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A COLLECTOR FOR INFORMATION 
WITHOUT PROBABILITY IN A FUZZY SETTING 

DORETTA VlVONA AND MARIA DlVARI 

In the fuzzy setting, we define a collector of fuzzy information without probability, 
which allows us to consider the reliability of the observers. This problem is transformed in 
a system of functional equations. We give the general solution of that system for collectors 
which are compatible with composition law of the kind "inf". 
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1. INTRODUCTION 

In the subjective theory of information without probability [9, 10, 11, 12, 15] and 
in the crisp setting, B. Forte and others [3, 7, 8] have supposed that each group 
of observers E provides an amount of information J(A, E) from the same event A. 
Moreover they supposed that, for each E, the information is compositive (in the 
sense of [13] with the same law with an additive reliability coefficient X(E). 

B. Forte has defined a collector as a function $: 

J{A,El\JE2) = *[\{E1)t\(E2),J{A,Ei),J{A,E2)) 

for every event A and disjoint groups E\, E2. 
Putting x = X(E\), y = X(E2), u = J(A,E\), v = J(A,E2), Aczel, Forte and 

Ng in [1, 2] gave the solution in the Shannon case: 

( x e~ulc + y e~vlc \ 
$(x,y,u,v) = -c log • , 

v x + y / 

where c is the constant related to the Shannon information; when the information 
J is of the kind A, Benvenuti, Divari and Pandolfi obtained a more general class of 
solutions (see [4]). 

In a previous paper [16] we have defined collectors of A-compositive information 
without probability for fuzzy sets of events, crisp sets of observers with a reliability 
coefficient defined in a probabilistic space. 
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In this paper we shall introduce fuzzy collectors for crisp groups of observers with 
a fuzzy V-additive measure of reliability. 

Evidently, if we restrict our considerations to crisp sets, the collectors studied in 
[4] are recovered. One of the main aim of this paper is also to enlight interesting 
ideas from [4] which are not so known in the wider community. 

2. PRELIMINARIES 

In the setting of fuzzy sets [17], we consider the following model: 

1) fi is an abstract space, T is an algebra of fuzzy sets such that (£l,T) is a 
fuzzy measurable space, the elements of T are the observable events. Recall that for 
A and B G T, whose membership functions are fA and / # , respectively, it holds: 
/AuB = /A V / a , fAnB = / A A / B , fAc = 1 — / A ; 

2) O is another abstract space (space of observers), S is a a-algebra contained in 
V(0), whose elements are groups of observers; 

3) a fuzzy V-additive measure ji is defined on the measurable space (O, S): //(0) = 
O,/x(0) = ~fi G]0,+OO], fj, is non-decreasing with respect to the inclusion of the 
elements of S and / i (F iUF2) = n(Ei)V JA(E2) V £ i , £ 2 G S; if E G S, n(E) is called 
fuzzy reliability coefficient; 

4) an information measure J , called fuzzy information (see [5, 6]), linked to the 
group of observers, is a map J : T x S —> R such that, fixed E G S,E ^ 0, ^ 0 for 
all A , B G f 

4i) A c B - ^ J ( . 4 , £ ) >J(B,E), 

4ii) J ( 0 , £ ) = +oo, J(«, .E) = 0; 

5) every information measure J(-, E) is FE-compositive i. e. for every E G S,E ^ ® 
there exists a map F£ : FE —* R , where T^ =- {(x,2/) / 3 A, B G T with x = 
J ( J 4 , E), y = J(B, E), fAAfB= 0} such that 

J(AUB;E) =FE [j(A,E),J(B,E)] . (1) 

Evidently FE is commutative, associative and FE(X, +oo) = x , for all x G 
RanJ ( - ,£ ) . 

Throughout this paper we deal with universal composition rule F = A, 

J(_4 UB,E) = F[J(A, E), J(B, E)] = J(A, E) A J(B, E). (2) 

Note that due the idempotency of the operator A we need not to require the dis-
jontness fA A fs = 0 in the above equality (2). 

We call A-compositive fuzzy information a fuzzy information J which satisfies (2) 
for every E G S. 
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3. COLLECTOR OF A-COMPOSITIVE FUZZY INFORMATION 

In the previous paper [16] we have defined a collector for crisp sets. 
Here, in the fuzzy setting, we give the definition of collector which we shall call 

fuzzy collector. 

