DOMINATION IN THE FAMILIES OF FRANK AND HAMACHER t-NORMS

Peter Sarkoci

Abstract

Domination is a relation between general operations defined on a poset. The old open problem is whether domination is transitive on the set of all t-norms. In this paper we contribute partially by inspection of domination in the family of Frank and Hamacher t norms. We show that between two different t-norms from the same family, the domination occurs iff at least one of the t-norms involved is a maximal or minimal member of the family. The immediate consequence of this observation is the transitivity of domination on both inspected families of t -norms.

Keywords: domination, Frank t-norm, Hamacher t-norm
AMS Subject Classification: 26D15

1. INTRODUCTION

The concept of domination has been introduced within the framework of probabilistic metric spaces for triangle functions and for building cartesian products of probabilistic metric spaces [12]. Afterwards the domination of t-norms was studied in connection with construction of fuzzy equivalence relations [$2,3,13$] and construction of fuzzy orderings [1]. Recently, the concept of domination was extended to the much general class of aggregation operators [9]. The domination of aggregation operators emerges when investigating which aggregation procedures applied to the system of T-transitive fuzzy relations yield a T-transitive fuzzy relation again [9] or when seeking aggregation operators which preserves the extensionality of fuzzy sets with respect to given T-equivalence relations [10]. The most general definition of domination considered so far demands the operations to be defined on arbitrary poset [4].

Definition 1. Let (P, \geq) be a poset and let $A: P^{m} \rightarrow P, B: P^{n} \rightarrow P$ be two operations defined on P with arity m and n, respectively. Then we say that A dominates B ($A \gg B$ in symbols) if each matrix ($x_{i, j}$) of type $m \times n$ over P satisfies

$$
\begin{aligned}
& A\left(B\left(x_{1,1}, x_{1,2}, \ldots, x_{1, n}\right), \ldots, B\left(x_{m, 1}, x_{m, 2}, \ldots, x_{m, n}\right)\right) \\
\geq \quad & B\left(A\left(x_{1,1}, x_{2,1}, \ldots, x_{m, 1}\right), \ldots, A\left(x_{1, n}, x_{2, n}, \ldots, x_{m, n}\right)\right)
\end{aligned}
$$

Let us recall that a t-norm $[12,8]$ is a monotone, associative and commutative binary operation $T:[0,1]^{2} \rightarrow[0,1]$ with neutral element 1 . Important examples of t-norms are: the minimum T_{M}, the product $T_{\mathbf{P}}$, the Lukasiewicz t-norm T_{L} and the drastic t-norm $T_{\mathbf{D}}$ given by

$$
\begin{aligned}
& T_{\mathbf{M}}(x, y)=\min (x, y), \\
& T_{\mathbf{P}}(x, y)=x y \\
& T_{\mathbf{L}}(x, y)=\max (0, x+y-1), \\
& T_{\mathbf{D}}(x, y)= \begin{cases}x y & \max (x, y)=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We say that a t-norm T_{1} is stronger than a t-norm $T_{2}\left(T_{1} \geq T_{2}\right.$ in symbols) if any $x, y \in[0,1]$ satisfy $T_{1}(x, y) \geq T_{2}(x, y)$. We use the notation $T_{1}>T_{2}$ whenever simultaneously $T_{1} \geq T_{2}$ and $T_{1} \neq T_{2}$ hold. One can easily show that each t-norm is weaker than T_{M} and stronger than T_{D}. Particularly, $T_{\mathbf{P}}$ and $T_{\mathbf{L}}$ satisfy $T_{\mathrm{M}}>T_{\mathbf{P}}>$ $T_{\mathbf{L}}>T_{\mathbf{D}}$. It is obvious that \geq is a partial order on the set of all t-norms, i. e., the reflexive, antisymmetric and transitive relation.

By Definition 1 we have that two t-norms T_{1} and T_{2} satisfy $T_{1} \gg T_{2}$ iff for each $x, y, u, v \in[0,1]$

$$
\begin{equation*}
T_{1}\left(T_{2}(x, y), T_{2}(u, v)\right) \geq T_{2}\left(T_{1}(x, u), T_{1}(y, v)\right) \tag{1}
\end{equation*}
$$

It is easy to show that each t-norm T satisfies $T_{\mathbf{M}} \gg T, T \gg T_{\mathbf{D}}$ and $T \gg T$. Moreover, by $[8,11]$, the representative t-norms $T_{\mathbf{P}}$ and T_{L} satisfy $T_{\mathbf{P}} \gg T_{\mathbf{L}}$. If $T_{1} \gg T_{2}$ then by inequality (1), the neutrality of 1 and the commutativity of $\mathrm{t}-$ norms we have that any $y, u \in[0,1]$ satisfy

$$
\begin{aligned}
T_{1}(y, u) & =T_{1}\left(T_{2}(1, y), T_{2}(u, 1)\right) \\
& \geq T_{2}\left(T_{1}(1, u), T_{1}(y, 1)\right)=T_{2}(u, y)=T_{2}(y, u)
\end{aligned}
$$

so that $T_{1} \geq T_{2}$, see [8]. This means that satisfaction of $T_{1} \geq T_{2}$ is a necessary condition for $T_{1} \gg T_{2}$ or, in other words, that domination is a subrelation of \geq. The converse implication does not hold as it is demonstrated by results of this paper. Domination of t-norms is moreover an antisymmetric relation which is a consequence of the fact that it is a subrelation of the antisymmetric relation \geq. The old open problem [12, Problem 12.11.3] is whether domination is transitive on the set of all t-norms. If it were true domination would be a partial order.

