geq a\}=\inf \{c \in[A, B]: c \geq a\}=a$.
(b) Using (a) we get $b-\Delta c \leq b-\triangle A \leq a$.
(c) Using that k_{m}, k_{m}^{-1} are continuous and strictly monotonic increasing, that $k_{m}(a)-k_{m}(b) \in\left(0, k_{m}(a)\right]$ and that $b \triangle a_{m}^{\Delta}=b<a$ and $b \triangle b_{m}^{\triangle}=b_{m}^{\triangle} \geq a$ we obtain:

$$
\begin{aligned}
a-\Delta b & =\inf \{c \in[A, B]: b \Delta c \geq a\}=\inf \left\{c \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]: b \triangle c \geq a\right\} \\
& =\inf \left\{c \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]: k_{m}^{-1}\left[k_{m}\left(b_{m}^{\Delta}\right) \wedge\left(k_{m}(b)+k_{m}(c)\right)\right] \geq a\right\} \\
& =\inf \left\{c \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]: k_{m}\left(b_{m}^{\Delta}\right) \wedge\left(k_{m}(b)+k_{m}(c)\right) \geq k_{m}(a)\right\} \\
& =\inf \left\{c \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]: k_{m}(b)+k_{m}(c) \geq k_{m}(a)\right\} \\
& =\inf \left\{k_{m}^{-1}\left(k_{m}(c)\right) \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]: k_{m}(c) \geq k_{m}(a)-k_{m}(b)\right\} \\
& =\inf \left\{k_{m}^{-1}(u):\left(u \geq k_{m}(a)-k_{m}(b)\right) \wedge u \in\left[k_{m}\left(a_{m}^{\Delta}\right), k_{m}\left(b_{m}^{\triangle}\right)\right]\right\} \\
& =k_{m}^{-1} \inf \left\{u \in\left[0, k_{m}\left(b_{m}^{\Delta}\right)\right]: u \geq k_{m}(a)-k_{m}(b)\right\} \\
& =k_{m}^{-1}\left(k_{m}(a)-k_{m}(b)\right) \in\left(a_{m}^{\Delta}, a\right] .
\end{aligned}
$$

(d) To prove (d) we first show: $\left(^{*}\right) \bigvee_{\tilde{a} \in(b, a)} \Lambda_{c \in(\tilde{a}, a)} \neg\left(\bigvee_{m \in K_{\Delta}} c, b \in\left(a_{m}^{\Delta}, b_{m}^{\triangle}\right]\right)$.

Case 1: If $\bigwedge_{m \in K_{\Delta}} b \notin\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right.$] then we choose $\tilde{a} \in(b, a)$ to satisfy (*).
Case 2: If $\bigvee_{m \in K_{\Delta}} b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]$ then (because of $a>b$ and thus $a>b_{m}^{\Delta}$) we choose $\tilde{a} \in\left(b_{m}^{\Delta}, a\right)$ to fulfil $\left(^{*}\right)$. Thus $\left(^{*}\right)$ is valid.
Because of $\left(^{*}\right)$ we have $\Lambda_{c \in(\tilde{a}, a)} b \triangle c=b \vee c<a$, and the monotonicity of \triangle implies $\bigwedge_{c \in[A, a)} b \Delta c<a$, so that by definition $6 a-\Delta b \geq a$. On the other hand $b \triangle a=(b \vee a)=a$ so that $a-\Delta b \leq a$. Thus (d) is shown.
(e) Using (c) and (d) we get: $a>b \Rightarrow a-\Delta b>A$. By contraposition one implication is shown. Conversely, if $a \leq b$ then $b \triangle A=b \geq a$, and by definition 6 we obtain $a-\Delta b=A$.
(f) If $b \triangle c \geq a$ then we get $c \geq \inf \{x \in[A, B]: b \Delta x \geq a\}=a-\Delta b$. To prove the converse, we consider first the case $c=B$. But then obviously $b \triangle B=B \geq a$. If now $c<B$, let d be an arbitrary element in ($c, B]$. Then $d>c \geq a-\Delta b=$ $\inf \{x \in[A, B]: b \triangle x \geq a\}$ implies: $\bigvee_{x \in[A, d)} a \leq b \triangle x \leq b \triangle d$. Thus we have $b \triangle c=\lim _{d \rightarrow c+}(b \triangle d) \geq a$.
(g) Using (f) in the following second equality we arrive at the desired result:

