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Necessary and sufficient conditions under which two fuzzy sets (in the most general, 
poset valued setting) with the same domain have equal families of cut sets are given. The 
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MacNeille completion of that posets is deduced. 
Keywords: poset valued fuzzy set, cut, equivalent fuzzy sets, Dedekind-MacNeille comple

tion 
AMS Subject Classification: 03B52, 03E72, 06A15 

1. INTRODUCTION 

It is well known that fuzzy sets considered as functions are characterized by partic
ular collections of crisp sets, known as cut sets. Among basic properties of fuzzy 
structures are cutworthy ones, i.e., those which are preserved under cuts. If fuzzy 
sets are endowed with some algebraic structure (group, ring, etc), then the cuts are 
substructures (subgroups, subrings e tc) . It is also known that different functions -
fuzzy structures on the same domain can have equal collections of cut sets. There
fore, there were many attempts to investigate and somehow classify fuzzy structures 
on the same underlying set, which have equal collections cuts (see e.g., Murali and 
Makamba [8], Makamba [7], Alkhamees [1], Seselja, Tepavcevic [10, 11, 12, 15]; see 
also references in these). As it was pointed out in [10, 15], importance of the above 
mentioned classification is based on the following simple property of functions. There 
are uncountably many distinct functions (fuzzy sets) on the same (finite or infinite) 
domain and uncountable co-domain (e.g., the real interval [0,1]). The same holds 
for algebraic structures: any group (even if it is of prim order) has uncountably 
many fuzzy subgroups. Not all of these functions (fuzzy sets, fuzzy subgroups) can 
be considered as essentially different and many of them have equal collections of cut 
sets. This leads to the natural classification of fuzzy structures by equality of cuts. 

In the paper [15] the above equality of fuzzy sets was characterized for fuzzy sets 
whose domain is a (complete) lattice L. In the collection of all L-valued fuzzy sets 
on the same domain, necessary and sufficient conditions were given, under which 
two fuzzy sets from this collection have equal families of cuts. In particular, the 
notion of equality of fuzzy sets given in [8] was generalized. 
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In the present paper we consider the problem in its most general setting. Namely, 
we focus on the class of fuzzy sets as mappings from some fixed domain X into an 
arbitrary (also fixed) ordered set P . We present necessary and sufficient conditions 
under which fuzzy sets from the mentioned class have equal families of cut sets. 
Consequently, as special cases we deduce conditions concerning the correspond
ing equality for other kinds of fuzzy sets: lattice valued and real interval valued 
ones. It turns out that the solution of this problem is related to the well known 
Dedekind-MacNeille completion of ordered sets; this connection is also investigated 
and described. 

Our investigation and results are formulated in terms of fuzzy sets, and not for 
fuzzy algebraic structures (like e.g., fuzzy groups). The reason is that the equality 
of cuts is essentially an order theoretic property. Therefore, our conditions are 
universal in the sense that they can easily, without changes, be formulated for any 
fuzzy algebraic or order-theoretic structure. 

Notation and basic facts about L-valued fuzzy sets and lattices are given in Pre
liminaries; we refer also to the survey papers [13, 14]. 

2. PRELIMINARIES " 

We advance some definitions and notation concerning ordered structures. For more 
details, see e.g. [3]. 

If (P, -<Q is a partially ordered set, poset, then infimum and supremum of a, b G P 
(if they exist) are denoted respectively by a A b and a V b. For imfimum or supremum 
of a subset or a family of elements of P, we use the notation /\ Q, V Xi, and so on. 
For a G P, we denote by | a the principal ideal generated by a: la := {x G P | x ^ a}. 
Dually, a principal filter generated by a is defined by ^a := {x £ P\a ^ x}. A poset 
in which every two-element subset has infimum and supremum is a lattice. A lattice 
L is complete if infimum and supremum exist for every subset of L. 

Two posets (P, ̂ ) and (Q, <) are said to be order isomorphic if there is a bijection 
/ : P -> Q such that / and / - 1 are isotone. 

The Dedekind-MacNeille completion of a poset (P, ^ ) is a collection of subsets of 
P, defined by 

DM{P) := {X C P\Xue = X}, 

where for X C P, 

Xu := {y G P | x ^ y, for every x G X} 

and 

Xe := {y G P | y ^ x, for every x G X). 