When inspecting domination, the tool of φ-transform can be helpful. Let φ be an order isomorphism of the interval $[0,1]$ and let T be an arbitrary t-norm. Define $T_{\varphi}:[0,1]^{2} \rightarrow[0,1]$ by

$$
T_{\varphi}(x, y)=\varphi^{-1}(T(\varphi(x), \varphi(y)))
$$

to be the φ-transform of T. It is easy to show that T_{φ} is again a t-norm [8]. Moreover, for arbitrary t-norms T_{1} and T_{2} and for arbitrary order isomorphism φ the satisfaction of $T_{1} \gg T_{2}$ is equivalent to $\left(T_{1}\right)_{\varphi} \gg\left(T_{2}\right)_{\varphi}$ so that φ-transforms preserve domination [9]. Let us recall that a t-norm is strict (nilpotent) iff there
exists φ such that $T=\left(T_{\mathbf{P}}\right)_{\varphi}\left(T=\left(T_{\mathrm{L}}\right)_{\varphi}\right)$ [8]. Moreover, it is clear that each φ transform of a strict (nilpotent) t -norm is again strict (nilpotent). Thus in order to characterize pairs of dominating strict (nilpotent) t-norms it suffices to characterize strict (nilpotent) t-norms dominating $T_{\mathbf{P}}\left(T_{\mathbf{L}}\right)$.

The following result relates domination and powers of additive generators [8]. Let T be a continuous Archimedean t-norm with additive generator f and let $\lambda \in] 0, \infty[$ be a positive number. Define $T^{(\lambda)}$ to be a t-norm with additive generator $f^{\lambda}(x)$, i. e., the λ-power of f. It is known that for each $\lambda>\mu$ is $T^{(\lambda)} \gg T^{(\mu)}$. This construction of dominating t-norms gives rise to many parametrical families of t-norms such as the Aczél-Alsina or the Dombi family.

Although the structure of domination on the set of all t-norms is still unknown, it is possible to inspect it on particular families of t-norms. One of the oldest results of this type is due to Sherwood [11] who solved the structure of domination on the family of Schweizer-Sklar t-norms. Another result of this type is the above mentioned solution of domination in the Aczél-Alsina or the Dombi family. In the next two sections we inspect another two important families - the Frank and Hamacher t-norms.

2. FRANK t-NORMS

Frank t-norms $T_{\lambda}^{\mathbf{F}}$ are given as

$$
T_{\lambda}^{\mathbf{F}}(x, y)= \begin{cases}T_{\mathbf{M}}(x, y) & \lambda=0 \tag{2}\\ T_{\mathbf{P}}(x, y) & \lambda=1 \\ T_{\mathbf{L}}(x, y) & \lambda=\infty \\ \log _{\lambda}\left(\frac{\left(\lambda^{x}-1\right)\left(\lambda^{y}-1\right)}{\lambda-1}+1\right) & \text { otherwise }\end{cases}
$$

where $\lambda \in[0, \infty]$ is the characterizing parameter of the Frank t-norm. Note that the family of Frank t-norms is strictly decreasing in λ which means that $T_{\lambda_{1}}^{\mathbf{F}}>T_{\lambda_{2}}^{\mathbf{F}}$ iff $\lambda_{1}<\lambda_{2}$. In [5] M. J. Frank solved the problem of characterization of all continuous t-norms T such that the function $F:[0,1]^{2} \rightarrow[0,1]$ given by

$$
F(x, y)=x+y-T(x, y)
$$

is associative. Each $T_{\lambda}^{\mathbf{F}}$ solves this problem.
In what follows we find out which $\lambda_{1}, \lambda_{2} \in[0, \infty]$ satisfy $T_{\lambda_{1}}^{\mathbf{F}} \gg T_{\lambda_{2}}^{\mathrm{F}}$. Recall that for $\lambda_{1}=0$ the question is trivial as $T_{0}^{\mathbf{F}}=T_{\mathrm{M}}$ dominates any t-norm. Particulary, for $\lambda_{1}=1$ and $\lambda_{2}=\infty$ the question is solved as well since $T_{1}^{\mathbf{F}}=T_{\mathrm{P}} \gg T_{\mathrm{L}}=T_{\infty^{\circ}}^{\mathbf{F}}$, see, for example, the already mentioned work of Sherwood [11]. Finally $T_{\lambda_{1}}^{\mathrm{F}} \gg T_{\lambda_{2}}^{\mathrm{F}}$ cannot be satisfied for $\lambda_{1}>\lambda_{2}$ due to the decreasingness of the Frank family. That's why we consider $\lambda_{1}<\lambda_{2}$ in the following.

Lemma 2. Let $A_{n}=\left[a_{1}^{l}, a_{1}^{r}\right] \times\left[a_{2}^{l}, a_{2}^{r}\right] \times \cdots \times\left[a_{n}^{l}, a_{n}^{r}\right], a_{i}^{l}<a_{i}^{r}, i=1,2, \ldots, n$, be an n-dimensional interval. Let $f: A_{n} \rightarrow \mathbb{R}$ be a real function, linear in each argument.

Moreover, let the value of f be nonnegative in each vertex of A_{n}, i. e., at each point with coordinates $\left(b_{1}, b_{2}, \ldots, b_{n}\right), b_{i} \in\left\{a_{i}^{l}, a_{i}^{r}\right\}$. Then f is nonnegative on whole A_{n}.

Proof. By induction with respect to the dimension n. The statement is obvious for $n=1$.