$$
\begin{aligned}
(a-\Delta b)-\Delta c & =\inf \{x \in[A, B]: c \Delta x \geq a-\Delta b\}=\inf \{x \in[A, B]: b \triangle(c \Delta x) \geq a\} \\
& =\inf \{x \in[A, B]:(b \Delta c) \triangle x \geq a\}=a-\Delta(b \triangle c) \\
& =a-\Delta(c \Delta b)=(a-\Delta c)-\Delta b
\end{aligned}
$$

(h) If $a \leq b$ then $(a-\Delta b) \Delta b=A \Delta b=b=a \vee b$ (here we have used (e)). Now we treat the case $a>b$. We apply (f) two times to obtain: $\left(\bigwedge_{c \geq a-\Delta b} b \Delta c \geq a\right)$ $\wedge\left(\bigwedge_{c<a-\Delta b} b \Delta c<a\right)$. Since Δ is continuous in each place we get $b \Delta(a-\Delta b) \geq$ $a \geq b \Delta(a-\Delta b)$ (note that $a-\Delta b=A$ implies $a \geq b \Delta(a-\Delta b)$). Thus we arrive at $(a-\triangle b) \Delta b=a=a \vee b$.
(i) In the case $a=b$ we have (by (e)): $(a-\Delta c)-\Delta(b-\Delta c)=A=a-\Delta b$, whereas the case $b=c$ yields (using (e) and (a)): $(a-\Delta c)-\Delta(b-\Delta c)=$ $(a-\Delta c)-\Delta A=a-\Delta c=a-\Delta b$.
Now we treat the main case $a>b>c$ where we distinguish three subcases:
(I) $\bigvee_{m \in K_{\Delta}} a, b, c \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]:$ Since k_{m} and k_{m}^{-1} are strictly monotonic increasing we get, using (c) $a-\Delta c=k_{m}^{-1}\left(k_{m}(a)-k_{m}(c)\right)>k_{m}^{-1}\left(k_{m}(b)-\right.$ $\left.k_{m}(c)\right)=b-\Delta c$ and then: $(a-\Delta c)-\Delta(b-\Delta c)=k_{m}^{-1}\left(k_{m} k_{m}^{-1}\left[k_{m}(a)-\right.\right.$ $\left.\left.k_{m}(c)\right]-k_{m} k_{m}^{-1}\left[k_{m}(b)-k_{m}(c)\right]\right)=k_{m}^{-1}\left(k_{m}(a)-k_{m}(b)\right)=a-\Delta b$.
(II) $\left(\bigvee_{m \in K_{\Delta}} b, c \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right) \wedge a \notin\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]:$ (c) and (d) imply $b-\Delta c \in$ $\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]$ so that $(a-\Delta c)-\dot{\Delta}(b-\Delta c)=a-\Delta(b-\Delta c)=a=a-\Delta b$.
(III) $\neg\left(\bigvee_{m \in K_{\Delta}} b, c \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right):$ Here $a>b>c$ yields $\neg\left(\bigvee_{m \in K_{\Delta}} a, c \in\right.$ $\left.\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right)$ and thus (by (d)) $(a-\Delta c)-\Delta(b-\Delta c)=a-\Delta b$.
(j) In the case $a=b$ we get (using (e)) $(a-\Delta b) \Delta(b-\Delta c)=A \Delta(b-\Delta c)=b-\Delta c=$ $a-\Delta c$. The case $b=c$ leads again because of (e) to $(a-\Delta b) \Delta(b-\Delta c)=$ $(a-\Delta b) \Delta A=a-\Delta c$. In the main case $a>b>c$ we treat the same three subcases (I) - (III) like in (i):
In case (I), (c) yields $(a-\Delta b) \Delta(b-\Delta c)=k_{m}^{-1}\left(k_{m}(a)-k_{m}(b)\right) \Delta k_{m}^{-1}\left(k_{m}(b)-\right.$ $\left.k_{m}(c)\right)=k_{m}^{-1}\left(k_{m}(a)-k_{m}(b)+k_{m}(b)-k_{m}(c)\right)=k_{m}^{-1}\left(k_{m}(a)-k_{m}(c)\right)=a-\Delta c$. In case (II), (c) and (d) give $b-\Delta c \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]$ and thus $(a-\Delta b) \Delta(b-\Delta c)=$ $a \Delta(b-\Delta c)=a \vee(b-\Delta c)=a=a-\Delta c$.
In case (III) we obtain (because of (d) and (h)): $(a-\Delta b) \Delta(b-\Delta c)=(a-\Delta$ b) $\Delta b=a \vee b=a=a-\Delta c$.
(k) $(a \Delta b)-\Delta b=(b \triangle a)-\Delta b=\inf \{c \in[A, B]: b \Delta c \geq b \Delta a\} \leq a$.
(l) Using (h) and (k) we obtain $(a \Delta b)-\Delta c \leq(a \Delta[b \vee c])-\Delta c=(a \Delta[(b-\Delta$ $c) \Delta c])-\Delta c=([a \Delta(b-\Delta c)] \Delta c)-\Delta c \leq a \Delta(b-\Delta c)$.
(m) If $a>b$ then we get by (d): $(a \Delta b)-\Delta b=(a \vee b)-\Delta b=a-\Delta b=a$.

