DOMINATION IN THE FAMILIES OF FRANK AND HAMACHER t-NORMS

Peter Sarkoci

Domination is a relation between general operations defined on a poset. The old open problem is whether domination is transitive on the set of all t-norms. In this paper we contribute partially by inspection of domination in the family of Frank and Hamacher tnorms. We show that between two different t-norms from the same family, the domination occurs iff at least one of the t-norms involved is a maximal or minimal member of the family. The immediate consequence of this observation is the transitivity of domination on both inspected families of t-norms.

Keywords: domination, Frank t-norm, Hamacher t-norm AMS Subject Classification: 26D15

1. INTRODUCTION

The concept of domination has been introduced within the framework of probabilistic metric spaces for triangle functions and for building cartesian products of probabilistic metric spaces [12]. Afterwards the domination of t-norms was studied in connection with construction of fuzzy equivalence relations [2, 3, 13] and construction of fuzzy orderings [1]. Recently, the concept of domination was extended to the much general class of aggregation operators [9]. The domination of aggregation operators emerges when investigating which aggregation procedures applied to the system of T-transitive fuzzy relations yield a T-transitive fuzzy relation again [9] or when seeking aggregation operators which preserves the extensionality of fuzzy sets with respect to given T-equivalence relations [10]. The most general definition of domination considered so far demands the operations to be defined on arbitrary poset [4].

Definition 1. Let (P, \geq) be a poset and let $A: P^m \to P$, $B: P^n \to P$ be two operations defined on P with arity m and n, respectively. Then we say that A dominates B $(A \gg B$ in symbols) if each matrix $(x_{i,j})$ of type $m \times n$ over P satisfies

$$A(B(x_{1,1}, x_{1,2}, \dots, x_{1,n}), \dots, B(x_{m,1}, x_{m,2}, \dots, x_{m,n})) \\ \geq B(A(x_{1,1}, x_{2,1}, \dots, x_{m,1}), \dots, A(x_{1,n}, x_{2,n}, \dots, x_{m,n})).$$

Let us recall that a t-norm [12, 8] is a monotone, associative and commutative binary operation $T: [0,1]^2 \rightarrow [0,1]$ with neutral element 1. Important examples of t-norms are: the minimum $T_{\mathbf{M}}$, the product $T_{\mathbf{P}}$, the Lukasiewicz t-norm $T_{\mathbf{L}}$ and the drastic t-norm $T_{\mathbf{D}}$ given by

$$T_{\mathbf{M}}(x, y) = \min(x, y),$$

$$T_{\mathbf{P}}(x, y) = xy,$$

$$T_{\mathbf{L}}(x, y) = \max(0, x + y - 1),$$

$$T_{\mathbf{D}}(x, y) = \begin{cases} xy & \max(x, y) = 1\\ 0 & \text{otherwise.} \end{cases}$$

We say that a t-norm T_1 is stronger than a t-norm $T_2(T_1 \ge T_2 \text{ in symbols})$ if any $x, y \in [0, 1]$ satisfy $T_1(x, y) \ge T_2(x, y)$. We use the notation $T_1 > T_2$ whenever simultaneously $T_1 \ge T_2$ and $T_1 \ne T_2$ hold. One can easily show that each t-norm is weaker than T_M and stronger than T_D . Particularly, T_P and T_L satisfy $T_M > T_P >$ $T_L > T_D$. It is obvious that \ge is a partial order on the set of all t-norms, i.e., the reflexive, antisymmetric and transitive relation.

By Definition 1 we have that two t-norms T_1 and T_2 satisfy $T_1 \gg T_2$ iff for each $x, y, u, v \in [0, 1]$

$$T_1(T_2(x,y), T_2(u,v)) \ge T_2(T_1(x,u), T_1(y,v)).$$
(1)

It is easy to show that each t-norm T satisfies $T_{\mathbf{M}} \gg T$, $T \gg T_{\mathbf{D}}$ and $T \gg T$. Moreover, by [8, 11], the representative t-norms $T_{\mathbf{P}}$ and $T_{\mathbf{L}}$ satisfy $T_{\mathbf{P}} \gg T_{\mathbf{L}}$. If $T_1 \gg T_2$ then by inequality (1), the neutrality of 1 and the commutativity of t-norms we have that any $y, u \in [0, 1]$ satisfy

$$T_1(y,u) = T_1(T_2(1,y), T_2(u,1))$$

$$\geq T_2(T_1(1,u), T_1(y,1)) = T_2(u,y) = T_2(y,u)$$

so that $T_1 \ge T_2$, see [8]. This means that satisfaction of $T_1 \ge T_2$ is a necessary condition for $T_1 \gg T_2$ or, in other words, that domination is a subrelation of \ge . The converse implication does not hold as it is demonstrated by results of this paper. Domination of t-norms is moreover an antisymmetric relation which is a consequence of the fact that it is a subrelation of the antisymmetric relation \ge . The old open problem [12, Problem 12.11.3] is whether domination is transitive on the set of all t-norms. If it were true domination would be a partial order.