Let us assume that the claim of the lemma is true for all intervals of dimension $n-1$ and that A_{n} and f fulfill all assumptions of the lemma. Consider arbitrary $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A_{n}$. Define points

$$
\begin{array}{r}
x_{\star}=\left(x_{1}, x_{2}, \ldots, x_{n-1}, a_{n}^{l}\right), \\
x^{\star}=\left(x_{1}, x_{2}, \ldots, x_{n-1}, a_{n}^{r}\right)
\end{array}
$$

to be the left and right projections of the point x along the last coordinate. Further define functions f_{\star} and f^{\star} by expressions

$$
\begin{aligned}
f_{\star}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) & =f\left(\dot{x}_{1}, x_{2}, \ldots, x_{n-1}, a_{n}^{l}\right), \\
f^{\star}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) & =f\left(x_{1}, x_{2}, \ldots, x_{n-1}, a_{n}^{r}\right) .
\end{aligned}
$$

Both functions f_{\star} and f^{\star} are defined on $(n-1)$-dimensional interval

$$
A_{n-1}=\left[a_{1}^{l}, a_{1}^{r}\right] \times\left[a_{2}^{l}, a_{2}^{r}\right] \times \cdots \times\left[a_{n-1}^{l}, a_{n-1}^{r}\right]
$$

and both functions are linear in each argument. On vertices of A_{n-1} both functions attain nonnegative values. Indeed, let $v=\left(v_{1}, v_{2}, \ldots, v_{n-1}\right)$ be any vertex of A_{n-1}. Then $f_{\star}(v)=f\left(v_{1}, v_{2}, \ldots, v_{n-1}, a_{n}^{l}\right)$ is a value of f at one vertex of A_{n} which is by assumption nonnegative. Analogically for f^{\star}.

Thus f_{\star} and f^{\star} are nonnegative on A_{n-1} by assumption. Particularly,

$$
\begin{aligned}
f_{\star}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) & =f\left(x_{\star}\right) \\
f^{\star}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) & =f\left(x^{\star}\right)
\end{aligned}
$$

By assumptions, the function $g(y)=f\left(x_{1}, \ldots, x_{n-1}, y\right)$ is linear on $\left[a_{n}^{l}, a_{n}^{r}\right]$ and

$$
\begin{aligned}
g\left(a_{n}^{l}\right) & =f\left(x_{\star}\right) \geq 0, \\
g\left(x_{n}\right) & =f(x) \\
g\left(a_{n}^{r}\right) & =f\left(x^{\star}\right) \geq 0 .
\end{aligned}
$$

Thus $f(x)=g\left(x_{n}\right) \geq 0$.
Proposition 3. $\quad T_{\lambda}^{\mathbf{F}} \gg T_{\mathbf{L}}$ for each $\left.\lambda \in\right] 0,1[\cup] 1, \infty[$.
Proof. We have to show that any $x, y, u, v \in[0,1]$ satisfy the inequality

$$
\begin{equation*}
T_{\lambda}^{\mathbf{F}}\left(T_{\mathbf{L}}(x, y), T_{\mathbf{L}}(u, v)\right) \geq T_{\mathbf{L}}\left(T_{\lambda}^{\mathbf{F}}(x, u), T_{\lambda}^{\mathbf{F}}(y, v)\right) \tag{3}
\end{equation*}
$$

Let us consider two mutually exclusive cases. First that the left-hand side of (3) equals zero and the second that it is positive:
(i) Since for $\lambda \in] 0,1[U] 1, \infty\left[T_{\lambda}^{\mathbf{F}}\right.$ is strict, the left-hand side of (3) can be zero iff at least one of the Lukasiewitz t-norms involved attains the value 0 . Without loss of generality assume $T_{\mathbf{L}}(x, y)=0$ which is equivalent to $x+y-1 \leq 0$. It suffices to show that

$$
T_{\mathbf{L}}\left(T_{\lambda}^{\mathbf{F}}(x, u), T_{\lambda}^{\mathbf{F}}(y, v)\right)=\max \left(0, T_{\lambda}^{\mathbf{F}}(x, u)+T_{\lambda}^{\mathbf{F}}(y, v)-1\right)=0
$$

or simply $T_{\lambda}^{\mathbf{F}}(x, u)+T_{\lambda}^{\mathbf{F}}(y, v)-1 \leq 0$. But from the nondecreasingness of $T_{\lambda}^{\mathbf{F}}$ and from the neutrality of 1 it follows

$$
T_{\lambda}^{\mathbf{F}}(x, u)+T_{\lambda}^{\mathbf{F}}(y, v)-1 \leq T_{\lambda}^{\mathbf{F}}(x, 1)+T_{\lambda}^{\mathbf{F}}(y, 1)-1=x+y-1 \leq 0
$$

(ii) Assume that the left-hand side of (3) is positive, so that $x+y-1>0$ as well as $u+v-1>0$ holds. Inequality (3) can be rewritten in the form

$$
T_{\lambda}^{\mathbf{F}}(x+y-1, u+v-1) \geq \max \left(0, T_{\lambda}^{\mathbf{F}}(x, u)+T_{\lambda}^{\mathbf{F}}(y, v)-1\right)
$$

which is further equivalent to

$$
T_{\lambda}^{\mathbf{F}}(x+y-1, u+v-1) \geq T_{\lambda}^{\mathbf{F}}(x, u)+T_{\lambda}^{\mathbf{F}}(y, v)-1
$$

since the left-hand side is positive. After expansion of the definitions of $T_{\lambda}^{\mathbf{F}}$ the inequality can be rewritten as

$$
\log _{\lambda}\left[\frac{\left(\frac{\lambda^{x} \lambda^{y}}{\lambda}-1\right)\left(\frac{\lambda^{u} \lambda^{v}}{\lambda}-1\right)}{\lambda-1}+1\right] \geq \log _{\lambda} \frac{\left[\frac{\left(\lambda^{x}-1\right)\left(\lambda^{u}-1\right)}{\lambda-1}+1\right]\left[\frac{\left(\lambda^{v}-1\right)\left(\lambda^{v}-1\right)}{\lambda-1}+1\right]}{\lambda}
$$