Obviously, by the consecutive application of the above two operators, we can get 
operators ul and lu. Elementary properties of these operators are 

X C Xut and X C Xiu. 
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Let P be a poset and Q C P. Then Q is said to be meet-dense in P if for every 
x e P there is a subset R of Q such that x = / \ p i?. A join-dense subset is defined 
dually. 

We use some facts about jDM-completions, given in the sequel. 

Proposition 1. For any poset P, DM(P) is a complete lattice under inclusion 
and P can be order embedded into DM(P) by the map </>: x *->lx. In addition: 

(i) (j)(P) is both meet-dense and join-dense in DM(P). 

(ii) If P is a subset of a complete lattice L, in which it is both meet-dense and 
join-dense, then L is isomorphic with DM(P) under the order-isomorphism 
whose restriction to P is (p. 

Due to the order embedding <f>, we sometimes consider P to be the sub-poset of 
DM(P) (in the proof of Theorem 1 and further in the text). 

Let Z be a collection of subsets of a nonempty set X satisfying: 

(i) Z is closed under componentwise intersections, i.e., for every x G X, 

f](Yez\xeY)ez, 

(ii) [}z = x. 
Then Z is called a point closure system on X. 

Fuzzy sets 

In this paper fuzzy sets are considered to be mappings from a non-empty set X (do
main) into a poset P (co-domain). Special cases are obtained when P is a complete 
lattice or the unit interval [0,1] of real numbers. We sometimes use the term P-fuzzy 
sets, or poset valued fuzzy sets, but in majority of cases we simply refer to fuzzy sets. 

If /x : X -» P is a fuzzy set on a set X then for p G P, p-cut, or a cut set, (cut) is 
the well known subset /ip of X: 

fxv := {x£X\fi(x) >p). 

The collection of all cuts of \i is denoted by jip\ 

VP~{Hp\p€P}-

We are recalling some known properties of poset valued fuzzy sets (see e.g., 
[13, 14]). 
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Proposition 2. Let /x : X —> P be a fuzzy set on X. Then the collection p,p = 
{pp | p G P} of cut subsets of /i is a point closure system on X under the set inclusion. 

The image of the set X under \x is denoted as usual, by [i(X): 

fjt(X) = {p G P\p = /i(z), f° r some x G X } . 

If a fuzzy set /x : X —> P is given on X, then we define the relation w o n P : for 
P,<1eP 

p « r/ if and only if /xp -= /ig. 

The relation « is an equivalence on P , and it can be characterized as follows. 

Proposition 3. If /i is a fuzzy set on X and p, r/ G P , then 

p « q if and only if ^[pC\ fi(X) =-\qC\ fi(X). 

The relation < in the poset P induces an order on the set of equivalence classes 
modulo « , i.e., on P/ « , in the following way: for p, q G L, let 

[p]« < Ww if a n d o n l y i f t? n /x(x) c tpn ti(X). (i) 

The above relation ^ is an ordering relation on F/«. This order is anti-isomorphic 
with the set inclusion among cut sets of /i, as follows. 

Proposition 4. If /i is an P-fuzzy set on X, then: 

[p]» ^ [<?]« --" a n <i only if /xg C /ip. 

3. RESULTS 

Let P be a poset, X a nonempty set, and Tp(X) the collection of all fuzzy sets on 
X whose co-domain is P . 

In terms of ordered sets and functions Fp(X) is the power denoted usually by 
Px. This set can be ordered naturally, the order being induced by the one from the 
poset P : 

/i ^ v if and only if for each x G l fi(x) ^ v(x). 

The cardinality of the power Fp(X) depends on the cardinality of the poset 
P ; if it is an uncountable poset (like the unit interval [0,1]), then also there are 
uncountably many functions - fuzzy sets on X. 

Recall that /ip denotes the collection of all cuts of a fuzzy set /i G Jrp(X): 

VP = {Vp\p£P}-
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Our aim is to find conditions under which different fuzzy sets (as functions) have 
equal these collections. 

