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1. INTRODUCTION 

The notion of reverse of a t-norm was introduced under the name invert by C. 
Kimberling in [8]. Klement, Mesiar and Pap defined in [9] the t-reverse of t-norms, 
studied self-reversibility and t-reversibility of ordinal sums of t-norms and they also 
formulated some open problems. Almost all problems concerning reversibility of t-
norms were solved in [5, 9, 18]. In this paper we follow the name "reverse" used by 
Fodor and Jenei in [5]. The notion of reverse of a copula is known under the name 
survival copula [10, 17, 20] and its applications can be found, e.g., in [3, 10, 11]. 
In this paper, the reverse of any binary operation on the unit interval is defined. 
Next, some interesting properties of the introduced operation, such as involutivity, 
preserving monotonicity, self-reversibility and continuity are studied. Finally, we 
discuss the possibility of applications of reverses bringing some new results. 

The paper is organized as follows. After recalling the necessary notations and 
definitions in Section 2, we list the known results related to reversible t-norms in 
Section 3. The reverse of any binary operation on the unit interval is introduced 
in Section 4, as well as some basic properties of reverses are derived. Section 5 
deals with some known and unknown applications of reverses of binary operations. 
Section 6 is devoted to the class of self-reversible binary operations. 

2. NOTATIONS AND DEFINITIONS 

A triangular norm (t-norm) T is a binary operation T : [0, l ] 2 —> [0,1] which is asso
ciative, commutative, nondecreasing in both arguments and satisfies the boundary 
condition T(x, l) = x for all x G [0,1]. Analogously, a triangular conorm (t-conorm) 
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S is a binary operation S : [0, l ] 2 —> [0,1] which is associative, commutative, nonde-
creasing in both arguments and satisfies the boundary condition S{x, 0) = x for all 
x G [0,1]. Note that t-conorms are dual operations of t-norms, in the sense: 

S(x,y) = l-T(l-x,l-y) for all x,ye[0,l]. 

Let T be a t-norm and S be its dual with respect to the standard negation IV 
given by N(x) = 1 - x for all x G [0,1]. Then the triplet (T,S,N) is called a 
De Morgan triplet. Recall that the most frequently used t-norms and their dual 
t-conorms are given by: (for all x,y e [0,1]) 

M(x, y) = min{x, y} M'(x, y) = max{x, y} 

P(x, y) = xy P'(x, y) = x + y-xy 

W(x, y) = max{0, x + y — 1} W'(x, y) = min{l, x + y}. 

Note, that the mentioned t-norms and t-conorms belong to the class of Frank t-
norms and Frank t-conorms. Therefore the notation M = TQ for the minimum 
t-norm, P = T[ for the product t-norm and W = T^ for the Lukasiewicz t-norm is 
sometimes used. An ordinal sum of t-norms is defined as follows. Let ]afc, bk[, k G K 
be a family of pairwise disjoint open subintervals of [0,1] and Tk, k G K be a family 
of t-norms. Then the binary operation T defined on [0, l ] 2 by 

(ak + (bk-ak)Tk{^,$=%), iix,ye[akM> 
T(x,y)= < 

I min{x, y} otherwise. 

is a t-norm. It is denoted by {(a*., 6*., Tk)}keK and called the ordinal sum of the sum-
mands (a*., 6*., J*.), k G K. For more details about t-norms, t-conorms and negations 
we recommend [12]. 

The notion of copula was introduced in the study of the relationship between 
multivariate distribution functions and their marginals. A copula C is a binary 
operation C : [0, l ] 2 —• [0,1] satisfying: 

1. C(x,0) = C(0,x) = 0, C(x, 1) = C(l,x) = x 

2. C is 2-increasing, i.e., for all xi,x2,yi,y2 G [0,1], with xi <x2,yi < y2 

we have C(xi,yi)+ C(x2,y2) > C(xi,y2)+ C(x2,yi). 