and by further de-logarithmation we end up with

$$
\operatorname{sgn}(\lambda-1)\left[\frac{\left(\frac{\lambda^{x} \lambda^{y}}{\lambda}-1\right)\left(\frac{\lambda^{u} \lambda^{v}}{\lambda}-1\right)}{\lambda-1}+1-\frac{\left[\frac{\left(\lambda^{x}-1\right)\left(\lambda^{u}-1\right)}{\lambda-1}+1\right]\left[\frac{\left(\lambda^{u}-1\right)\left(\lambda^{v}-1\right)}{\lambda-1}+1\right]}{\lambda}\right] \geq 0 .
$$

Note that the multiplicative constant $\operatorname{sgn}(\lambda-1)$ prevents the reversion of the order after de-logarithmation whenever $\lambda \in] 0,1[$.

The expression on the left-hand side is nonnegative for any $x, y, u, v \in[0,1]$. Indeed, by substitution $\lambda^{x}=X, \lambda^{y}=Y, \lambda^{u}=U$ and $\lambda^{v}=V$ where $X, Y, U, V \in$ $[\min (1, \lambda), \max (1, \lambda)]$ we obtain

$$
\begin{equation*}
\operatorname{sgn}(\lambda-1)\left[\frac{\left(\frac{X Y}{\lambda}-1\right)\left(\frac{U V}{\lambda}-1\right)}{\lambda-1}+1-\frac{\left[\frac{(X-1)(U-1)}{\lambda-1}+1\right]\left[\frac{(Y-1)(V-1)}{\lambda-1}+1\right]}{\lambda}\right] \geq 0 \tag{4}
\end{equation*}
$$

Let us define the function $G:[\min (1, \lambda), \max (1, \lambda)]^{4} \rightarrow \mathbb{R}$ in variables X, Y, U, V to be the value of the expression on the left-hand side of (4). One can easily see that G
is linear in each argument. A very simple computation reveals that G attains zero value at all vertices of $[\min (1, \lambda), \max (1, \lambda)]^{4}$ up to the following seven exceptions

$$
\begin{aligned}
G(1,1,1,1) & =\frac{\operatorname{sgn}(\lambda-1)\left(\lambda^{2}-1\right)}{\lambda^{2}} \geq 0 \\
G(\lambda, 1,1,1)=G(1, \lambda, 1,1) & =\frac{\operatorname{sgn}(\lambda-1)(\lambda-1)}{\lambda} \geq 0 \\
G(1,1, \lambda, 1)=G(1,1,1, \lambda) & =\frac{\operatorname{sgn}(\lambda-1)(\lambda-1)}{\lambda} \geq 0 \\
G(1, \lambda, \lambda, 1)=G(\lambda, 1,1, \lambda) & =\frac{\operatorname{sgn}(\lambda-1)(\lambda-1)}{\lambda} \geq 0
\end{aligned}
$$

which all are nonnegative values. Thus the function G satisfies all assumptions of Lemma 2 by which G is nonnegative which proves inequality (4).

Proposition 3 together with $T_{\mathrm{M}} \gg T_{\mathrm{L}}$ and $T_{\mathrm{P}} \gg T_{\mathrm{L}}$ show that any Frank t-norm dominates $T_{\mathbf{L}}$. Further we discuss the mutual domination of nonextremal Frank t-norms.

Lemma 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be n-times differentiable in $0, f^{(i)}(0)=0$ for all $i=$ $0,1, \ldots n-1$ and $f^{(n)}(0)<0$. There exists $\delta>0$ such that $f(x)<0$ for each $x \in] 0, \delta[$.

Proof. The claim of the lemma is a well-known result of real analysis.
Proposition 5. There does not exist $\left.\lambda_{1}, \lambda_{2} \in\right] 0, \infty\left[\right.$ such that $\lambda_{1}<\lambda_{2}$ and $T_{\lambda_{1}}^{\mathbf{F}} \gg$ $T_{\lambda_{2}}^{\mathbf{F}}$.

Proof. Suppose arbitrary $\left.\lambda_{1}, \lambda_{2} \in\right] 0, \infty\left[\right.$ with $\lambda_{1}<\lambda_{2}$. We shall show that there exists some $x \in] 0,1[$ such that

$$
\begin{equation*}
T_{\lambda_{1}}^{\mathbf{F}}\left(T_{\lambda_{2}}^{\mathbf{F}}(x, x), T_{\lambda_{2}}^{\mathbf{F}}(x, x)\right)<T_{\lambda_{2}}^{\mathbf{F}}\left(T_{\lambda_{1}}^{\mathbf{F}}(x, x), T_{\lambda_{1}}^{\mathbf{F}}(x, x)\right) \tag{5}
\end{equation*}
$$

so that the defining inequality for domination (1) is violated. Let us define the function $\delta_{\lambda}^{\mathbf{F}}:[0,1] \rightarrow[0,1]$ to be the diagonal of a Frank t-norm so that $\delta_{\lambda}^{\mathbf{F}}(x)=$ $T_{\lambda}^{\mathbf{F}}(x, x)$ for any $x \in[0,1]$. Due to the strictness of $T_{\lambda}^{\mathbf{F}}$ we know that $\delta_{\lambda}^{\mathbf{F}}$ is an order isomorphism of the interval $[0,1]$. Inequality (5) can be rewritten into the form

$$
\begin{equation*}
\delta_{\lambda_{1}}^{\mathbf{F}}\left(\delta_{\lambda_{2}}^{\mathbf{F}}(x)\right)<\delta_{\lambda_{2}}^{\mathbf{F}}\left(\delta_{\lambda_{1}}^{\mathbf{F}}(x)\right) \tag{6}
\end{equation*}
$$