Definition 3 .1 . A fuzzy collector for a given reliability measure fi is a continuous 
function \I> 

* : E -> I + 

where E C I [0, JL] x R 1 , /J = /i(O), such that for every pair of two disjoint groups 

E\ and E2 of observers with reliability coefficients fi(E\) and ji(E2) it holds 

J(A, E\ UF2) = * [fi(E\)y J(A,£1), Lz(£2), J{A,E2)) . (3) 

4. PROPERTIES OF A FUZZY COLLECTOR tf 

In this section we present the properties if a fuzzy collector is expressed by \l>. They 
are: 

(i) (commutativity): 

* [n(El),J(A,El),n(E2),J(A,E2)] =V [fi(E2),J(A,E2),^(E1),J(A,E1)] , 

VA £ T,EX,E2 e€,as J(A,Ell)E2) = J(A,E2 U Ei); 

(ii) (associativity): 

* [n(Ey) V M ( E 2 ) , * ( M ( £ I ) , J(A,E1),^i(E2),J(A,E2)] ,ti(E3),J(A,E3)] 

= * [ii(E1),J(A,El),n(E2) V ii(E3),<H [v(E2),J(A,E2),fi(E3),J(A,E3)} ) , 

V A G f , Ei, E2, E3 e €, as J(A, (Ei U E2) U E3) = J(A, Ei U (E2 U E3); 

(Hi) (universal value J (0 ,E ) = +00 ): 

* (ji(Ei),+oo,M(E2),+oo) = + 0 0 , 

as J(0, £1 U E2) = +00; 

(iv) (universal value J(Q,E) = 0)): 

^(/x(E i) ,0, /x(E2),0) = 0 , 

as J(fi, Ei U E2) = 0. 

If the information of the group of observers is A-compositive in the sense of (2) 
we can add another property: 



392 D. VIVONA AND M. D1VARI 

(v) (compatibility condition between the A-compositivity of J and the collector 
¥) : 

*(/i(JBi), [j(A,Ex) AJ(B,Ex)\,fi(E2),[j(A,E2) A J ( B , F 2 ) ] ) 

= ^[fi(El),J(A,El),^(E2),J(A,E2)) A^[fi(El),J(B,El),J(B,E2),ii(E2),) 

VA,B e T, E i , E 2 G f . 

In fact, from (2) it is J(A U B , F i U E2) = J(A,Ex U E2) A J(B,Ex U E2), and, 
on the other hand, from (3), we get J (A U B , £ i U E2) = 

^^(El),J(AuB,E1),fi(E2),J(AuB,E2)) 

= * ( / i (£i) , [j(A, Ei) A J(B, Ei)], fi(E2), [j(A, E2) A J(B, E2)] ) . 

5. SYSTEM OF FUNCTIONAL EQUATIONS 

Put n(Ei) = x,[i(E2) = y,fi(E3) = z, with x,y,z G [0,1], The function * given 
in (3) is defined in the domain S 2 = ([0,JL] X R )2. Moreover we set J(A, Ei) = 
u, J(A,E2) = v, J(B,Ei)=uf, J(B,E2)=vf, J(A,E3)=w. 

Now we rewrite the conditions [(i) — (v)} in order to obtain a system of functional 
equations. The equations are: 

(if) ^ [x,u,y,vj =<& iy,v,x,u) 

(iif) $ ix,u,y y z,^(y,v,z,w)\ = * ix V y, ^(x,y,u,v), z,wj 

(iiif) Vl> I x, +oo,y, +oo J = + o o 

(ivf) * [ x , 0 , y , 0 J - 0 
(vf) ^ \x,u Auf ,y,v Avf\ = \I> f x,u,y,v J A * f x,uf,y,vf J . 

In the setting of crisp sets, an analogous system was studied and solved by 
Benvenuti-Divari-Pandolfi in [4]. We study the system [(if) — (vf)] and we give 
the general solution step by step. 