For an extensive overview over copulas see, e.g., [17]. 

3. THE REVERSES OF t-NORMS AND t-CONORMS 

The well-known formula of classical two-valued logic says that the truth values of 
any two propositions p, q, their disjunction pV q and their conjunction p A q fulfill 
the equation 

val(p V q) + val(p A q) = val(p) + val(q). 



On Reverses of Some Binary Operators 4 3 7 

In fuzzy set theory, the generalization of the former equation leads to the Frank 
equation 

T(x,y) + S(x,y)=x + y (F) 

where T is a t-norm and S is a t-conorm and x,y G [0,1]. The Frank family of 
t-norms was introduced as a family of solutions of this functional equation, see [6]. 

Let a t-conorm S be the dual of the t-norm H, i. e., S(x, y) = 1 — H(l —x,l — y). 
Then the equation (F) can be written in the form 

Г(x, y)=x + y-l + H(l-x,l-y) 

or 
H(x, y)=x + y-l + T(l-x,l-y). (H) 

The t-norm H can be considered as a transformation of a t-norm T. Similarly, if a 
t-norm T is the dual of the t-conorm R, the equation (F) can be written in the form 

R(x, y) = x + y-l + S(l-x,l-y). (R) 

It is known [6] that if T and H are Frank t-norms, and moreover T = H, then 
the equation (H) holds. Similarly, if R and S are Frank t-conorms and S = R, 
then the equation (R) holds. It is clear that for some t-norm T the expression 
x + y — 1 + T(l —x,l—y) can be negative and for some t-conorm S the expression 
x + y — 1 + S(l — x, 1 — y) can exceed 1. For example, we can choose a t-norm 
T < W or a t-conorm S > W. Therefore a binary operation T* (and similarly S*) 
was defined [6, 9] as follows 

Definition 1. Let T be a t-norm. Then the binary operation T* : [0, l ] 2 —> [0,1] 
defined by 

T*(x, y) = max{0, x + y - 1 + T(l - x, 1 - y)} 

is called the reverse of t-norm T. 

Definition 2. Let S be a t-conorm. Then the binary operation S* : [0, l ] 2 —> [0,1] 
defined by 

S*(x, y) = min{l, x + y - 1 + S(l - x,l-y)} 

is called the reverse of t-conorm S. 

It can be shown [9], that the monotonicity and associativity may not hold for T*. 
For example, put T = {(0, \, Z)}, where Z is the weakest t-norm given by 

{ mm{x,y} if max{x,y} = 1, 

0 otherwise. 

If T* is also t-norm, then we say that T is reversible. Analogously, if S* is 
t-conorm, then we say, that S is reversible. 

The problem of reversibility of t-norms has already been intensively studied [5, 9, 
18]. In summary we briefly list the most relevant results from the mentioned papers. 
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— Let T < W. Then T* = W (W is the Lukasiewicz t-norm) [9]. 

— Let T > W. Then T is reversible if and only if T is a Prank t-norm or an 
ordinal sum of Prank t-norms [18]. 

— If T is a continuous Archimedean t-norm which is not comparable with W 
then T is not reversible [5]. 

— If T is a reversible t-norm then T* is continuous [18]. 

— If T is a Prank t-norm then T = T* [9]. 

— T = T* if and only if T is a Prank t-norm or an ordinal sum of Prank t-norms 
{(ak,bk,Tk)}keK such that for any i G K there is j £ K such that 

[aiy bi] = [1 — bj, 1 — aj] and Ti = Tj. 

We already know that all Frank t-norms are self-reversible, i.e., T* = T. There 
is no problem to verify that Prank t-conorms have the same property. 

4. THE REVERSES OF BINARY OPERATIONS 

Now we will define the reverse of arbitrary binary operation on the unit interval. 