Further define the function $f_{\left(\lambda_{1}, \lambda_{2}\right)}:[0,1] \rightarrow \mathbb{R}$ by expression

$$
f_{\left(\lambda_{1}, \lambda_{2}\right)}(x)=\delta_{\lambda_{1}}^{\mathbf{F}}\left(\delta_{\lambda_{2}}^{\mathbf{F}}(x)\right)-\delta_{\lambda_{2}}^{\mathbf{F}}\left(\delta_{\lambda_{1}}^{\mathbf{F}}(x)\right),
$$

Now another alternative reformulation of (5) is that there exists some $x>0$ such that $f_{\lambda_{1}, \lambda_{2}}(x)<0$. We prove this claim by means of Lemma 4.

Let us compute $\delta_{\lambda}^{\mathrm{F}}$ as well as its first and second derivatives which we will use later:

$$
\begin{aligned}
\delta_{\lambda}^{\mathbf{F}}(x) & = \begin{cases}\log _{\lambda}\left(\frac{\left(\lambda^{x}-1\right)^{2}}{\lambda-1}+1\right) & \lambda \neq 1 \\
x^{2} & \lambda=1,\end{cases} \\
\delta_{\lambda}^{\mathbf{F}}(1)(x) & = \begin{cases}\frac{2\left(\lambda^{x}-1\right) \lambda^{x}}{\left(\lambda^{x}-1\right)^{2}+\lambda-1} & \lambda \neq 1 \\
2 x & \lambda=1,\end{cases} \\
\delta_{\lambda}^{\mathbf{F}^{(2)}}(x) & = \begin{cases}\frac{2 \lambda^{x} \ln (\lambda)\left(\left(2 \lambda^{x}-1\right)(\lambda-1)-\left(\lambda^{x}-1\right)^{2}\right)}{\left(\left(\lambda^{x}-1\right)^{2}+\lambda-1\right)^{2}} & \lambda \neq 1 \\
2 & \lambda=1 .\end{cases}
\end{aligned}
$$

Their values at point 0 are

$$
\delta_{\lambda}^{\mathbf{F}}(0)=0 \quad \delta_{\lambda}^{\mathbf{F}^{(1)}}(0)=0 \quad \delta_{\lambda}^{\mathbf{F}^{(2)}}(0)= \begin{cases}\frac{2 \ln (\lambda)}{\lambda-1} & \lambda \neq 1 \tag{7}\\ 2 & \lambda=1\end{cases}
$$

so that the first nonzero derivative of $\delta_{\lambda}^{\mathbf{F}^{(2)}}$ at point 0 is the second derivative. Thereout the first nonzero derivative of $f_{\left(\lambda_{1}, \lambda_{2}\right)}$, according to its definition, is the fourth derivative for which we have

$$
\begin{equation*}
f_{\left(\lambda_{1}, \lambda_{2}\right)}^{(4)}(0)=3 \delta_{\lambda_{1}}^{\mathbf{F}^{(2)}}(0)\left(\delta_{\lambda_{2}}^{\mathbf{F}^{(2)}}(0)\right)^{2}-3 \delta_{\lambda_{2}}^{\mathbf{F}^{(2)}}(0)\left(\delta_{\lambda_{1}}^{\mathbf{F}^{(2)}}(0)\right)^{2} \tag{8}
\end{equation*}
$$

Now we can compute the value of this derivative for all feasible combinations of λ_{1} and λ_{2}. Let us distinguish three mutually exclusive cases - the first that $\lambda_{2}=1$, then $\lambda_{1}=1$ and finally, $\lambda_{1} \neq 1 \neq \lambda_{2}$.
(i) Let us consider $\lambda_{1}<\lambda_{2}=1$. Combining (7) and (8) we obtain the expression

$$
f_{\left(\lambda_{1}, 1\right)}^{(4)}(0)=-24 \frac{\ln \left(\lambda_{1}\right)}{\lambda_{1}-1}\left(\frac{\ln \left(\lambda_{1}\right)}{\lambda_{1}-1}-1\right)
$$

The sign of this derivative is determined by the sign of the expression in parenthesis. Under the assumption $\lambda_{1}<1$, the expression in parenthesis is positive because the expression $\ln (\lambda) /(\lambda-1)$ is decreasing, continuous on $] 0,1[\cup] 1, \infty[$ and

$$
\lim _{\lambda \rightarrow 1} \frac{\ln (\lambda)}{\lambda-1}=1
$$

Thus the first nonzero derivative of $f_{\left(\lambda_{1}, 1\right)}$ is negative at point 0 .
(ii) Let us consider $1=\lambda_{1}<\lambda_{2}$. Combining (7) and (8) we obtain the expression

$$
f_{\left(1, \lambda_{2}\right)}^{(4)}(0)=24 \frac{\ln \left(\lambda_{2}\right)}{\lambda_{2}-1}\left(\frac{\ln \left(\lambda_{2}\right)}{\lambda_{2}-1}-1\right)
$$

Following the considerations from (i) we find out that $f_{\left(1, \lambda_{2}\right)}^{(4)}(0)$ is negative.
(iii) Let us consider $\lambda_{1} \neq 1 \neq \lambda_{2}$. Combining (7) and (8) gives us the expression

$$
f_{\left(\lambda_{1}, \lambda_{2}\right)}^{(4)}(0)=-24 \frac{\ln \left(\lambda_{1}\right) \ln \left(\lambda_{2}\right)}{\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)}\left(\frac{\ln \left(\lambda_{1}\right)}{\lambda_{1}-1}-\frac{\ln \left(\lambda_{2}\right)}{\lambda_{2}-1}\right) .
$$