If $a \leq b$ then (e) gives $(a \Delta b)-\Delta b=(a \vee b)-\Delta b=b-\Delta b=A$.
(n) We consider the cases $(\alpha) \bigwedge_{c \in[A, a)} b \triangle c<b_{m}^{\Delta}$ and $(\beta) \bigvee_{c \in[A, a)} b \Delta c \geq b_{m}^{\Delta}$.

In case (α) we take an arbitrary $c \in\left[a_{m}^{\Delta}, a\right)$ and get $b_{m}^{\Delta}>b \Delta c=k_{m}^{(-1)}\left(k_{m}(b)+\right.$ $\left.k_{m}(c)\right)$ so that $k_{m}\left(b_{m}^{\Delta}\right)>k_{m}(b)+k_{m}(c)$. Thus we obtain $k_{m}^{-1}\left(k_{m}(b)+k_{m}(c)\right)<$ $k_{m}^{-1}\left(\left[\left(k_{m}(b)+k_{m}(a)\right] \wedge k_{m}\left(b_{m}^{\Delta}\right)\right)=k_{m}^{(-1)}\left(k_{m}(b)+k_{m}(a)\right)=a \Delta b\right.$, so that $b \triangle c=$ $k_{m}^{-1}\left(k_{m}(b)+k_{m}(c)\right)<a \Delta b$. The monotonicity of \triangle gives $\bigwedge_{c \in[A, a)} b \triangle c<a \Delta b$, or $(a \Delta b)-\Delta b \geq a$. Together with (k) we obtain $(a \Delta b)-\Delta b=a$.
In case (β) we get $b_{m}^{\triangle} \geq b \triangle a \geq b \triangle c \geq b_{m}^{\triangle}$ which means $b \triangle c=b \triangle a=a \triangle b$. Now definition (6) yields ($a \Delta b$) - $\Delta b \leq c<a$. Thus (n) is proven.
(o) Using (l) twice and (g) we arrive at:

$$
\begin{aligned}
& (a \Delta b)-\Delta(d \Delta c)=[(a \Delta b)-\Delta c]-\Delta d \leq[a \Delta(b-\Delta c)]-\Delta d \\
= & {[(b-\Delta c) \Delta a]-\Delta d \leq(b-\Delta c) \Delta(a-\Delta d)=(a-\Delta d) \Delta(b-\Delta c) }
\end{aligned}
$$