Definition 3. Let B : [0, l ] 2 —> [0,1] be a binary operation on the unit interval. 
The reverse of the binary operation B is the binary operation B* : [0, l ] 2 —> [0,1] 
such that 

B*(x,y) = /x + y-l + B(l-x,l-y)/ 

where /a/ = min{l,max{0,a}}. If B = B* then the binary operation B is called 
self-reversible. 

It is clear that for the reverse of any binary operation B holds 

W < B* < W'. 

Geometrically B* can be obtained by the rotation of the 3-dimensional graph of B 
by 180° around the axis x = y = 1/2, adding the plane z = x + y — 1 and replacing 
the overlapping parts by 0 or 1. 

Example 1. Let B be the t-norm ordinal sum B = {(0,0.5,P)}, i.e., 

(2xy if(x,2/)G[0,l/2]2 , 
B(x,y) = I 

I min{x, y} otherwise. 

Then B* = {(0.5,1,P)}. Observe that B is an ordinal sum with one summand 
P = T[. 

Recall that a t-subnorm is a binary operation on the interval [0,1] which is as
sociative, commutative, nondecreasing in both arguments and not greater than the 
minimum t-norm [7,15]. 
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Example 2. Let B : [0, l ] 2 —> [0,1] be a t-subnorm [7,15] given by 

B(x,y)=xy/2. 

ThenB*(x,y)=max{0,x + y-l + (l-x)(l-y)/2} = m&x{0,(x + y-l + xy)/2} 
is the Sugeno-Weber t-norm [12] (and so a t-subnorm). 

Example 3. Let B : [0, l ] 2 —• [0,1] be the Lukasiewicz implicator given by 

I(x,y) = m i n { l , l - x + y}. 

\/2x/, iiy>x 
Then I*(x,y)= I 

I /x + y/, otherwise. 

The next lemma deals with binary operations which lie between W and Wf. We 
note that the assumption x + y — 1 < B(x, y) < x + y, for all x G [0,1] is equivalent 
to 

W < B < W'. 

Lemma 1. Let Bbea binary operation on [0,1]. If for all x,y G [0,1] 

x + y -1 < B(x, y) <x + y 

then 

(i) B*(x,y)=x + y - l + B(l-x,l-y), 

(ii) B** = (B*)* = B. 

P r o o f . Let x + y — 1 < B(x,y) <x + y. Replacing x,y by 1 — x, 1 — y we obtain 

(l-x) + (l-y)-l<B(l-x,l-y)<(l-x) + (l-y) 

and adding x + y — 1 yields 

0 < x + y - l + .B(l-x,l-y)<l 

which implies (i). We shall prove (ii). Using (i) we obtain B**(x,y) = x + y — 1 + 
B*(l-x,l-y) = x + y - l + (l-x) + (l-y)-l + B(x, y) = B(x, y). • 

Due to Lemma 1 we have that A* = A*** for any binary operation A on the unit 
interval. The following lemmas can be easily proved as they are generalizations of 
the known properties of t-norms. 

Lemma 2. Let A be a binary operation on the unit interval and A(x, y) < W(x, y) 
for all x,y G [0,1]. Then A* = W. 



440 M. SABO AND P. STREZO 

Lemma 3. Let A be a binary operation on the unit interval and A(x, y) > W'(x, y) 
for all x,ye [0,1]. Then A* = W'. 

Let us denote by /A/L the restriction of a binary operation A by the Lukasiewicz 
t-norm and t-conorm, i.e., for all x,y G [0,1], we define 

/A/L(x, y) = max{PV(x, y), min{A(x, y), W'(x, y)}}. 

Lemma 4. Let A be a binary operation on the unit interval. Then A* = (/A/L)* 
and A** = /A/L. 

There is no relation between the monotonicity of a binary operation B and its 
reverse B*. E.g., the t-norm T = {(0,0.5,Z)} is nondecreasing in both arguments 
but T* is not nondecreasing in both arguments. On the contrary, the implicator 
I in Example 3 is decreasing in first argument, but I* is nondecreasing in both 
arguments. Now, we will try to solve the problem of the monotonicity of reverses. 