When inspecting domination, the tool of φ -transform can be helpful. Let φ be an order isomorphism of the interval [0, 1] and let T be an arbitrary t-norm. Define $T_{\varphi}: [0, 1]^2 \to [0, 1]$ by

$$T_{\varphi}(x,y) = \varphi^{-1} \left(T(\varphi(x),\varphi(y)) \right)$$

to be the φ -transform of T. It is easy to show that T_{φ} is again a t-norm [8]. Moreover, for arbitrary t-norms T_1 and T_2 and for arbitrary order isomorphism φ the satisfaction of $T_1 \gg T_2$ is equivalent to $(T_1)_{\varphi} \gg (T_2)_{\varphi}$ so that φ -transforms preserve domination [9]. Let us recall that a t-norm is strict (nilpotent) iff there

exists φ such that $T = (T_{\mathbf{P}})_{\varphi}$ $(T = (T_{\mathbf{L}})_{\varphi})$ [8]. Moreover, it is clear that each φ transform of a strict (nilpotent) t-norm is again strict (nilpotent). Thus in order to characterize pairs of dominating strict (nilpotent) t-norms it suffices to characterize strict (nilpotent) t-norms dominating $T_{\mathbf{P}}$ ($T_{\mathbf{L}}$).

The following result relates domination and powers of additive generators [8]. Let T be a continuous Archimedean t-norm with additive generator f and let $\lambda \in [0,\infty[$ be a positive number. Define $T^{(\lambda)}$ to be a t-norm with additive generator $f^{\lambda}(x)$, i.e., the λ -power of f. It is known that for each $\lambda > \mu$ is $T^{(\lambda)} \gg T^{(\mu)}$. This construction of dominating t-norms gives rise to many parametrical families of t-norms such as the Aczél-Alsina or the Dombi family.

Although the structure of domination on the set of all t-norms is still unknown, it is possible to inspect it on particular families of t-norms. One of the oldest results of this type is due to Sherwood [11] who solved the structure of domination on the family of Schweizer–Sklar t-norms. Another result of this type is the above mentioned solution of domination in the Aczél-Alsina or the Dombi family. In the next two sections we inspect another two important families – the Frank and Hamacher t-norms.

2. FRANK t-NORMS

Frank t-norms $T_{\lambda}^{\mathbf{F}}$ are given as

$$T_{\lambda}^{\mathbf{F}}(x,y) = \begin{cases} T_{\mathbf{M}}(x,y) & \lambda = 0\\ T_{\mathbf{P}}(x,y) & \lambda = 1\\ T_{\mathbf{L}}(x,y) & \lambda = \infty\\ \log_{\lambda} \left(\frac{(\lambda^{x}-1)(\lambda^{y}-1)}{\lambda-1} + 1\right) & \text{otherwise} \end{cases}$$
(2)

where $\lambda \in [0, \infty]$ is the characterizing parameter of the Frank t-norm. Note that the family of Frank t-norms is strictly decreasing in λ which means that $T_{\lambda_1}^{\mathbf{F}} > T_{\lambda_2}^{\mathbf{F}}$ iff $\lambda_1 < \lambda_2$. In [5] M. J. Frank solved the problem of characterization of all continuous t-norms T such that the function $F: [0,1]^2 \to [0,1]$ given by

$$F(x,y) = x + y - T(x,y)$$

is associative. Each $T_{\lambda}^{\mathbf{F}}$ solves this problem. In what follows we find out which $\lambda_1, \lambda_2 \in [0, \infty]$ satisfy $T_{\lambda_1}^{\mathbf{F}} \gg T_{\lambda_2}^{\mathbf{F}}$. Recall that for $\lambda_1 = 0$ the question is trivial as $T_0^{\mathbf{F}} = T_{\mathbf{M}}$ dominates any t-norm. Particulary, for $\lambda_1 = 1$ and $\lambda_2 = \infty$ the question is solved as well since $T_1^{\mathbf{F}} = T_{\mathbf{P}} \gg T_{\mathbf{L}} = T_{\infty}^{\mathbf{F}}$, see, for example, the already mentioned work of Sherwood [11]. Finally $T_{\lambda_1}^{\mathbf{F}} \gg T_{\lambda_2}^{\mathbf{F}}$ cannot be satisfied for $\lambda_1 > \lambda_2$ due to the decreasingness of the Frank family. That's why we consider $\lambda_1 < \lambda_2$ in the following.

Lemma 2. Let $A_n = [a_1^l, a_1^r] \times [a_2^l, a_2^r] \times \cdots \times [a_n^l, a_n^r]$, $a_i^l < a_i^r$, i = 1, 2, ..., n, be an *n*-dimensional interval. Let $f: A_n \to \mathbb{R}$ be a real function, linear in each argument.

Moreover, let the value of f be nonnegative in each vertex of A_n , i.e., at each point with coordinates (b_1, b_2, \ldots, b_n) , $b_i \in \{a_i^l, a_i^r\}$. Then f is nonnegative on whole A_n .

Proof. By induction with respect to the dimension n. The statement is obvious for n = 1.