The sign of the derivative is determined by the sign of expression in ellipses. From the decreasingness of this expression and from $\lambda_{1}<\lambda_{2}$ it follows that $f_{\left(\lambda_{1}, \lambda_{2}\right)}^{(4)}(0)<0$. We distinguished all possible cases and regardless of the values of λ_{1} and λ_{2} the value of $f_{\left(\lambda_{1}, \lambda_{2}\right)}^{(4)}(0)$ is negative. In addition, all lower-order derivatives of $f_{\left(\lambda_{1}, \lambda_{2}\right)}$ vanish at point 0 . By Lemma 4 there exists some $x \in] 0,1[$ such that $f(x)<0$.

Corollary 6. Any case of domination within the family of Frank t-norms is one of these

$$
\begin{aligned}
& T_{\lambda}^{\mathbf{F}} \gg T_{\lambda}^{\mathbf{F}} \\
& T_{\mathbf{M}} \gg T_{\lambda}^{\mathbf{F}} \\
& T_{\lambda}^{\mathbf{F}} \gg T_{\mathbf{L}}
\end{aligned}
$$

for arbitrary $\lambda \in[0, \infty]$. Moreover, domination is transitive within this family so that it is partially ordered by \gg.

3. HAMACHER t-NORMS

Hamacher t-norms form another one-parametric family of t-norms. It has been proved in $[6,7]$ that members of this family are the only ones to be expressed as quotient of two polynomials in two variables. The family of Hamacher t-norms is parameterized by $\lambda \in[0, \infty]$

$$
T_{\lambda}^{\mathbf{H}}(x, y)= \begin{cases}T_{\mathbf{D}}(x, y) & \lambda=\infty \tag{9}\\ 0 & \lambda=x=y=0 \\ \frac{x y}{\lambda+(1-\lambda)(x+y-x y)} & \text { otherwise }\end{cases}
$$

The Hamacher family is strictly decreasing in λ which means that $T_{\lambda_{1}}^{\mathrm{H}}>T_{\lambda_{2}}^{\mathrm{H}}$ iff $\lambda_{1}<\lambda_{2}$. The drastic t-norm $T_{\mathrm{D}}=T_{\infty}^{\mathbf{H}}$ is the minimal element and the t-norm $T_{0}^{\mathbf{H}}$ is the maximal element of the family.

In this section we answer the question for which $\lambda_{1}, \lambda_{2} \in[0, \infty]$ the relation $T_{\lambda_{1}}^{\mathrm{H}} \gg T_{\lambda_{2}}^{\mathrm{H}}$ is satisfied. Recall that for $\lambda_{2}=\infty$ the question is trivial as $T_{\infty}^{\mathrm{H}}=T_{\mathrm{D}}$ is dominated by any t-norm. Moreover, $T_{\lambda_{1}}^{\mathrm{H}} \gg T_{\lambda_{2}}^{\mathrm{H}}$ cannot be satisfied for $\lambda_{1}>\lambda_{2}$ due to decreasingness within the family of Hamacher t-norms. That is why we will only deal with $\lambda_{1}<\lambda_{2}$ in the sequel.

Proposition 7. For each $\lambda \in] 0, \infty]$ it holds that $T_{0}^{\mathbf{H}} \gg T_{\lambda}^{\mathbf{H}}$.
Proof. We divide the proof into two parts. We first show that $T_{0}^{\mathbf{H}} \gg T_{\mathbf{P}}$ and then we prove the claim of proposition by virtue of φ-transform.
(i) We show that $T_{0}^{\mathbf{H}}(x y, u v) \geq T_{0}^{\mathbf{H}}(x, u) T_{0}^{\mathbf{H}}(y, v)$ holds for any $x, y, u, v \in[0,1]$. This inequality is trivially fulfilled whenever at least one variable equals 0 . Therefore assume $x y u v>0$. After expansion of the definitions we have

$$
\frac{x y u v}{x y+u v-x y u v} \geq \frac{x u}{x+u-x u} \frac{y v}{y+v-y v}
$$

or equivalently, by inversion

$$
\frac{x y+u v-x y u v}{x y u v} \leq \frac{(x+u-x u)(y+v-y v)}{x y u v} .
$$

As the denominators of both fractions are equal and positive, we can drop them, and by further manipulation we obtain the third equivalent inequality

$$
0 \leq(x+u-x u)(y+v-y v)-x y-u v+x y u v
$$

or

$$
0 \leq x v(1-u)(1-y)+u y(1-v)(1-x)
$$

where the expression on the right-hand side is evidently nonnegative.
(ii) Now, let φ_{λ} be the multiplicative generator of the nonextremal Hamacher t-norm T_{λ}^{H}. So that for $\left.\lambda \in\right] 0, \infty\left[, \varphi_{\lambda}\right.$ and its inverse are given by

$$
\varphi_{\lambda}(x)=\frac{x}{\lambda+(1-\lambda) x}, \quad \varphi_{\lambda}^{-1}(x)=\frac{\lambda x}{1+(1-\lambda) x} .
$$

Let us apply the φ-transform to both $T_{0}^{\mathbf{H}}$ and $T_{\mathbf{P}}$. Since $T_{0}^{\mathbf{H}}$ dominates $T_{\mathbf{P}}$, the corresponding φ-transforms do as well.