Recall that a binary operation A : [0, l ] 2 —» [0,1] has the 1-Lipschitz property if 
\A(x,y) - A(z,t)\ <\x-z\ + \y-t\ for all x,y,z,t G [0,1]. 

Lemma 5. Let A : [0, l ] 2 —> [0,1] be nondecreasing in both arguments such that 
also A* is nondecreasing in both arguments and let W < A < W'. Then A and A* 
are 1-Lipschitz (and therefore continuous). 

P r o o f . Conversely, suppose that A is not 1-Lipschitz. Then there exist x\ < 
x2,yi < y2 such that 

A(x2,y2) -A(xi,yi) > (x2 - x{) + (y2 - y{). 

This implies that 

A(x2,y2) - A(x2,yi) > y2 - yi > 0 or A(x2,y{) - A(xx,y{) > x2 - xx > 0. 

Let A(x2,y2) - A(x2,yx) >y2-yi>0. Then 1 - yx > 1 - y2 and 

A*(l - x 2 , l - yij - A*(l -x2,l- y2) 

= 1 - x2 + 1 - yi - 1 + A(x2, yi) - (1 - x2+ 1-y2 - 1 + A(x2,y2)) 

= 1/2 - J/i + -4(z2, yi) - A(x2,y2) < (y2 - yi) + (yi - y2) = 0, 

which contradicts the monotonicity of A*. By Lemma 1 we have A** = A and 

x + y-1 <A*(x,y) <x + y 

Now, we can replace A by A* in the proof above and repeat the procedure. • 
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Theorem 1. Let A : [0, l ] 2 —• [0,1] be a binary operation nondecreasing in both 
arguments such that W < A < W*. Then A* is nondecreasing in both arguments if 
and only if the binary operation A is 1-Lipschitz. 

P r o o f . The necessity follows from Lemma 5. Let A be 1-Lipschitz, x\ < x2 , 
yi < 2/2- Then 

A*(x2,y2)~A*(xi,yi) 

= (x2 - xi) + (y2 - yi) + -4(1 - x2 ,1 - y2) - A(l - xi, 1 - yi) 

= (x2 ~ xi) + (y2 - yi) - (-4(1 - xi, 1 - yi) - .4(1 - x2 ,1 - y2)) 

> (x2 ~ xi) + (y2 - yi) - (x2 - xi) + (y2 - yi) = 0. a 

The following theorem is a consequence of Theorem 1 and Lemma 5. 

Theorem 2. Let A : [0, l ] 2 —> [0,1] be a binary operation which is nondecreasing 
in both arguments. Then A* is nondecreasing in both arguments if and only if /A/L 
is 1-Lipschitz. 

P r o o f . Let A* be nondecreasing in both arguments. Using Lemma 4 and Theo
rem 1 we obtain that /A/L = A** is 1-Lipschitz. Conversely, if /A/L is 1-Lipschitz 
then (/A/L)* = A* is nondecreasing in both arguments. • 

Finally, we will discuss the problem of the continuity of reverses. 

Lemma 6. Let A be a binary operation on the unit interval such that A and A* 
are nondecreasing in both arguments. Then if A is not continuous at the point 
(xo,yo) then one of the following statements holds 

(i) x0 + yo < 1 and A(x0j yo) >x0+yo 

(ii) x0 + yo > 1 and A(x0,y0) <xQ + yQ-l. 

The proof is left to the reader. The following theorem is a direct consequence of 
Lemma 6 and Lemma 4. 

Theorem 3. Let A be nondecreasing binary operation on the unit interval such 
that also A* is nondecreasing in both arguments. Then A* is continuous. 
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5. APPLICATION OF REVERSES OF SOME BINARY OPERATIONS 

We have already mentioned the role of reverses in the theory of t-norms and t-
conorms. The notion of reverse has also appeared in the theory of copulas [17, 20]. 
It is also known that every copula C fulfills the assumptions of Lemma 1, W < C < 
min < W1', and therefore 

C*{x, y) = x + y - 1 + C(l - x, 1 - y). 