Let us assume that the claim of the lemma is true for all intervals of dimension n-1 and that A_n and f fulfill all assumptions of the lemma. Consider arbitrary $x = (x_1, x_2, \ldots, x_n) \in A_n$. Define points

$$x_{\star} = (x_1, x_2, \dots, x_{n-1}, a_n^l), x^{\star} = (x_1, x_2, \dots, x_{n-1}, a_n^r)$$

to be the left and right projections of the point x along the last coordinate. Further define functions f_{\star} and f^{\star} by expressions

$$f_{\star}(x_1, x_2, \dots, x_{n-1}) = f(\dot{x}_1, x_2, \dots, x_{n-1}, a_n^l),$$

$$f^{\star}(x_1, x_2, \dots, x_{n-1}) = f(x_1, x_2, \dots, x_{n-1}, a_n^r).$$

Both functions f_* and f^* are defined on (n-1)-dimensional interval

$$A_{n-1} = [a_1^l, a_1^r] \times [a_2^l, a_2^r] \times \dots \times [a_{n-1}^l, a_{n-1}^r]$$

and both functions are linear in each argument. On vertices of A_{n-1} both functions attain nonnegative values. Indeed, let $v = (v_1, v_2, \ldots, v_{n-1})$ be any vertex of A_{n-1} . Then $f_{\star}(v) = f(v_1, v_2, \ldots, v_{n-1}, a_n^l)$ is a value of f at one vertex of A_n which is by assumption nonnegative. Analogically for f^{\star} .

Thus f_{\star} and f^{\star} are nonnegative on A_{n-1} by assumption. Particularly,

$$f_{\star}(x_1, x_2, \dots, x_{n-1}) = f(x_{\star}) \geq 0,$$

$$f^{\star}(x_1, x_2, \dots, x_{n-1}) = f(x^{\star}) \geq 0.$$

By assumptions, the function $g(y) = f(x_1, \ldots, x_{n-1}, y)$ is linear on $[a_n^l, a_n^r]$ and

$$egin{aligned} g(a_n^l) &=& f(x_\star) \geq 0, \ g(x_n) &=& f(x), \ g(a_n^r) &=& f(x^\star) \geq 0. \end{aligned}$$

Thus $f(x) = g(x_n) \ge 0$.

Proposition 3. $T_{\lambda}^{\mathbf{F}} \gg T_{\mathbf{L}}$ for each $\lambda \in [0, 1[\cup]1, \infty[$.

Proof. We have to show that any $x, y, u, v \in [0, 1]$ satisfy the inequality

$$T_{\lambda}^{\mathbf{F}}(T_{\mathbf{L}}(x,y),T_{\mathbf{L}}(u,v)) \ge T_{\mathbf{L}}(T_{\lambda}^{\mathbf{F}}(x,u),T_{\lambda}^{\mathbf{F}}(y,v)).$$
(3)

Let us consider two mutually exclusive cases. First that the left-hand side of (3) equals zero and the second that it is positive:

Domination in the Families of Frank and Hamacher t-norms

(i) Since for $\lambda \in]0, 1[\cup]1, \infty[T_{\lambda}^{\mathbf{F}}$ is strict, the left-hand side of (3) can be zero iff at least one of the Lukasiewitz t-norms involved attains the value 0. Without loss of generality assume $T_{\mathbf{L}}(x, y) = 0$ which is equivalent to $x + y - 1 \leq 0$. It suffices to show that

$$T_{\mathbf{L}}(T^{\mathbf{F}}_{\lambda}(x,u),T^{\mathbf{F}}_{\lambda}(y,v)) = \max(0,T^{\mathbf{F}}_{\lambda}(x,u)+T^{\mathbf{F}}_{\lambda}(y,v)-1) = 0$$

or simply $T_{\lambda}^{\mathbf{F}}(x, u) + T_{\lambda}^{\mathbf{F}}(y, v) - 1 \leq 0$. But from the nondecreasingness of $T_{\lambda}^{\mathbf{F}}$ and from the neutrality of 1 it follows

$$T_{\lambda}^{\mathbf{F}}(x,u) + T_{\lambda}^{\mathbf{F}}(y,v) - 1 \le T_{\lambda}^{\mathbf{F}}(x,1) + T_{\lambda}^{\mathbf{F}}(y,1) - 1 = x + y - 1 \le 0.$$

(*ii*) Assume that the left-hand side of (3) is positive, so that x + y - 1 > 0 as well as u + v - 1 > 0 holds. Inequality (3) can be rewritten in the form

$$T_{\lambda}^{\mathbf{F}}(x+y-1,u+v-1) \ge \max(0,T_{\lambda}^{\mathbf{F}}(x,u)+T_{\lambda}^{\mathbf{F}}(y,v)-1)$$

which is further equivalent to

$$T^{\mathbf{F}}_{\lambda}(x+y-1,u+v-1) \geq T^{\mathbf{F}}_{\lambda}(x,u) + T^{\mathbf{F}}_{\lambda}(y,v) - 1$$

since the left-hand side is positive. After expansion of the definitions of $T_{\lambda}^{\mathbf{F}}$ the inequality can be rewritten as