We begin with a necessary condition for the foregoing equality. It connects fuzzy 
sets having a poset for the domain with those for which the domain is a lattice. 

Let /i : X -> P be a fuzzy set and let L = DM(P) be a lattice which is the 
Dedekind-MacNeille completion of P (recall that this lattice consists of particular 
subsets of P, ordered by set inclusion). Then, we define a fuzzy set pDM(p) : X -» 
DM(P), where 

џDM(PHx)=l(ф)). 

Proposition 5. If fuzzy sets [i\ X —r P and v : A" -> P have equal families of cut 
sets then also families of cut sets of fuzzy sets / j D M ( p ) and vDM^ coincide. 

P r o o f . First we note that cuts /ip in p and /i,, } in pDMi<p) coincide (recall 

that (j) : x H-»| x, as in Proposition 1). Indeed, x G pp if and only if p(x) ^ p if and 

only if (f>(fi(x)) ^ (j)(p) if and only if pDM^(x) ^ (j)(p) if and only if x G V^ip) • 

Suppose that p and v have equal families of cut sets. Let p G DM(P). Then, 
p — \JieI Xi, where {xi \ i G /} is a family of images of elements of P under cj> (this 
is because of the density of (f)(P) in DM(P), see Proposition 1). Now, 

/ - r ( p ) = » ™ { p ) = n ^ M ( p ) i*e / ) = n « M ( p ) i ^ D=*c(p)=^DM(P), 

where for each pXi \vyi ^ ^ is the corresponding (equal) cut in fuzzy set t j D M ( p ) . 

• 

The converse of this statement is not valid, which is illustrated by the following 
example. 

Example 1. Let P be the poset in Figure 1 and p and v fuzzy sets on X = 
{x,y,z,t} defined by: 

_ ( x y z t \ _ ( x y z t \ 
V - \ c d g h ) V ~ \ a b e f) 

These fuzzy sets do not have equal cuts, more precisely, {c, d} is a cut set of p but 
not of v. 
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On the other hand, when we consider the extensions of these fuzzy sets to 
Dedekind-MacNeille completion of the poset P (the lattice DM(P) is given in Fig
ure 2), then the corresponding lattice valued fuzzy sets have equal families of cut 
sets, which can be easily checked. 

DM{P) 
Fig. 2. 

Starting with a fuzzy set fi from Jrp(X), we define a special poset ordered by set 
inclusion, whose elements are certain subsets of the set of all images of fi. 

For \i € Tp{X), let 

-V=({tpnMX)|peP}.c). 

In the following, the above collection is considered as a poset ordered by inclusion. 
Recall that /ip denotes the collection of cut set of /x: 

UP ~ {v>p\ptP}-

This poset is also ordered by set inclusion. 

Proposition 6. If \x : X -» P is a fuzzy set on X, then there exists an order 
isomorphism from the poset PM to the poset fip of cuts of fi. 
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P r o o f . The function / : jip y-^^pCi p,(X) maps the collection p,p of cuts of/x onto 
the poset P^. By the definition of the relation w on P and by Proposition 3, / is 
a bijection. It is straightforward to prove that / and its inverse preserve the order 
(set inclusion), so / is an order isomorphism. n 

Next we introduce our main definition by which we can classify fuzzy sets in the 
collection Tp(X). 

Definition. Let ~ be the relation on Tp(X), defined as follows: /i ~ v if and only 
if the correspondence / : p,(x) i-> v(x), x G X is a bijection from n(X) onto v(X) 
which has an extension to an isomorphism from PM onto the poset Pv, given by the 
map 

F(\pnix(X)):={v(x)\li(x)>p}l*nv(X), p-R (*) 

Remark. Within this definition we implicitly suppose that {v(x) \ ji(x) ^ p)iu n 
v(X) belongs to Pu. Therefore, for every p G P, there is an element q G P , such 
that {v(x) | p,(x) ^ p}iu n v(X) =t<I n v(X). 

Lemma 1. Let \i, v G Tp(X) and for p^P, let F ( tp n /x(X)) =t<7 n i/(X). Now, 
if n ~ i/, then for any y e X, 

H(y) ^ p if and only if i/(y) ^ q. 