Moreover, the reverse of a copula is always a copula. Self-reversible copulas play 
an important role in several applications, e.g. in aggregation based on Choquet 
integral [11], in fuzzy similarity measurement [3] and in statistics (see Section 6 or 
[17]). Now we show another application of reverses that leads to some noteworthy 
results. 

A preference structure is a basic concept of preference modelling [1, 2, 4, 21, 22]. 
In a classical preference structure (PS) a decision-maker makes three decisions for 
any pair (a, b) from the set A of all alternatives. His decisions define a triplet (P, 7, J ) 
of crisp binary relations on A: 

1) a is preferred to & 4-> (a, b) € P (strict preference). 

2) a and b are indifferent <<-=> (a,&) G / (indifference). 

3) a and b are incomparable <£-> (a, 6) £ J (incomparability). 

Definition 4. A preference structure (PS) on a set .A is a triplet (P, I, J) of binary 
relations on A such that 

(psl) I is reflexive, P and J are irreflexive. 

(ps2) P is asymmetric, I and J are symmetric. 

(Ps3) P n / = P n J = / n J = 0. 

(ps4) PUlUJ\JPl=AxA where Pl{x, y) = P(y, x). 

Using characteristic mappings [1, 2, 21, 22] a minimal definition of (PS) can be 
formulated as a triplet (P, J, J ) of binary relations on A such that 

(ml) I is reflexive and symmetric. 

(m2) P{a, b) + P\a, b) + / (a , b) + J{a, b) = 1 for all (a, b) <E A2. 

A preference structure can be characterized by the reflexive relation R = P U I 
called the large preference relation. The relation R can be interpreted as 

(a, 6) E P <£-> a is preferred to b or a and b are indifferent. 

It can be easily proved that 
co{R) = Pl U J 
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where coR(a, b) = 1 — R(a, b) and 

P = Rf\ co(Rl), I = RnRl,J = co(R) n co(Rl). 

This allows to construct a preference structure (P, I, J) from a reflexive binary re
lation R only. A natural demand led researchers to the introduction of a fuzzy 
preference structure (FPS) [1, 2, 4, 19, 21, 22]. Of course, the attempts simply to 
replace the notions used in the definition of (PS) by their fuzzy equivalents have 
led to some problems. It was proved [4, 21, 22], that reasonable constructions of a 
fuzzy preference structure (FPS) strongly recommend to use a nilpotent t-norm only. 
Because any nilpotent t-norm (t-conorm) is isomorphic to the Lukasiewicz t-norm 
W (t-conorm W'), for simplicity, we will use the Lukasiewicz triplet (W, W', 1 — x). 
Then we can define (FPS) as the triplet of binary fuzzy relations (P, I, J) on the set 
of alternatives A satisfying: 

(fml) I is reflexive and symmetric. 

(fm2) V(a, b) e A2, P(a, b) + P\a, b) + I(a, b) + J(a, b) = 1. 

The idea to use some reflexive large preference relation R to construct (PS) can 
be fuzzified too. Fodor and Roubens [4] (among others) proposed an axiomatic 
construction of a fuzzy preference structure generated by a reflexive binary relation 
R (FPS — R). They supposed that (in the frame of the Lukasiewicz De Morgan 
triplet (W,W',l-x)) 

— the values P(a,b), I(a,b), J(a,b) depend only on the values R(a,b), R(b,a), 
i.e., there exist binary operations p,i,j : [0, l ] 2 —> [0,1] such that for any 
(a,b)G A2 

P(a,b)=p(R(a,b),R(a,b)), 

I(a,b) = i(R(a,b),R(b,a)), 

J(a,b)=j(R(a,b)),R(b,a)). 