(p) Since $a-\Delta b \in D_{\Delta}$ we have $a-\Delta b>A$, so that (l) implies $a>b$. To prove $a=a-\Delta b$ we consider two cases. If $\neg\left(\bigvee_{m \in K_{\Delta}} a, b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right)$ then we obtain together with $a>b$ from (d) just $a=a-\Delta b$. In the other case $\bigvee_{m \in K_{\Delta}} a, b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]$, (c) gives $a-\Delta b \in\left(a_{m}^{\Delta}, a\right]$, so that $a-\Delta b \in D_{\Delta}$ yields $a=b_{m}^{\Delta}=a-\Delta b$. Finally, we get from $a=a-\Delta b \in D_{\Delta}$ and $a>b$ the desired result $a \Delta b=a \vee b=a$.
(q) We consider two cases:

$$
(\gamma): \neg\left(\bigvee_{m \in K_{\Delta}} a, b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right) \text { and }(\delta): \bigvee_{m \in K_{\Delta}} a, b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]
$$

In case (γ) we have $a \vee b=a \Delta b>b$ so that $a>b$. Thus (m) gives ($a \Delta b$) - Δ $b=a$.
In case (δ) we know that $a \Delta b \in\left[a_{m}^{\Delta}, b_{m}^{\Delta}\right]$. But $a \Delta b \notin D_{\Delta}$ yields $a \Delta b<b_{m}^{\triangle}$, which implies $\bigwedge_{c \in[A, a)} b \Delta c \leq b \Delta a=a \Delta b<b_{m}^{\Delta}$. Now (n) gives $(a \triangle b)-\Delta b=a$.
(r) We consider (similarly to (q)) two subcases (γ) and (δ):

$$
(\gamma): \neg\left(\bigvee_{m \in K_{\Delta}} b, c \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right) \text { and }(\delta): \bigvee_{m \in K_{\Delta}} b, c \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]
$$

If (γ) is supposed we get $\neg\left(\bigvee_{m \in K_{\Delta}} a \Delta b, c \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]\right)$, for, if this is not the case then we obtain from $c<b=A \Delta b \leq a \Delta b$ the contradiction $b \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]$. Thus twice application of (d) results in ($a \Delta b$) - $\Delta c=a \Delta b=a \Delta(b-\Delta c$).
In the case (δ) we have $b-\Delta c \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right]$ (see (c)) and consider three subcases:

$$
\text { (r1): } a \leq a_{m}^{\Delta} \quad \text { (r2):, } \quad a>b_{m}^{\Delta}, \quad \text { (r3): } \quad a \in\left(a_{m}^{\Delta}, b_{m}^{\Delta}\right] .
$$

Case (r1): $(a \Delta b)-\Delta c=(a \vee b)-\Delta c=b-\Delta c=a \Delta(b-\Delta c)$.
Case (r2): $(a \Delta b)-\Delta c=a-\Delta c=a=a \Delta(b-\Delta c)$ (here we have used (d)).
Case (r3): The assumption $a \Delta b \notin D_{\Delta}$ yields $b_{m}^{\Delta}>a \Delta b=k_{m}^{(-1)}\left(k_{m}(a)+\right.$
$\left.k_{m}(b)\right)$ so that $a \Delta b=k_{m}^{-1}\left(k_{m}(a)+k_{m}(b)\right)$. Moreover $b>c$ implies
$a \Delta b>c$, so that (c) leads to ($a \Delta b$) - $\Delta c=k_{m}^{-1}\left(k_{m}(a \Delta b)-k_{m}(c)\right)=$
$k_{m}^{-1}\left(\left(k_{m}(a)+k_{m}(b)-k_{m}(c)\right)=k_{m}^{-1}\left(\left(k_{m}(a)+k_{m}(b-\Delta c)\right)=a \Delta(b-\Delta c)\right)\right.$.
(s) First (r) implies $(b-\Delta c) \Delta a=a \Delta(b-\Delta c)=(a \Delta b)-\Delta c$. Now we show $(b-\Delta c) \triangle a \notin D_{\Delta}$. If this is not the case then we get from the above equality that $a \triangle(b-\Delta c) \in D_{\Delta}$, so that (p) implies the contradiction $a \Delta b \in D_{\Delta}$.
These two partial results together with (g) and (r) lead to $(a \Delta b)-\Delta(d \Delta c)=$ $[(a \Delta b)-\Delta c]-\Delta d=[(b-\Delta c) \Delta a]-\Delta d=(b-\Delta c) \Delta(a-\Delta d)=(a-\Delta d) \Delta(b-\Delta c)$.
Thus Lemma 5 is proven.