$$\log_{\lambda}\left[\frac{(\frac{\lambda^{*}\lambda^{\flat}}{\lambda}-1)(\frac{\lambda^{u}\lambda^{\nu}}{\lambda}-1)}{\lambda-1}+1\right] \geq \log_{\lambda}\frac{\left[\frac{(\lambda^{*}-1)(\lambda^{u}-1)}{\lambda-1}+1\right]\left[\frac{(\lambda^{u}-1)(\lambda^{u}-1)}{\lambda-1}+1\right]}{\lambda}$$

and by further de-logarithmation we end up with

$$\operatorname{sgn}(\lambda-1)\left[\frac{(\frac{\lambda^{*}\lambda^{y}}{\lambda}-1)(\frac{\lambda^{u}\lambda^{v}}{\lambda}-1)}{\lambda-1}+1-\frac{\left[\frac{(\lambda^{*}-1)(\lambda^{u}-1)}{\lambda-1}+1\right]\left[\frac{(\lambda^{*}-1)(\lambda^{v}-1)}{\lambda-1}+1\right]}{\lambda}\right] \geq 0.$$

Note that the multiplicative constant $sgn(\lambda - 1)$ prevents the reversion of the order after de-logarithmation whenever $\lambda \in [0, 1]$.

The expression on the left-hand side is nonnegative for any $x, y, u, v \in [0, 1]$. Indeed, by substitution $\lambda^x = X$, $\lambda^y = Y$, $\lambda^u = U$ and $\lambda^v = V$ where $X, Y, U, V \in [\min(1, \lambda), \max(1, \lambda)]$ we obtain

$$\operatorname{sgn}(\lambda-1)\left[\frac{(\frac{XY}{\lambda}-1)(\frac{UV}{\lambda}-1)}{\lambda-1}+1-\frac{\left[\frac{(X-1)(U-1)}{\lambda-1}+1\right]\left[\frac{(Y-1)(V-1)}{\lambda-1}+1\right]}{\lambda}\right] \ge 0.$$
(4)

Let us define the function $G: [\min(1, \lambda), \max(1, \lambda)]^4 \to \mathbb{R}$ in variables X, Y, U, V to be the value of the expression on the left-hand side of (4). One can easily see that G

is linear in each argument. A very simple computation reveals that G attains zero value at all vertices of $[\min(1, \lambda), \max(1, \lambda)]^4$ up to the following seven exceptions

$$G(1,1,1,1) = \frac{\operatorname{sgn}(\lambda-1)(\lambda^2-1)}{\lambda^2} \ge 0,$$

$$G(\lambda,1,1,1) = G(1,\lambda,1,1) = \frac{\operatorname{sgn}(\lambda-1)(\lambda-1)}{\lambda} \ge 0,$$

$$G(1,1,\lambda,1) = G(1,1,1,\lambda) = \frac{\operatorname{sgn}(\lambda-1)(\lambda-1)}{\lambda} \ge 0,$$

$$G(1,\lambda,\lambda,1) = G(\lambda,1,1,\lambda) = \frac{\operatorname{sgn}(\lambda-1)(\lambda-1)}{\lambda} \ge 0.$$

which all are nonnegative values. Thus the function G satisfies all assumptions of Lemma 2 by which G is nonnegative which proves inequality (4).

Proposition 3 together with $T_{\mathbf{M}} \gg T_{\mathbf{L}}$ and $T_{\mathbf{P}} \gg T_{\mathbf{L}}$ show that any Frank t-norm dominates $T_{\mathbf{L}}$. Further we discuss the mutual domination of nonextremal Frank t-norms.

Lemma 4. Let $f: \mathbb{R} \to \mathbb{R}$ be *n*-times differentiable in 0, $f^{(i)}(0) = 0$ for all $i = 0, 1, \ldots, n-1$ and $f^{(n)}(0) < 0$. There exists $\delta > 0$ such that f(x) < 0 for each $x \in]0, \delta[$.

Proof. The claim of the lemma is a well-known result of real analysis. \Box

Proposition 5. There does not exist $\lambda_1, \lambda_2 \in]0, \infty[$ such that $\lambda_1 < \lambda_2$ and $T_{\lambda_1}^{\mathbf{F}} \gg T_{\lambda_2}^{\mathbf{F}}$.

Proof. Suppose arbitrary $\lambda_1, \lambda_2 \in [0, \infty)$ with $\lambda_1 < \lambda_2$. We shall show that there exists some $x \in [0, 1]$ such that

$$T_{\lambda_1}^{\mathbf{F}}(T_{\lambda_2}^{\mathbf{F}}(x,x), T_{\lambda_2}^{\mathbf{F}}(x,x)) < T_{\lambda_2}^{\mathbf{F}}(T_{\lambda_1}^{\mathbf{F}}(x,x), T_{\lambda_1}^{\mathbf{F}}(x,x))$$
(5)

so that the defining inequality for domination (1) is violated. Let us define the function $\delta_{\lambda}^{\mathbf{F}}: [0,1] \to [0,1]$ to be the diagonal of a Frank t-norm so that $\delta_{\lambda}^{\mathbf{F}}(x) = T_{\lambda}^{\mathbf{F}}(x,x)$ for any $x \in [0,1]$. Due to the strictness of $T_{\lambda}^{\mathbf{F}}$ we know that $\delta_{\lambda}^{\mathbf{F}}$ is an order isomorphism of the interval [0,1]. Inequality (5) can be rewritten into the form

$$\delta_{\lambda_1}^{\mathbf{F}}(\delta_{\lambda_2}^{\mathbf{F}}(x)) < \delta_{\lambda_2}^{\mathbf{F}}(\delta_{\lambda_1}^{\mathbf{F}}(x)).$$
(6)