— p(x,N(y)),i(x,y),j(N(x),N(y)) are nondecreasing in arguments x and y. 

— i and j are symmetric 

— (P, I, J) is (FPS) for any reflexive binary relation R on a set of alternatives A 
such that W(P, I) = R, W'(P, J) = l - R\ where Rl(a, b) = R(b, a). 

It was proved [1, 4] that for all x,y E [0,1] it holds 

W(x, y) < p(x, 1 - y), i(x, y),j(l - x, 1 - y) < M{x, y}. 

The mentioned triple (p,i,j) is called a monotone generator triplet (De Baets and 
Fodor [2]). Summarizing, the monotone generator triplet is a triplet (p,i,j) of 
[0, l ] 2 —* [0,1] mappings such that: for all x, y G [0,1] 

(gtl) p(x, 1 — y), i(x, y),J(l — x, 1 — y) are nondecreasing in arguments x and y. 
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(gt2) W(x,y)<p(x,l-y),i(x,y),j(l-x,l-y)<M{x,y}. 

(gt3) i(x,y) = i(y,x). 

(gt4) p(x,y) + p(y,x) + i(x,y) + j(x,y) = l. 

(gt5) p(x, y) + i(x, y) = x. [Fl] 

It can be easily shown that (gt3) and (gt4) imply the symmetry of j and (gt4) 
and (gt5) imply 

P(x,y)+j(x,y) = l-y. [F2] 

Now we are looking for a monotone generator triplet defined above. The following 
theorem gives a necessary condition. 

Theorem 4. Let (p, i,j) be a monotone generator triplet. Then for all x, y G [0,1] 

i*(x, y) = j(l -x,l-y) and j*(x, y) =i(l-x,l- y). 

P r o o f . Let (p,i,j) be a generator triplet. Then [Fl], [F2] imply 

i(x,y) =x + y-l+j(x,y). 

Using (gt2) and Lemma 1 we obtain 

i*(x,y) = x + y - l + i(l-x,l-y) 

= x + y - l + (l-x) + (l-y)-l+j(l-x,l-y)=j(l-x,l-y). 

Using Lemma 1 we obtain j*(x, y) = i(l — x, 1 — y). • 

It can be shown that the symmetry of the operation G : [0, l ] 2 —> [0,1] given by 
G(x, y) = p(x, 1 — y) is equivalent to the self-reversibility of indifference generator i. 
Theorem 1, Theorem 4 and [Fl] imply that all members of the monotone generator 
triplet (p,i,j) must be 1-Lipschitz, compare with [2, 13]. 

Recall that a binary operation C : [0, l ] 2 —> [0,1] that is nondecreasing in both 
arguments, C(x, 0) = C(0, x) = 0, C(x, 1) = C(l,x) = x for all x G [0,1], and C is 1-
Lipschitz is called a quasi-copula. Therefore, if (p, i,j) is a monotone generator triplet 
then p, i, j are 1-Lipschitz and i is a quasi-copula. Moreover, the 1-Lipschitz property 
implies continuity. Therefore, if (p,i,j) is a monotone generator triplet then p, i, 
j are continuous. Thanks to the functional equations [Fl], [F2], a generator triplet 
can be determined by one of its members only. The following theorem gives the 
hint how to construct a monotone generator triplet from some preference generator, 
compare with [2]. 



On Reverses of Some Binary Operators 4 4 5 

Theorem 5. Assume that a binary operation p : [0, l ] 2 —> [0,1] fulfils 

(a) The binary operation C : [0,1]2 -> [0,1] given by C(x,y) = p(x,l - y) is a 
quasi-copula. 

(b) p(x, y) - p(y, x) = x - y for all (x, y) G [0, l ] 2 . 

Then the triplet (p,i,j) where 

i(x, y)=x- p(x, y), j(x, y) = l - y - p(x, y) for all x,y e [0,1]) 

is a monotone generator triplet. 