Theorem 5.1. Main Theorem. The function * f x,u,y,v J is solution of the 

system [(if) — (vf)] if and only if 

V [x,u,y,v] =g(x,y,u) Ag(y,x,v) (4) 

where the function g : [0,/l]2 x R - ^ R fulfills the following properties: 

(a) g is non decreasing with respect to u and continuous, 

(p) g(x,y, +oo) = +oo, 

(7) g(x,V,Q) Ag(y,x.O) =0, 

(6) g[xV z,y,g(x,z,u)} =g(x,yV z,u). 
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P r o o f . Putting g(x,y,u) = ^(x,u,y, +00), from (vf) for u' = v, we have the 
(4). It is easy to verify that every function * with the form (4) and the properties 
[(a) — (5)} is a solution of the system [(if) — (vf)}. • 

For every function g(x, y, u) which satisfies the properties [(a) — (5)}, we can prove 
the following Lemmas. 

Lemma 5.2. For every function g(x, y, u) which satisfies the properties [(a) — (5)}, 
we have g(x, y, 0) = 0. 

P r o o f . From (6), for u = 0 it is 

g(x V z, y, g(x, z, 0)) = g(x, yV z, 0), (5) 

and then, changing x with z 

g(z\/x,y,g(z,x,0)) =g(z,yVx,0). (6) 

Because of (7), either g(x,z,0) = 0 or g(z,x,0) = 0, from (a), (4) and (5) we get 

g(x V z, y, 0) = g(x, y V z, 0) A g(z, y V x, 0), (7) 

and from (7) for y = 0 
g(x V z, 0,0) = g(x, z, 0) A g(x, z, 0) (8) 

i.e., due to (7), 

g(x\/ z,0,0) = 0 Vx, 2. (9) 

Finally, from (8) and (9), for x = z, we get 

<1(z,*,0) = 0. (10) 

For x < z 

g(z, x, 0) = g(x, z, 0) A g(z, x, 0), . 

so we obtain, due to (7), 

#(z ,x,0) = 0 V x < z . (11) 

Putting in (7) y = x and for x > z 

g(x, x, 0) = g(x, x, 0) A g(z, x, 0), 

g(x V z,x,0) = p(x,x V z,0) Ag(z,x Vx,0). 

From (5), for u = 0 

g(x V z, y, g(x, z, 0)) = g(x, yV z, 0). 

By contradiction we suppose g(z,x,0) = A > 0, i.e. g(x,y,\) = g(x,y V z,0). For 
y > z, we get g(x,y,\) = #(x,y,0): this is impossible as g is non-decreasing with 
respect to u, then 

g(z,x,0) = 0Vx, z. (12) 

D 
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Lemma 5.3. For every function g which enjoys [(a) — (5)], we have 

g(x,0,u) = uin [0 , / l ]xR + . (13) 

P r o o f . As, from (7) and (5), g(x,0,0) = 0 and g(x, 0,+co) = +00, for every 

v G R there exists u such that g(x, 0, u) = v. 
Prom (7), for y = z = 0, we have g(x, 0,g(x, 0, v)) = g(x, 0,u). D 

Lemma 5.4. Every function g which satisfies [(a) — (5)] has the following repre
sentation: 

g(x,y,u) = h[x\/ y,h~l(x,u)] (x,y,u) G [0, l ] 2 x R+ (14) 

with h : [0,1] x R —> R , continuous, non decreasing with respect to u and h~l its 
pseudo-inverse [14], defined by h~l(x,v) = Inf{£ / h(x,£) = v}. 

P r o o f . Putting h(x,u) = g(0,x,u), for (a) and (/?) the function h is contin
uous, monotone and h(x,0) = 0, h(x,+oo) = +00, therefore its pseudo-inverse 
h~l is defined on JO, 1] x R . From (6), for x = 0 and u = h~l(z,v), we have 
9(z,V,9(Q, z, h~l(z,v)) = g(0,yAz,h~l(z,v)), i.e. g(z,y,g(0,z, h~l(z,v)) = 
h(y A z,h~l(z,v)). The thesis follows from h(z,h~l(z,v)) = v. • 

Remark. We observe that continuity of g and condition (/?) imply that h(x,u) = 
g(0,x, u) is not (definitely) null or constant (unless = +00). Indeed, if we hold the 

x u 
following situation: g(x, y, u) = (with 0 • +00 = 0), then we couldn't find h~~l, 

x v y 
but clearly g(0,x,u) = 0, contrary to ((3). 