Further define the function $f_{(\lambda_1,\lambda_2)}: [0,1] \to \mathbb{R}$ by expression

$$f_{(\lambda_1,\lambda_2)}(x) = \delta_{\lambda_1}^{\mathbf{F}}(\delta_{\lambda_2}^{\mathbf{F}}(x)) - \delta_{\lambda_2}^{\mathbf{F}}(\delta_{\lambda_1}^{\mathbf{F}}(x)),$$

Now another alternative reformulation of (5) is that there exists some x > 0 such that $f_{\lambda_1,\lambda_2}(x) < 0$. We prove this claim by means of Lemma 4.

Let us compute $\delta_{\lambda}^{\mathbf{F}}$ as well as its first and second derivatives which we will use later:

$$\delta_{\lambda}^{\mathbf{F}}(x) = \begin{cases} \log_{\lambda} \left(\frac{(\lambda^{x}-1)^{2}}{\lambda-1} + 1 \right) & \lambda \neq 1 \\ x^{2} & \lambda = 1, \end{cases}$$
$$\delta_{\lambda}^{\mathbf{F}^{(1)}}(x) = \begin{cases} \frac{2(\lambda^{x}-1)\lambda^{x}}{(\lambda^{x}-1)^{2}+\lambda-1} & \lambda \neq 1 \\ 2x & \lambda = 1, \end{cases}$$
$$\delta_{\lambda}^{\mathbf{F}^{(2)}}(x) = \begin{cases} \frac{2\lambda^{x}\ln(\lambda)\left((2\lambda^{x}-1)(\lambda-1)-(\lambda^{x}-1)^{2}\right)}{((\lambda^{x}-1)^{2}+\lambda-1)^{2}} & \lambda \neq 1 \\ 2 & \lambda = 1 \end{cases}$$

Their values at point 0 are

$$\delta_{\lambda}^{\mathbf{F}}(0) = 0 \qquad \delta_{\lambda}^{\mathbf{F}^{(1)}}(0) = 0 \qquad \delta_{\lambda}^{\mathbf{F}^{(2)}}(0) = \begin{cases} \frac{2\ln(\lambda)}{\lambda - 1} & \lambda \neq 1\\ 2 & \lambda = 1 \end{cases}$$
(7)

so that the first nonzero derivative of $\delta_{\lambda}^{\mathbf{F}^{(2)}}$ at point 0 is the second derivative. Thereout the first nonzero derivative of $f_{(\lambda_1,\lambda_2)}$, according to its definition, is the fourth derivative for which we have

$$f_{(\lambda_1,\lambda_2)}^{(4)}(0) = 3\delta_{\lambda_1}^{\mathbf{F}}(2)(0) \left(\delta_{\lambda_2}^{\mathbf{F}}(2)(0)\right)^2 - 3\delta_{\lambda_2}^{\mathbf{F}}(2)(0) \left(\delta_{\lambda_1}^{\mathbf{F}}(2)(0)\right)^2.$$
(8)

Now we can compute the value of this derivative for all feasible combinations of λ_1 and λ_2 . Let us distinguish three mutually exclusive cases – the first that $\lambda_2 = 1$, then $\lambda_1 = 1$ and finally, $\lambda_1 \neq 1 \neq \lambda_2$.

(i) Let us consider $\lambda_1 < \lambda_2 = 1$. Combining (7) and (8) we obtain the expression

$$f_{(\lambda_1,1)}^{(4)}(0) = -24 \frac{\ln(\lambda_1)}{\lambda_1 - 1} \left(\frac{\ln(\lambda_1)}{\lambda_1 - 1} - 1 \right)$$

The sign of this derivative is determined by the sign of the expression in parenthesis. Under the assumption $\lambda_1 < 1$, the expression in parenthesis is positive because the expression $\ln(\lambda)/(\lambda - 1)$ is decreasing, continuous on $]0, 1[\cup]1, \infty[$ and

$$\lim_{\lambda \to 1} \frac{\ln(\lambda)}{\lambda - 1} = 1.$$

Thus the first nonzero derivative of $f_{(\lambda_1,1)}$ is negative at point 0.

(ii) Let us consider $1 = \lambda_1 < \lambda_2$. Combining (7) and (8) we obtain the expression

$$f_{(1,\lambda_2)}^{(4)}(0) = 24 \frac{\ln(\lambda_2)}{\lambda_2 - 1} \left(\frac{\ln(\lambda_2)}{\lambda_2 - 1} - 1 \right).$$

Following the considerations from (i) we find out that $f_{(1,\lambda_2)}^{(4)}(0)$ is negative.