Example 4. Put p(x, y) = x(l — y) for all x, y G [0,1]. Then 

p(x,l-y) = xy, p(x,y)-p(y,x)=x-y 

i(x, y) = xy, j(x, y) = (1 - x)(l - y). 

Since p fulfils the assumption of Theorem 5 we have obtained a generator triplet 
(P,ij)-

Example 5. Let p(x,y) = max{0,x — y,x — 2xy}. Then the binary operation 
C : [0, l ] 2 —> [0,1] given by C(x,y) = p(x,l — y) is a quasi-copula and p(x,y) — 
p(y,x) = x — y. Using Theorem 5 we obtain (for all (x,y) G [0, l]2) 

i(x,y) = x-p(x,y) and j(l -x,l-y) = i*(x,y). 

It means that 
i = {(0,0.5, P)},i*(x,y) = {(0.5,1, P)} 

and (p, i,j) is a monotone generator triplet. Recall that i ^ i*, therefore p(x, 1 — y) 
is not symmetric (see Figure). Especially, take notice of the validity of (gt4). 

6. SELF-REVERSIBILITY 

The characterization of the class S of all self-reversible binary operations on the unit 
interval is also an interesting problem. As we have already mentioned, self-reversible 
copulas play important roles in statistics. Recall that copulas [17] are the functions 
that join a two-dimensional distribution function H to its one-dimensional margins 
F , G. It means that for the mentioned triplet F, G, H there exists a copula C such 
that for all x, y G R U {-co, oo} 

H(x,y) = C(F(x),G(y)) 

([17], Sklar's theorem). For a pair (X,Y) of continuous random variables with the 
joint distribution function H, the joint survival function Hs is given by 

Hs(x,y) = Prob[X > x,Y > y) = C*(\ - F(x), 1 - G(y)), 
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i(x,y) J(*,У) 

p(x,y) p(y,x) 

Figure. Description of the functions from Example 5 on the unit square. 

where C* is the reverse of C. Moreover, if X, Y are symmetric about a and b 
respectively, i. e., for all x, y G -R U {—oo, 00} 

F(a + x) = l-F(a-x), G(b + y) = 1 - G(b -y) 

and C is self-reversible, then H is radially symmetric about (a,b), i.e., the three-
dimensional graph of H is symmetric with respect to the point [a, b, 0.5]. 

Of course, there exist self-reversible binary operations which are neither copulas 
nor t-norms (observe that each self-reversible t-norm is also a copula due to the fact 
that each 1-Lipschitz t-norm is a copula [16]). For example, the arithmetic mean or 
the binary operation K : [0, l ] 2 —* [0,1] given by 

K(x,y) = ?-^-, s , y G [0,1] 

are also self-reversible. As it can be shown, the class S is convex. It means that for 
any A,B e S, k G [0,1], the binary operation given by 

V(x,y) = kA(x,y) + (1 - k)B(x,y), x,y€ [0,1] (M) 

is self-reversible as well. However, the combination L(A, B) of self-reversible binary 
operations L, A, B need not be self-reversible. For example, \i L = A = B = P 
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(product), then the binary operation U given by 

U(x,y) = L(A(x,y),B(x,y)) = (xy)2, x,y e [0,1] 

is no longer self-reversible. The following theorem gives a necessary and sufficient 
condition for L to ensure the self-reversibility of L(A,B) for all A, B e S. We say 
that a binary operation A on the unit interval is shift-stable if 

A(x + t,y + t) = t + A(x,y) 

for all x,y e [0,1] and t e [—mm{x,y},l — max{.r,y}). Note that shift-stable 
aggregation operators are sometimes called shift-invariant [14]. 

Theorem 6. Consider a binary operation L : [0, l ] 2 —» [0,1]. Then the following 
statements are equivalent: 

(i) L(A, B)eS for all A, B e S; 

(ii) L is shift-stable. 

P r o o f . Observe first that A e S if and only if for all x, y e [0,1] 

A(x, y) = x + y - 1 + A(l - x, 1 - y). 