P r o o f . By the definition of F, {v(x)\p,(x) ^ p)lu n i/(X) =?t?n i/(X). 
Suppose that JZ(T/) ^ p for some y € X. Since {l/(x)|/i(x) ^ p} n l^(-Y) C 

{v(x) | /x(x) ^ p)iu n i/(X) =t<I n v(X), we have that i/(y) ^ g. 
Conversely, let i/(y) ^ g. By the definition, F is an extension of the bijection 

/ : fi(x) —> f(x), i.e., extension of the mapping ^p,(x)np,(X) »-rt ^(x)ni/(X). Since 
v(y) €t<7 n i /pO, we have that "[v(y) n K-X) Ct<I n KX) . By the fact that F is 
an isomorphism, tMy) n / / (X) Ctpn/x( .K), therefore fi(y) GtPnI i(X), and hence 
M</) ^ P- D 

Theorem 1. The relation ~ is an equivalence relation on Fp(X). 

P r o o f . Reflexivity of ~ holds by virtue of the identity map on P^. 
In the sequel, symmetry of ~ is proved. If \i ~ v, then F is an isomorphism and 

E(|pn p.(X)) = {v(x) | ii(x) > p}tu n v(X) = t<? n v(X). 

Now, F~x is also the isomorphism from Pv to P^ and we have to prove that 

F - 1 fa n v(X)) = {n(x) | u(x) > q}lu n /*(*) (= \p n /x(X)). 
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We consider the infimum of all elements p(x) for which v(x) ^ q in the Dedekind-
MacNeille completion of P. This completion is a complete lattice, and the following 
is true: 

t /\ {v(x)\v(x)^q}nfi(X) = {v(x)\v(x)>qyunfx(X). 
DM(P) 

Now, since for every p(x) such that v(x) ^ r/, we have that p(x) ^ p (by Lemma 1), 
it follows that f\DM{P){p(x) | v(x) ^ q} ^ p, and hence 1-/\DM{P){p(x)\v(x) ^ 
g } n / . ( X ) C t p n / i ( X ) . 

To prove the other inclusion, let p(y) ^ p (i.e., p(y) Gt P H /x(X)). Then, by 
Lemma 1, v(y) ^ q. Since {/i(x) | v(x) ^ q} C {/x(x) | i/(x) ^ <?}fu, we have that 
p(y) e {»(x)\v(x) > 9 } ^ r i A i W , i-e., t F n M X ) c {p(x)\v(x) > ^ n , i ( X ) , 
which proves that ~ is symmetric. 

Finally, suppose p ~ i/ and v ~ p, and F and G are the corresponding isomor
phisms from PM to Pj, and from Pv to P p , respectively. Directly by the definition of 
F and G, it follows that FoGis the isomorphism by which p ~ p. Therefore, ~ is 
transitive. • 

We say that fuzzy sets /z, v G Jrp(X) are equivalent if p ~ iv. 
If the poset P is replaced by a complete lattice L, then the above definition of 

equivalent fuzzy sets coincides with the definition of equivalent lattice valued fuzzy 
sets from [15]: 

F(-\pnv(X)) = Jt/\{v(x)\»(x)>p}nv(X), PeL. (*') 

Indeed, in any lattice we have 

M s ) | /xO) ^ p}tu = l\{v(x) | ix(x) > p}, 

hence in this case the last formula is equivalent with the formula (*). 
In particular, if we consider classical fuzzy sets with co-domain [0,1], then the 

isomorphism (*) has the form 

F(\p,i]nn(X)) = [va£{v(x)\n(x)>p},i]nv(X), Pe[o,i]. (*") 
Obviously, definition (*) is the most general. 
Recall that for equivalent fuzzy sets p and v, the correspondence / : p(x) H-J> V(X) 

for x G X, is by definition a bijection from p(X) to v(X). These sets of images are 
ordered subsets of P and we prove that they are order isomorphic. 