(iii) Let us consider $\lambda_1 \neq 1 \neq \lambda_2$. Combining (7) and (8) gives us the expression

$$f_{(\lambda_1,\lambda_2)}^{(4)}(0) = -24 \frac{\ln(\lambda_1)\ln(\lambda_2)}{(\lambda_1 - 1)(\lambda_2 - 1)} \left(\frac{\ln(\lambda_1)}{\lambda_1 - 1} - \frac{\ln(\lambda_2)}{\lambda_2 - 1}\right)$$

The sign of the derivative is determined by the sign of expression in ellipses. From the decreasingness of this expression and from $\lambda_1 < \lambda_2$ it follows that $f^{(4)}_{(\lambda_1,\lambda_2)}(0) < 0$.

We distinguished all possible cases and regardless of the values of λ_1 and λ_2 the value of $f_{(\lambda_1,\lambda_2)}^{(4)}(0)$ is negative. In addition, all lower-order derivatives of $f_{(\lambda_1,\lambda_2)}$ vanish at point 0. By Lemma 4 there exists some $x \in [0, 1]$ such that f(x) < 0. \Box

Corollary 6. Any case of domination within the family of Frank t-norms is one of these

$$\begin{array}{rcl} T_{\lambda}^{\mathbf{F}} & \gg & T_{\lambda}^{\mathbf{F}} \\ T_{\mathbf{M}} & \gg & T_{\lambda}^{\mathbf{F}} \\ T_{\lambda}^{\mathbf{F}} & \gg & T_{\mathbf{L}} \end{array}$$

for arbitrary $\lambda \in [0, \infty]$. Moreover, domination is transitive within this family so that it is partially ordered by \gg .

3. HAMACHER t-NORMS

Hamacher t-norms form another one-parametric family of t-norms. It has been proved in [6, 7] that members of this family are the only ones to be expressed as quotient of two polynomials in two variables. The family of Hamacher t-norms is parameterized by $\lambda \in [0, \infty]$

$$T_{\lambda}^{\mathbf{H}}(x,y) = \begin{cases} T_{\mathbf{D}}(x,y) & \lambda = \infty \\ 0 & \lambda = x = y = 0 \\ \frac{xy}{\lambda + (1-\lambda)(x+y-xy)} & \text{otherwise.} \end{cases}$$
(9)

The Hamacher family is strictly decreasing in λ which means that $T_{\lambda_1}^{\mathbf{H}} > T_{\lambda_2}^{\mathbf{H}}$ iff $\lambda_1 < \lambda_2$. The drastic t-norm $T_{\mathbf{D}} = T_{\infty}^{\mathbf{H}}$ is the minimal element and the t-norm $T_0^{\mathbf{H}}$ is the maximal element of the family.

In this section we answer the question for which $\lambda_1, \lambda_2 \in [0, \infty]$ the relation $T_{\lambda_1}^{\mathbf{H}} \gg T_{\lambda_2}^{\mathbf{H}}$ is satisfied. Recall that for $\lambda_2 = \infty$ the question is trivial as $T_{\infty}^{\mathbf{H}} = T_{\mathbf{D}}$ is dominated by any t-norm. Moreover, $T_{\lambda_1}^{\mathbf{H}} \gg T_{\lambda_2}^{\mathbf{H}}$ cannot be satisfied for $\lambda_1 > \lambda_2$ due to decreasingness within the family of Hamacher t-norms. That is why we will only deal with $\lambda_1 < \lambda_2$ in the sequel.

Proposition 7. For each $\lambda \in [0, \infty]$ it holds that $T_0^{\mathbf{H}} \gg T_{\lambda}^{\mathbf{H}}$.

Proof. We divide the proof into two parts. We first show that $T_0^{\rm H} \gg T_{\rm P}$ and then we prove the claim of proposition by virtue of φ -transform.

(i) We show that $T_0^{\mathbf{H}}(xy, uv) \geq T_0^{\mathbf{H}}(x, u)T_0^{\mathbf{H}}(y, v)$ holds for any $x, y, u, v \in [0, 1]$. This inequality is trivially fulfilled whenever at least one variable equals 0. Therefore assume xyuv > 0. After expansion of the definitions we have

$$\frac{xyuv}{xy+uv-xyuv} \ge \frac{xu}{x+u-xu} \frac{yv}{y+v-yv}$$

or equivalently, by inversion

$$\frac{xy+uv-xyuv}{xyuv} \leq \frac{(x+u-xu)(y+v-yv)}{xyuv}.$$

As the denominators of both fractions are equal and positive, we can drop them, and by further manipulation we obtain the third equivalent inequality

$$0 \le (x+u-xu)(y+v-yv) - xy - uv + xyuv$$

or

$$0 \le xv(1-u)(1-y) + uy(1-v)(1-x)$$

where the expression on the right-hand side is evidently nonnegative.

(*ii*) Now, let φ_{λ} be the multiplicative generator of the nonextremal Hamacher t-norm $T_{\lambda}^{\mathbf{H}}$. So that for $\lambda \in [0, \infty[, \varphi_{\lambda}]$ and its inverse are given by

$$arphi_\lambda(x)=rac{x}{\lambda+(1-\lambda)x},\qquad arphi_\lambda^{-1}(x)=rac{\lambda x}{1+(1-\lambda)x}.$$

Let us apply the φ -transform to both $T_0^{\mathbf{H}}$ and $T_{\mathbf{P}}$. Since $T_0^{\mathbf{H}}$ dominates $T_{\mathbf{P}}$, the corresponding φ -transforms do as well.