Example 4. (1) We start with the pseudo-difference with respect to the classical addition on intervals (which extends the example in Example 2):

Let $-\infty<A<B \leq \infty$ and let $\Delta=\hat{+}$, that is

$$
a \hat{+} b:=A+[(a-A)+(b-A)] \wedge(B-A), a, b \in[A, B] .
$$

Then we have: $a-\Delta b=A+(0 \vee(a-b)), \quad a, b \in[A, B]$
(If $a=b=\infty$ then we define $a-\Delta b:=0$).
Indeed, $h(x):=x-A, x \in[A, B]$ is a generator of $\hat{+}$, since $h^{-1}(y)=A+y, y \in$ $[0, B-A]$ so that $a \hat{+} b=h^{-1}(h(a)+h(b)), a, b \in[A, B]$.

Now, if $a>b$ then Lemma 5 (c) implies $a-\Delta b=h^{-1}(h(a)-h(b))=h^{-1}(a-b)=$ $A+(a-b)$. If $a \leq b$ then Lemma 5 (e) leads to $a-\Delta b=A=A+(0 \vee(a-b))$.
(2) If we choose in (1) $A=0, B=4, \Delta=\hat{+}$, then this example shows that we cannot omit the assumption
$a \Delta b \notin D_{\Delta} \quad$ in Lemma $5(\mathrm{q}): \quad(2 \triangle 3)-\triangle 3=4-\Delta 3=1<2=2 \triangle 0=2 \triangle(3-\triangle 3)$, $a \Delta b \notin D_{\Delta} \quad$ in Lemma $5(\mathrm{r}): \quad(2 \triangle 4)-\triangle 3=4-\triangle 3=1<3=2 \Delta 1=2 \triangle(4-\triangle 3)$, $b>c \quad$ in Lemma $5(\mathrm{r}): \quad(1 \Delta 1)-\triangle 2=2-\Delta 2=0<1=1 \Delta 0=1 \Delta(1-\triangle 2)$, $a \triangle b \notin D_{\triangle} \quad$ in Lemma $5(\mathrm{~s}): \quad(4 \triangle 4)-\triangle(2 \Delta 2)=4-\triangle 4=0<4=2 \Delta 2$

$$
=(4-\Delta 2) \Delta(4-\Delta 2)
$$

$b>c$ (and $a>d$, because of the commutativity of Δ) in Lemma $5(\mathrm{~s}):(2 \Delta 1)-\Delta$ $(1 \triangle 2)=3-\Delta 3=0<1=1 \triangle 0=(2-\triangle 1) \triangle(1-\triangle 2)$.

For our purposes it is important to know whether the weak distributivity law is compatible with a pseudo-difference. The following result shows, that the answer is positive.

Theorem 11. Let \triangle and \amalg be pseudo-additions, and let \diamond be a pseudo-multiplication satisfying (Z) and ($D L^{*}$). Then the following holds:
(a) $\bigwedge_{a, b, c \in[A, B]} \bigwedge_{x \in[A, B]}[a \geq b \geq c \Rightarrow([a-\Delta b] \diamond x) \amalg([b-\Delta c] \diamond x)=[a-\Delta c] \diamond x]$.
(b) $\bigwedge_{a, b \in[A, B]} \bigwedge_{x \in[A, B]}[a \geq b \Rightarrow([a-\Delta b] \diamond x) \amalg(b \diamond x)=a \diamond x]$.
(c) $\bigwedge_{a, b \in[A, B]} \bigwedge_{x \in[A, B]}(a \Delta b) \diamond x=([(a \Delta b)-\Delta b] \diamond x) \amalg(b \diamond x) \leq(a \diamond x) \amalg(b \diamond x)$.
(d) $\left(a_{0}=A \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq B\right) \wedge x \in[A, B] \Rightarrow \amalg_{i=1}^{n}\left[\left(a_{i}-\Delta a_{i-1}\right) \diamond x\right]=a_{n} \diamond x$.