Theorem 2. Let /i, v G Fp(X) and p ~ v. Then for all x,y G X 

A*0*0 ^ A*(y) i f a n d o n l y i f u(x) ^ ^(y)- (**) 

P r o o f . Let p(x) ^ p(y). Then ^p(y) C^p(x), hence ^p(y)np(X) C"[p(x)Hp(X) 
and finally, since p ~ */, we have ti/(y) n i/(X) Ct^(x) n v(X). Therefore v(x) ^ 
v(y). By the symmetry of ~, the opposite implication is also satisfied, and we are 
done. D 
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Remark. In the paper [8] condition (**) -and the notion of equivalent fuzzy sets 
were used to characterize fuzzy sets with equal supports and only finite number of 
values in the interval [0,1]. 

Now we are able to prove our main result, namely that equivalent fuzzy sets have 
equal families of cuts, which justifies the used terminology. 

Theorem 3. Let /i, v : X —> L. Then /i ~ v if and only if fuzzy sets // and v have 
equal families of cuts. 

P r o o f . Let \x ~ v, and let p G P. We prove that for every p G L there is q G L 
such that fip = vq. 

Since F(-\pHfi(X)) := {v(x) \ p,(x) ^ p}iu n v(X), is a bijection from P ; i to Pv, 
there is an element q G P , such that F(^pC\p,(X)) = \qC\v(X). By Lemma 1, for p 
and g, we have that for all y G X, /x(y) ^ p if and only if z/(?/) ^ q. Hence, [ip = vq. 

By symmetry of ~ , we get the same result if we start from q. 
To prove the converse, suppose that the families of cuts of /x and v are equal. 

Then, for every p G P there is q G P , such that /ip = vq and vice-versa. 
Now, we consider posets P^ and P„. They consist of the sets tp n /x(A') and 

tPn v(X) (p G P) , respectively and they are order isomorphic with the lattices ftp 
of cuts of // and vp of cuts of v (by Proposition 6). By the assumption, //p = vp, 
therefore, PM is isomorphic with the Pv. If /xp = vq, then tPn/x(A") i-»tqn/x(A') is the 
required isomorphism by the proof of Proposition 6. Now, we have to prove that the 
isomorphism is indeed the F from definition (*). By Proposition 5, families of cuts 
of lattice valued fuzzy sets / /D M ( p ) and */DM(p) are the same. By Theorem 1 from 
[15], mapping P( tPn/ i (X)) :=tf\DM{P){v(x) \ fi(x) ^ p} Hv(X), p G DM(P) is an 
isomorphism from the lattice DM(P)fl onto the lattice DM(P)V. This mapping is 
the extension of the mapping F from PM to Pv, since images of fuzzy sets in both 
cases belong to P , and mapping is given by P(tP n fi(X)) = tq n v(X), for q for 
which fip = vq. The theorem is now proved by tADM(P)(I/(:r;) I / i(x) ^ P) ^ V(X) = 
{v(x)\vi(x)2p}tunv(X). • 

In the case of fuzzy sets with finite number of values in the interval [0,1], condition 
(**) from Theorem 2 is also sufficient in order that /i and v are equivalent (see [8]), 
i. e., that they have equal collections of cut sets. The counter-example for the general 
case is given in Example 2. 

Example 2. Let p be a positive real number less then 1, and X the set of numbers 
from p to 1: 

pGM, 0 < p < 1, X = [p,l]. 

Consider fuzzy sets //, v : X —> [0,1], defined as follows: for every x G X, 

( N / Z, X >P 

^ := \ 0 , x=p, 

v(x) := x. 
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Now it is easy to check that the condition (**) is fulfilled: for all x , j / G l , 

p(x) ^ fi(y) if and only if v(x) ^ ^(y). 

However, /i and v do not have equal collections of cut sets. Indeed, observe the p-cut 
of \i (recall that p is the smallest real number in the set X): 

fip = {x e X | fi(x) >p} = (p, 1], 

but there is no q G [0,1] such that vq = p,p. 
The reason for the difference of cuts is that /i and v are not equivalent in the 

sense of our definition. Indeed, we have 

ti(X) = {0}U(p,l], u(X) = \p,l]. 

Hence 

F({0,1] n fi(X)) = F({0} U (p, 1]) = [MMx) I M(Z) > 0}, 1] n u(X) = \p, 1], 

and similarly 

F(\p,l]nti(X)) = F((p,l]) = \p,l]. 