The φ_{λ}-transform of $T_{\mathbf{P}}$ is $T_{\lambda}^{\mathbf{H}}$ by the definition of multiplicative generator. Now we shall show that φ_{λ}-transform of $T_{0}^{\mathbf{H}}$ is again T_{0}^{H}, i. e., the strongest Hamacher t-norm is stable under the φ_{λ}-transform whenever φ_{λ} is a multiplicative generator of a nonextremal Hamacher t-norm. The equality

$$
\varphi_{\lambda}^{-1}\left(T_{0}^{\mathbf{H}}\left(\varphi_{\lambda}(x), \varphi_{\lambda}(y)\right)\right)=T_{0}^{\mathbf{H}}(x, y)
$$

is trivially fulfilled whenever $x y=0$. Now assume $x y>0$. Then we have

$$
\begin{aligned}
\varphi_{\lambda}^{-1}\left(T_{0}^{\mathbf{H}}\left(\varphi_{\lambda}(x), \varphi_{\lambda}(y)\right)\right) & =\varphi_{\lambda}^{-1}\left(\frac{\varphi_{\lambda}(x) \varphi_{\lambda}(y)}{\varphi_{\lambda}(x)+\varphi_{\lambda}(y)-\varphi_{\lambda}(x) \varphi_{\lambda}(y)}\right) \\
& =\varphi_{\lambda}^{-1}\left(\frac{x y}{\lambda(x+y)+(1-2 \lambda) x y}\right) \\
& =\frac{x y}{x+y-x y} \\
& =T_{0}^{\mathbf{H}}(x, y)
\end{aligned}
$$

Since $T_{0}^{\mathbf{H}} \gg T_{\mathbf{P}}$, by virtue of φ_{λ}-transform we have that $T_{0}^{\mathbf{H}} \gg T_{\lambda}^{\mathbf{H}}$ which is our claim.

Proposition 8. There does not exist $\left.\lambda_{1}, \lambda_{2} \in\right] 0, \infty\left[\right.$ such that $\lambda_{1}<\lambda_{2}$ and $T_{\lambda_{1}}^{\mathbf{H}} \gg$ $T_{\lambda_{2}}^{\mathrm{H}}$.

Proof. Let λ_{1} and λ_{2} satisfy assumptions of the proposition. We shall show that there exists $x \in] 0,1[$ such that

$$
\begin{equation*}
T_{\lambda_{1}}^{\mathbf{H}}\left(T_{\lambda_{2}}^{\mathbf{H}}(x, x), T_{\lambda_{2}}^{\mathbf{H}}(x, x)\right)<T_{\lambda_{2}}^{\mathbf{H}}\left(T_{\lambda_{1}}^{\mathbf{H}}(x, x), T_{\lambda_{1}}^{\mathbf{H}}(x, x)\right) \tag{10}
\end{equation*}
$$

so that the defining inequality for domination (1) is violated. Let us define the function $\delta_{\lambda}^{\mathbf{H}}:[0,1] \rightarrow[0,1]$ to be the diagonal of a Hamacher t -norm so that $\delta_{\lambda}^{\mathbf{H}}(x)=$ $T_{\lambda}^{\mathbf{H}}(x, x)$ for any $x \in[0,1]$. The inequality (10) can be rewritten as

$$
\begin{equation*}
\delta_{\lambda_{1}}^{\mathbf{H}}\left(\delta_{\lambda_{2}}^{\mathbf{H}}(x)\right)<\delta_{\lambda_{2}}^{\mathbf{H}}\left(\delta_{\lambda_{1}}^{\mathbf{H}}(x)\right) . \tag{11}
\end{equation*}
$$

In order to show that (11) is satisfied for some $x \in] 0,1[$ it suffices to show that this x satisfies

$$
\begin{equation*}
\frac{x^{4}}{\delta_{\lambda_{1}}^{\mathbf{H}}\left(\delta_{\lambda_{2}}^{\mathbf{H}}(x)\right)}>\frac{x^{4}}{\delta_{\lambda_{2}}^{\mathbf{H}}\left(\delta_{\lambda_{1}}^{\mathbf{H}}(x)\right)} \tag{12}
\end{equation*}
$$

since we consider $x \neq 0$ and both compositions of the diagonals are positive whenever $x \in] 0,1\left[\right.$. The diagonal of a Hamacher t-norm $T_{\lambda}^{\mathbf{H}}$ is given by the expression

$$
T_{\lambda}^{\mathbf{H}}(x, x)=\frac{x^{2}}{\lambda+(1-\lambda)(2-x) x}
$$

by which

$$
\begin{aligned}
\delta_{\lambda_{1}}^{\mathbf{H}}\left(\delta_{\lambda_{2}}^{\mathbf{H}}(x)\right) & =\frac{\frac{x^{4}}{\left(\lambda_{2}+\left(1-\lambda_{2}\right)(2-x) x\right)^{2}}}{\lambda_{1}+\left(1-\lambda_{1}\right)\left[2-\frac{x^{2}}{\lambda_{2}+\left(1-\lambda_{2}\right)(2-x) x}\right] \frac{x^{2}}{\lambda_{2}+\left(1-\lambda_{2}\right)(2-x) x}} \\
& =\frac{x^{4}}{\lambda_{1}\left(\lambda_{2}(x-1)-2 x\right)^{2}(x-1)^{2}+x^{2}\left(2 \lambda_{2}(x-1)^{2}+(4-3 x) x\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\delta_{\lambda_{2}}^{\mathbf{H}}\left(\delta_{\lambda_{1}}^{\mathbf{H}}(x)\right) & =\frac{\frac{x^{4}}{\left(\lambda_{1}+\left(1-\lambda_{1}\right)(2-x) x\right)^{2}}}{\lambda_{2}+\left(1-\lambda_{2}\right)\left[2-\frac{x^{2}}{\lambda_{1}+\left(1-\lambda_{1}\right)(2-x) x}\right] \frac{x^{2}}{\lambda_{1}+\left(1-\lambda_{1}\right)(2-x) x}} \\
& =\frac{x^{4}}{\lambda_{2}\left(\lambda_{1}(x-1)-2 x\right)^{2}(x-1)^{2}+x^{2}\left(2 \lambda_{1}(x-1)^{2}+(4-3 x) x\right)}
\end{aligned}
$$