The φ_{λ} -transform of $T_{\mathbf{P}}$ is $T_{\lambda}^{\mathbf{H}}$ by the definition of multiplicative generator. Now we shall show that φ_{λ} -transform of $T_{0}^{\mathbf{H}}$ is again $T_{0}^{\mathbf{H}}$, i.e., the strongest Hamacher t-norm is stable under the φ_{λ} -transform whenever φ_{λ} is a multiplicative generator of a nonextremal Hamacher t-norm. The equality

$$\varphi_{\lambda}^{-1}(T_0^{\mathbf{H}}(\varphi_{\lambda}(x),\varphi_{\lambda}(y))) = T_0^{\mathbf{H}}(x,y)$$

is trivially fulfilled whenever xy = 0. Now assume xy > 0. Then we have

$$\begin{split} \varphi_{\lambda}^{-1}(T_{0}^{\mathbf{H}}(\varphi_{\lambda}(x),\varphi_{\lambda}(y))) &= \varphi_{\lambda}^{-1}\left(\frac{\varphi_{\lambda}(x)\varphi_{\lambda}(y)}{\varphi_{\lambda}(x)+\varphi_{\lambda}(y)-\varphi_{\lambda}(x)\varphi_{\lambda}(y)}\right) \\ &= \varphi_{\lambda}^{-1}\left(\frac{xy}{\lambda(x+y)+(1-2\lambda)xy}\right) \\ &= \frac{xy}{x+y-xy} \\ &= T_{0}^{\mathbf{H}}(x,y). \end{split}$$

Since $T_0^{\mathbf{H}} \gg T_{\mathbf{P}}$, by virtue of φ_{λ} -transform we have that $T_0^{\mathbf{H}} \gg T_{\lambda}^{\mathbf{H}}$ which is our claim.

Proposition 8. There does not exist $\lambda_1, \lambda_2 \in [0, \infty)$ such that $\lambda_1 < \lambda_2$ and $T_{\lambda_1}^{\mathbf{H}} \gg T_{\lambda_2}^{\mathbf{H}}$.

Proof. Let λ_1 and λ_2 satisfy assumptions of the proposition. We shall show that there exists $x \in [0, 1]$ such that

$$T^{\mathbf{H}}_{\lambda_1}(T^{\mathbf{H}}_{\lambda_2}(x,x), T^{\mathbf{H}}_{\lambda_2}(x,x)) < T^{\mathbf{H}}_{\lambda_2}(T^{\mathbf{H}}_{\lambda_1}(x,x), T^{\mathbf{H}}_{\lambda_1}(x,x))$$
(10)

so that the defining inequality for domination (1) is violated. Let us define the function $\delta_{\lambda}^{\mathbf{H}}: [0,1] \to [0,1]$ to be the diagonal of a Hamacher t-norm so that $\delta_{\lambda}^{\mathbf{H}}(x) = T_{\lambda}^{\mathbf{H}}(x,x)$ for any $x \in [0,1]$. The inequality (10) can be rewritten as

$$\delta_{\lambda_1}^{\mathbf{H}}(\delta_{\lambda_2}^{\mathbf{H}}(x)) < \delta_{\lambda_2}^{\mathbf{H}}(\delta_{\lambda_1}^{\mathbf{H}}(x)).$$
(11)

In order to show that (11) is satisfied for some $x \in [0, 1]$ it suffices to show that this x satisfies

$$\frac{x^4}{\delta_{\lambda_1}^{\mathbf{H}}(\delta_{\lambda_2}^{\mathbf{H}}(x))} > \frac{x^4}{\delta_{\lambda_2}^{\mathbf{H}}(\delta_{\lambda_1}^{\mathbf{H}}(x))}$$
(12)

since we consider $x \neq 0$ and both compositions of the diagonals are positive whenever $x \in [0, 1[$. The diagonal of a Hamacher t-norm $T_{\lambda}^{\mathbf{H}}$ is given by the expression

$$T^{\mathbf{H}}_{\lambda}(x,x) = rac{x^2}{\lambda + (1-\lambda)(2-x)x}$$

by which

$$\delta_{\lambda_{1}}^{\mathbf{H}}(\delta_{\lambda_{2}}^{\mathbf{H}}(x)) = \frac{\frac{x^{4}}{(\lambda_{2}+(1-\lambda_{2})(2-x)x)^{2}}}{\lambda_{1}+(1-\lambda_{1})\left[2-\frac{x^{2}}{\lambda_{2}+(1-\lambda_{2})(2-x)x}\right]\frac{x^{2}}{\lambda_{2}+(1-\lambda_{2})(2-x)x}}$$
$$= \frac{x^{4}}{\lambda_{1}(\lambda_{2}(x-1)-2x)^{2}(x-1)^{2}+x^{2}(2\lambda_{2}(x-1)^{2}+(4-3x)x)}$$

 and

$$\begin{split} \delta_{\lambda_2}^{\mathbf{H}}(\delta_{\lambda_1}^{\mathbf{H}}(x)) \ &= \ \frac{\frac{x^2}{(\lambda_1 + (1 - \lambda_1)(2 - x)x)^2}}{\lambda_2 + (1 - \lambda_2) \left[2 - \frac{x^2}{\lambda_1 + (1 - \lambda_1)(2 - x)x}\right] \frac{x^2}{\lambda_1 + (1 - \lambda_1)(2 - x)x}} \\ &= \ \frac{x^4}{\lambda_2(\lambda_1(x - 1) - 2x)^2(x - 1)^2 + x^2(2\lambda_1(x - 1)^2 + (4 - 3x)x)}. \end{split}$$