Proof. (a) Because of (Z) we assume w.l.o.g.that $x \in(A, B]$. We consider 4 cases:

$$
\begin{gathered}
\text { (I): } \quad a=b, \quad(\mathrm{II}): \quad b=c, \quad(\mathrm{III}): \quad(a>b>c) \wedge a \notin D_{\Delta}, \\
\text { (IV): } \quad(a>b>c) \wedge\left(\mathrm{V}_{m \in K_{\Delta}} a=b_{m}^{\Delta}\right) .
\end{gathered}
$$

Case (I): We use Lemma $5(\mathrm{e})$ and obtain: $([a-\Delta b] \diamond x) \amalg([b-\Delta c] \diamond x)=(A \diamond x) \amalg$ $([b-\Delta c] \diamond x)=A \amalg([b-\Delta c] \diamond x)=([b-\Delta c] \diamond x)=([a-\Delta c] \diamond x)$.

Case (II) can be proven in the same manner like Case (I).
Case (III): We use (e), (j) and (p) of Lemma 5 (in that order) to get $a-\Delta b, b-\Delta c \in$ $(A, B],(a-\Delta b) \Delta(b-\Delta c)=a-\Delta c \notin D_{\Delta}$, and (DL^{*}) implies $([a-\Delta b] \diamond x) \amalg$ $([b-\Delta c] \diamond x)=([a-\Delta c] \diamond x)$.

In Case (IV) there exists a sequence $\left(a_{n}\right) \subset\left(b, b_{m}^{\Delta}\right)$ satisfying $a_{n} \uparrow b_{m}^{\Delta}$. In the following chain of equations we use case (III) and

$$
\begin{equation*}
\left(\sup a_{n}\right)-\Delta b=\sup \left(a_{n}-\Delta b\right) \tag{87}
\end{equation*}
$$

to arrive at

$$
\begin{aligned}
& ([a-\Delta b] \diamond x) \amalg([b-\Delta c] \diamond x)=\left(\left[\left(\sup a_{n}\right)-\Delta b\right] \diamond x\right) \amalg([b-\Delta c] \diamond x) \\
= & \left(\left[\sup \left(a_{n}-\Delta b\right)\right] \diamond x\right) \amalg([b-\Delta c] \diamond x)=\left(\sup \left[\left(a_{n}-\Delta b\right) \diamond x\right]\right) \amalg([b-\Delta c] \diamond x) \\
= & \sup \left(\left[\left(a_{n}-\Delta b\right) \diamond x\right] \amalg([b-\Delta c] \diamond x)\right)=\sup \left[\left(a_{n}-\Delta c\right) \diamond x\right]=\left[\sup \left(a_{n}-\Delta c\right)\right] \diamond x \\
= & {\left[\left(\sup a_{n}\right)-\Delta c\right] \diamond x=(a-\Delta c) \diamond x . }
\end{aligned}
$$

We include still the proof for (87): $a_{n}-\Delta b \leq\left(\sup a_{n}\right)-\Delta b$ so that $\sup \left(a_{n}-\Delta b\right) \leq$ $\left(\sup a_{n}\right)-\Delta b$. If we now put $s=\sup \left(a_{n}-\Delta b\right)$ then we get $s \geq a_{n}-\Delta b$ and by Lemma 5 (f) $b \Delta s \geq a_{n}$ for all $n \in \mathbb{N}$. Thus we have $b \Delta s \geq\left(\sup a_{n}\right)$ and finally (again by Lemma $5(\mathrm{f})) s \geq\left(\sup a_{n}\right)-\Delta b$.
(b) We use statement (a) with $c:=A$ and apply Lemma 5 (a).
(c) To prove the first equality in (c) we use simply (b). The inequality follows from Lemma $5(\mathrm{k})$.
(d) follows by induction on $n \in \mathbb{N}$: If $n=1$ then (d) follows from Lemma 5 (a). Suppose (d) is true for $n \in \mathbb{N}$. Then we get $\amalg_{i=1}^{n+1}\left[\left(a_{i}-\Delta a_{i-1}\right) \diamond x\right]=\left[\left(a_{n+1}-\Delta a_{n}\right) \diamond\right.$ $x] \amalg\left(\amalg_{i=1}^{n}\left[\left(a_{i}-\Delta a_{i-1}\right) \diamond x\right]\right)=\left[\left(a_{n+1}-\Delta a_{n}\right) \diamond x\right] \amalg\left[a_{n} \diamond x\right]=a_{n+1} \diamond x$ (in the last equality we have used (b)). Therefore Theorem 11 is proven.