According to these expressions, (12) can be rewritten in the form

$$
\begin{aligned}
& \lambda_{1}\left(\lambda_{2}(x-1)-2 x\right)^{2}(x-1)^{2}+x^{2}\left(2 \lambda_{2}(x-1)^{2}+(4-3 x) x\right) \\
>\quad & \lambda_{2}\left(\lambda_{1}(x-1)-2 x\right)^{2}(x-1)^{2}+x^{2}\left(2 \lambda_{1}(x-1)^{2}+(4-3 x) x\right)
\end{aligned}
$$

which is further equivalent to

$$
\begin{equation*}
\left(\lambda_{2}-\lambda_{1}\right)(x-1)^{2}\left(\lambda_{1} \lambda_{2}(x-1)^{2}-2 x^{2}\right)>0 \tag{13}
\end{equation*}
$$

The expression on the left-hand side of (13) is polynomial in x which is a continuous function. Moreover, the value of this expression at 0 is $\left(\lambda_{2}-\lambda_{1}\right) \lambda_{1} \lambda_{2}$ which is strictly positive under assumption $\lambda_{2}>\lambda_{1}>0$. From continuity and strict positivity at 0 , it follows that there exists $x \in] 0,1[$ which satisfies (13).

Corollary 9. Any case of domination within the family of Hamacher t-norms is one of these

| $T_{\lambda}^{\mathbf{H}} \gg$ | $T_{\lambda}^{\mathbf{H}}$ |
| :--- | :--- | :--- |
| $T_{0}^{\mathbf{H}} \gg T_{\lambda}^{\mathbf{H}}$ | |
| $T_{\lambda}^{\mathbf{H}} \gg T_{\mathrm{D}}$ | |

for arbitrary $\lambda \in[0, \infty]$. Moreover, domination is transitive within this family so that it is partially ordered by \gg.

4. CONCLUDING REMARKS

Posets $\left(\left\{T_{\lambda}^{\mathbf{F}} \mid \lambda \in[0, \infty]\right\}, \gg\right)$ and $\left(\left\{T_{\lambda}^{\mathbf{H}} \mid \lambda \in[0, \infty]\right\}, \gg\right)$ are order isomorphical since $T_{\lambda_{1}}^{\mathbf{F}} \gg T_{\lambda_{2}}^{\mathbf{F}}$ holds iff $T_{\lambda_{1}}^{\mathbf{H}} \gg T_{\lambda_{2}}^{\mathbf{H}}$ does so. Results of this paper can be transformed to other families of t-norms by means of φ-transforms.

In Introduction we have mentioned that $T_{1} \geq T_{2}$ is not satisfactory for $T_{1} \gg T_{2}$. This claim is exemplified by any pair of nonextremal Frank (Hamacher) t-norms.

ACKNOWLEDGEMENT

This work was supported by grants VEGA $1 / 0085 / 03$, VEGA $1 / 0062 / 03$, VEGA $1 / 1047 / 04$, VEGA $1 / 2005 / 05$ and CEEPUS SK-42. The author would like to thank Mirko Navara for stimulating discussions during his CEEPUS stay in Prague.
(Received September 13, 2004.)

REFERENCES

[1] U. Bodenhofer: A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz, Volume C 26.) Universitätsverlag Rudolf Trauner, Linz 1999.
[2] B. De Baets and R. Mesiar: Pseudo-metrics and T-equivalences. J. Fuzzy Math. 5 (1997), 471-481.
[3] B. De Baets and R. Mesiar: T-partitions. Fuzzy Sets and Systems 97 (1998), 211-223.
[4] J. Drewniak, P. Drygaś, and U. Dudziak: Relation of domination. In: FSTA 2004 Abstracts, pp. 43-44.
[5] M. J. Frank: On the simultaneous associativity of $F(x, y)$ and $x+y-F(x, y)$. Aequationes Math. 19 (1979), 194-226.
[6] H. Hamacher: Über logische Verknüpfungen unscharfer Aussagen und deren zugehörige Bewertungsfunktionen. Progress in Cybernetics and Systems Research, Hemisphere Publ. Comp., New York 1975, pp. 276-287.
[7] H. Hamacher: Über logische Aggregationen nicht-binär explizierter Entscheidungskriterien. Rita G. Fischer Verlag, Frankfurt 1978.
[8] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
[9] S. Saminger, R. Mesiar, and U. Bodenhofer: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), 11-35.
[10] S. Saminger: Aggregation in Evaluation of Computer-assisted Assessment. (Schriftenreihe der Johannes-Kepler-Universität Linz, Volume C 44.) Universitätsverlag Rudolf Trauner, Linz 2005.
[11] H. Sherwood: Characterizing dominates on a family of triangular norms. Aequationes Math. 27 (1984), 255-273.
[12] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York 1983.
[13] L. Valverde: On the structure of F-indistinguishability operators. Fuzzy Sets and Systems 17 (1985), 313-328.

Peter Sarkoci, Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava. Slovak Republic. e-mail: peter.sarkoci@stuba.sk