This situation corresponds to the following example: 
Let O = {1,2, . . . , n } be the set of observers, /i(-E') = maxF and J(A, E) = 

~ 1°VE)*A • S°> w e have: g(x, y, u) = ~ ^ , h(x, u) = 0 and the collector is: $(x,u,y,v) = 
x u/\y v 

xVy 

Lemma 5.5. For every function g which satisfies [(a) — (5)], the corresponding 
function h given by (14) enjoys the following properties: 

h(0,v) = veR+ (15) 

and 
h(x,u) = h(x,v) => h(y,u) = h(y,v) My > x. (16) 

P r o o f . The condition (15) follows from the definition of the function h and from 
Lemma 5.4. Now, we shall prove the (16): in (5) setting x = 0 it is g(z, y, g(0, z, u)) = 
g(0,yAz,u)zmdfoj: (14) we get h(zWy,h~1(z,h(z,h~1(0,u))) = h(yVz,h~l(0,u)), 
i.e. h(z V y,h~l(z,h(z,u)) = h(y\/ z,u). 

If h(z,v) = h(z,u) with v < u, from definition of h~l, we have h~l(z, h(z,u)) = 
ln f{£/ / i (z ,0 = h(z,u)} = vf < v and therefore h(y Az,v') = h(y Az,u). 

Uv>u, for the monotonicity of the function h and the arbitrary of y, we obtain 
the (16). ° 
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Lemma 5.6. The expression (14) with the function h(x,u) satisfying the condi
tions of the Lemmas 5.4 and 5.5 gives the general form of the continuous solutions 
of the system [(a) — (5)]. 

P r o o f . We shall, now, verify that every function g(x,y,u) defined by (14) 

g(x,y,u) = h(xVy,h~l(x,u)) 

with h(x,u) satisfying the conditions of the Lemmas 5.4 and 5.5 is solution of the 
system [(a) — (S)]. In fact, for the properties of h in Lemma 5.5, the properties (a) 
and (/?) are verified. The (S) becomes g(x V z, y, g(x, z, u) = g(x, yVz,u) and then 

h ixV z\/ y,h~l(xV z,h(x\/ z,h~l(x,u)))\ =h (x V z V y,h~l(x,u)\ . (17) 

Putting h~l(x,u) = v, the (17) becomes h(x V z V y,h~l(x V z,h(x V z,v))) = 
h(x \J z \J y,v). Moreover h~l(x \J z,h(x V z,v)) = Inf{£/ h(x Vz,f) = h(x\/ z,v)} = 
v' < v, with h(x V z,v') = h(x V z,v). For the (16), a s x V z V y > x\f z and 
h(x V y\l z,v') = h(x V y\l z,v), we have the (S). • 

Summarizing the previous Lemmas, we obtain the following main result: 

Theorem 5.7. The general solution of the system [(i') — (v')] is the function 

<S*(x,y,u,v) = h yx \/y,h~l(x,u) Ah~\y,v)j 

where h : [0,1] x R —> R satisfies the following conditions: 

— h(x,-) is non-decreasing, continuous, h(x,0) = 0, h(x, +oo) = +oo, Vx G 

(0,AT], 
— h(x, u) = h(x, v) => h(y, u) = h(y, v) for every y > x. 

Example: Let h(x, u) = ex u, this function satisfies the hypotheses of the Theorem 
v 

above; its pseudo-inverse is h~l(x,v) = —. Then the function g is 

g(x,y,u) = h(x Vy,h~l(x,u)) = exS/y h~l(x,u) = exyy ue~x = ue{xVy)~x. 

Then the collector \I> has the following expression: 

^\x,y,u,v} = g(x,y,u)Ag(y,x,v) (18) 

= ue^y)~xAve^x)~y = exVy (- A-) . 
\ex eyJ 

Let J be an information measure on crisp sets such that J(E) = e~x^E) with A 
a fuzzy measure V-additive and J(A,E) an information depending on the set of 
observers. 

Prom (3) and (18), we get 

J(A,E1)J(El)AJ(A,E2)J(E2) 
J(A, Ei U E2) J(Ei U E2) 
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