Therefore, F is not injective, hence it is not an isomorphism. • 

Our last example illustrates the definition and properties of equivalent fuzzy sets 
whose co-domain is a poset which is not a lattice. 

Example 3. Consider a three-element set X = {x, j / , z} and a seven element poset 

P given by its diagram in Figure 3. 

P 
Q 

(p,o 

Fig. 3. 

Let //, v and p be fuzzy sets as functions from X to P , defined as follows: 

f x y z \ ( x y z \ ( x y z \ 

»={q t , ; • v={r t , ; • p={t s v) 
The sets of images for these fuzzy sets are isomorphic order subsets of P (Fig

ure 4), i.e., each pair of these fulfils the condition (**). 
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o s 

џ(X) 

V 

9 

Ó 

t 

O 5 

v(X) 

Fig. 4. 

s 
o 

o t 

P(X) 

Still, only fuzzy sets ji and v are equivalent in the sense of our definition. It 
means that posets P^ and Pv are isomorphic, and consequently collections of cut 
sets coincide (Figure 5). 

{я,t} { ,s} 

{x,y} {x,z} 

ЏP = vP 

Fig. 5. 

Fuzzy set p is not equivalent with the previous two, since its poset Pp is not 
isomorphic with the above ones; hence also its poset of cut set does not coincide 
with theirs (Figure 6). 
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pp 

Mг/} 

Fig. 6. 

4. CUTS OF LR FUZZY QUANTITIES 

In this part the results of the previous sections are applied to a special type of fuzzy 
sets - LR fuzzy quantities. 

We consider fuzzy quantities (fuzzy real numbers) as mappings /i : R -> [0,1], 
from set of reals to [0,1], such that there is exactly one o G E , such that (i(a) = 1 
and all the cut sets are intervals. 

LR-representation of a fuzzy number \i : R -» [0,1] (where /i(a) = 1 for a E R) 
is an ordered pair of functions (HL^R)) where fiL 1s a monotonously nondecreasing 
function from (—oo,a) to [0,1] and fiR is a monotonously nonincreasing function 
from (a,oo) to [0,1]. We consider functions /J,L and \LR as fuzzy sets on sets (—oo,a) 
and (a,oo), respectively. 

Obviously, Theorem 3 is true for the case of fuzzy quantities and it can be easily 
re-formulated in this setting. 

However, one can raise a question whether it is possible to simplify conditions 
from Theorem 3 and re-formulate the conditions using the fuzzy sets JIL and \XR 
instead of fi. The following proposition is easy to verify: 

Propos i t ion 7. Let fj, and v be two fuzzy real numbers in LR representation. If 
fi and v are equivalent, then fi(a) = 1 if and only if v(a) = 1 and the related fuzzy 
sets \IL and VL and /IR and VR are (in pairs) equivalent. 

The converse of this theorem is not true, which is illustrated in the following 
example. 
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E x a m p l e 4 . Let fi and v be fuzzy numbers, defined by: 

o, x < 0 
0.5x, x Є (0,2) 

џ{x) := < 1, x = 2 
-0.5x + 2, xЄ(2,4) 

l o, x > 4 , 

' o, x < 0 
X, x 6(0,0.5) 

v{x) := < ì x + ì 
З x т 3 ' 

1, 

x 6(0.5,2) 
x = 2 

-0.5x + 2, x є ( 2 , 4 ) 

. o. x > 4 . 

Condition /x(a) = 1 if and only if v{a) = 1 for all a G R is satisfied. 

Moreover, fuzzy set /IL is equivalent with vi and fuzzy set /i/? is equivalent with 

VR. 

However, the conditions of Theorem 3 are not satisfied and fuzzy sets /i and v 

are not equivalent. 

5. CONCLUSION 

The above results completely characterize fuzzy sets according to the equality of 

collections of cuts. As it is pointed out, this characterization is essentially set and 

order theoretic. Therefore it can be used to classify e.g., all fuzzy algebraic and 

ordered structures, fuzzy topologies, fuzzy relations, graphs etc. 

According to some general approach to cut sets (see e.g., Liu and Luo [6]), some 

further investigation could lead to analogue result concerning different generaliza

tions of cut sets, or to some classification of cutworthy properties of fuzzy systems. 
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