10. SUMMARY

We have shown that the concept of weak distributivity has many applications and leads by Theorem 5 to one more unexpected result (comparison of two pseudoadditions). The main results in Part II are probably Theorem 6 (representation theorem for pseudo-multiplications) and Theorem 7 (representation theorem for pseudo-additions and pseudo-multiplication under weak assumptions).

In Section 9 it is shown that the introduced pseudo-difference is compatible with the weak distributivity.

REFERENCES

[1] J. Aczél: Lectures on Functional Equations and Their Applications. Academic Press, New York-London 1966.
[2] P. Benvenuti, R. Mesiar, and D. Vivona: Monotone set-functions-based integrals. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 1329-1379.
[3] P. Benvenuti, D. Vivona, and M. Divari: The Cauchy equation on I-semigroups. Aequationes Math. 63 (2002), 220-230.
[4] C. Bertoluzza and D. Cariolaro: On the measure of a fuzzy set based on continuous t-conorms. Fuzzy Sets and Systems 88 (1997), 355-362.
[5] L. M. deCampos and M. J. Bolaños: Characterization and comparison of Sugeno and Choquet integral. Fuzzy Sets and Systems 52 (1992), 61-67.
[6] D. Denneberg: Non-additive Measure and Integral. Kluwer, Dordrecht 1994.
[7] J. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994.
[8] M. Grabisch, T. Murofushi, and M. Sugeno (eds.): Fuzzy Measures and Integrals. Theory and Applications. Physica-Verlag, Heidelberg 2000.
[9] M. Grabisch, H. T. Nguyen, and E. A. Walker: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht 1995.
[10] R.L. Kruse and J. J. Deeley: Joint continuity of monotonic functions. Amer. Math. Soc. 76 (1969), 74-76.
[11] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. (Trends in Logic, Volume 8.) Kluwer Academic Publishers, Dordrecht 2000.
[12] C. H. Ling: Representations of associative functions. Publ. Math. Debrecen 12 (1965), 189-212.
[13] R. Mesiar: Choquet-like integrals. J. Math. Anal. Appl. $19 \dot{9}$ (1995), 477-488.
[14] P.S. Mostert and A.L. Shields: On the structure of semigroups on a compact manifold with boundary. Ann. of Math. 65 (1957), 117-143.
[15] T. Murofushi and M. Sugeno: Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991), 57-71.
[16] E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers. Dordrecht 1995.
[17] W. Sander: Associative aggregation operators. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica-Verlag, Heidelberg-New York 2002, pp. 124-158.
[18] N. Shilkret: Maxitive measures and integration. Indag. Math. 33 (1971), 109-116.
[19] J. Siedekum: Multiplikation und t-Conorm Integral. Ph.D. Thesis. Braunschweig 2002.
[20] M. Sugeno and T. Murofushi: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197-222.
[21] Z. Wang and G. J. Klir: Fuzzy Measure Theory. Plenum Press, New York 1992.
[22] S. Weber: \perp-decomposable measures and integrals for Archimedean t-conorms \perp. J. Math. Anal. Appl. 101 (1984), 114-138.

Wolfgang Sander, Institute Computational Mathematics, Technical University of Braunschweig, Pockelsstr. 14, 38106 Braunschweig. Germany.
e-mail: w.sander@tu-bs.de
Jens Siedekum, Breitenbachstr. 19, 65187 Wiesbaden. Germany.
e-mail: j.siedekum@web.de

[^0]: ${ }^{1}$ This paper is a continuation of our paper Multiplication, Distributivity and Fuzzy-Integral I in Kybernetika No. 3/2005. We continue the enumeration of formulas, definitions, lemmas and theorems.