It implies that W < A < W' whenever A e S. 

(i)=> (ii) Let U = L(A, B) e S for all A, B eS. Then for all x, y e [0,1] and all 
A, B e S; 

U(x,y) = L(A(x,y),B(x,y)) 

and 

U*(x,y)=x + y-l + L(A(l-x,l-y),B(l-x,l-y)) 

= x + y-l + L(l-x-y + A(x, y),l-x-y + B(x, y)) 

= L(A(x,y),B(x,y)). 

Putting u = A(x, y), v = B(x, y), q = 1 — x — y, we obtain 

L(u + q,v + q) = q + L(u, v). 

It remains to prove that the previous equation holds for all (u,v) e [0, l ] 2 and all 
q e [— min{u,i>}, 1 — max{w, v}]. 

Prom the fact that W, W* e S and from the self-reversibility of operator V in 
(M) it follows that all convex combinations of W and W' are also self-reversible. 
Hence, for any (u, v) G [0, l ] 2 there exist (x,y) e [0, l ] 2 and binary operations A, B 
e S such that u = A(x, y), v = B(x,y). It is sufficient to take the y = 1 — x and put 

A = uW' + (1 - u)W,B = vWl + (1- v)W. 
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Given u, v and any q G [- min{u, v}, 1 - max{u, v}], we are looking for (x0,y0) G 
[0, l ] 2 and A,B e S such that 

u = A(x0,y0),v = B(x0,y0) and q = 1 - x0 - y0. 

As W < A, B < W we have: 

u = A(x0,y0),v = B(x0,y0) for some A,B £ S 

if and only if 

(x0,y0) £ {(x,y)\ma,x{u,v} <x + y < 1 + min{u,v}} 

= {(x,y)\ — min(u, v) <l — x — y<l - m&x{u,v}}. 

It is sufficient to take (x0,y0) G [0, l ] 2 for which x0 +y0 = 1 - q. Then 1 - x0 -
Vo = q G [-min{u,v},l - max{n,i;}]. Hence, there exist A,B G S such that 
u = A(x0,y0),v = B(x0,y0). It proves (ii). 

(ii)=>(i) Let L be shift-stable. It means that 

L(u + q,v + q) = q + L(u, v) 

for all (u,v) G [0, l ] 2 and all q G [— mln{u,v}, 1 - max{n,i;}]. Let A,B G S and 
(x,y) G [0,1]. Putting u = A(x,y), v = B(x,y), q = 1 — x — y in previous equation 
we obtain that 

q G [— min{u, v}, 1 — max{u, v}] 

and 

L(A(x,y) + l - x - y,B(x,y) + 1 - x - y) = 1 - x - y + L(A(x,y), B(x,y)). 

It proves that U = L(A, B) G S. This completes the proof. • 

The previous theorem allows to construct self-reversible binary operations from 
a shift-stable and two self-reversible binary operations. As a shift-stable binary 
operation need not be monotone we have that the monotonicity is not necessary 
condition for the self-reversibility of binary operations. For example, the binary 
operation U : [0, l ] 2 —> [0,1] given by 

U(x, y) = min{max{x, y},2x — y + l,2y — x + 1}} 

is not monotone, but it is shift-stable. Using Theorem 6 we have that the binary 
operations U(M,Mf), U(M,P) are self-reversible but they are not monotone. 

7. CONCLUSION 

We have shown that the reverses of binary operations defined in this paper have many 
interesting properties. We have tried to answer the common questions concerning 
the most important properties of monotonicity, self-reversibility and continuity of 
reverses. We also demonstrated that the applications of reverses in other fields of 
interest can give some new results. The problem of commutativity and associativity 
of reverses was solved for t-norms and t-conorms only. For general binary operations, 
these problems remain still open. Also, the problem of a full characterization of the 
class of all self-reversible binary operations on the unit interval is still open. 
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