According to these expressions, (12) can be rewritten in the form

$$\lambda_1(\lambda_2(x-1)-2x)^2(x-1)^2+x^2(2\lambda_2(x-1)^2+(4-3x)x)$$

> $\lambda_2(\lambda_1(x-1)-2x)^2(x-1)^2+x^2(2\lambda_1(x-1)^2+(4-3x)x)$

which is further equivalent to

$$(\lambda_2 - \lambda_1)(x - 1)^2 \left(\lambda_1 \lambda_2 (x - 1)^2 - 2x^2\right) > 0.$$
(13)

The expression on the left-hand side of (13) is polynomial in x which is a continuous function. Moreover, the value of this expression at 0 is $(\lambda_2 - \lambda_1)\lambda_1\lambda_2$ which is strictly positive under assumption $\lambda_2 > \lambda_1 > 0$. From continuity and strict positivity at 0, it follows that there exists $x \in [0, 1[$ which satisfies (13).

Corollary 9. Any case of domination within the family of Hamacher t-norms is one of these

$$\begin{array}{lll} T_{\lambda}^{\mathbf{H}} & \gg & T_{\lambda}^{\mathbf{H}} \\ T_{0}^{\mathbf{H}} & \gg & T_{\lambda}^{\mathbf{H}} \\ T_{\lambda}^{\mathbf{H}} & \gg & T_{\mathbf{D}} \end{array}$$

for arbitrary $\lambda \in [0, \infty]$. Moreover, domination is transitive within this family so that it is partially ordered by \gg .

4. CONCLUDING REMARKS

Posets $({T_{\lambda}^{\mathbf{F}} \mid \lambda \in [0, \infty]}, \gg)$ and $({T_{\lambda}^{\mathbf{H}} \mid \lambda \in [0, \infty]}, \gg)$ are order isomorphical since $T_{\lambda_1}^{\mathbf{F}} \gg T_{\lambda_2}^{\mathbf{F}}$ holds iff $T_{\lambda_1}^{\mathbf{H}} \gg T_{\lambda_2}^{\mathbf{H}}$ does so. Results of this paper can be transformed to other families of t-norms by means of φ -transforms.

In Introduction we have mentioned that $T_1 \ge T_2$ is not satisfactory for $T_1 \gg T_2$. This claim is exemplified by any pair of nonextremal Frank (Hamacher) t-norms.

ACKNOWLEDGEMENT

This work was supported by grants VEGA 1/0085/03, VEGA 1/0062/03, VEGA 1/1047/04, VEGA 1/2005/05 and CEEPUS SK-42. The author would like to thank Mirko Navara for stimulating discussions during his CEEPUS stay in Prague.

(Received September 13, 2004.)

REFERENCES

- U. Bodenhofer: A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz, Volume C 26.) Universitätsverlag Rudolf Trauner, Linz 1999.
- [2] B. De Baets and R. Mesiar: Pseudo-metrics and T-equivalences. J. Fuzzy Math. 5 (1997), 471-481.
- [3] B. De Baets and R. Mesiar: T-partitions. Fuzzy Sets and Systems 97 (1998), 211-223.
- [4] J. Drewniak, P. Drygaś, and U. Dudziak: Relation of domination. In: FSTA 2004 Abstracts, pp. 43-44.
- [5] M. J. Frank: On the simultaneous associativity of F(x, y) and x + y F(x, y). Aequationes Math. 19 (1979), 194–226.
- [6] H. Hamacher: Über logische Verknüpfungen unscharfer Aussagen und deren zugehörige Bewertungsfunktionen. Progress in Cybernetics and Systems Research, Hemisphere Publ. Comp., New York 1975, pp. 276–287.
- [7] H. Hamacher: Über logische Aggregationen nicht-binär explizierter Entscheidungskriterien. Rita G. Fischer Verlag, Frankfurt 1978.
- [8] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
- [9] S. Saminger, R. Mesiar, and U. Bodenhofer: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), 11-35.

- [10] S. Saminger: Aggregation in Evaluation of Computer-assisted Assessment. (Schriftenreihe der Johannes-Kepler-Universität Linz, Volume C 44.) Universitätsverlag Rudolf Trauner, Linz 2005.
- [11] H. Sherwood: Characterizing dominates on a family of triangular norms. Aequationes Math. 27 (1984), 255-273.
- [12] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York 1983.
- [13] L. Valverde: On the structure of F-indistinguishability operators. Fuzzy Sets and Systems 17 (1985), 313-328.

Peter Sarkoci, Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava. Slovak Republic. e-mail: peter.sarkoci@stuba.sk