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We propose a modified standard embedding for solving the linear complementarity prob
lem (LCP). This embedding is a special one-parametric optimization problem P(t),t G 
[0,1]. Under the conditions (A3) (the Mangasarian-Fromovitz Constraint Qualification is 
satisfied for the feasible set M(t) depending on the parameter £), (A4) (P(t) is Jongen-
Jonker-Twilt regular) and two technical assumptions, (Al) and (A2), there exists a path 
in the set of stationary points connecting the chosen starting point for P(0) with a certain 
point for P ( l ) and this point is a solution for the (LCP). This path may include types of 
singularities, namely points of Type 2 and Type 3 in the class of Jongen-Jonker-Twilt for 
t G [0,1). We can follow this path by using pathfollowing procedures (included in the pro
gram package PAFO). In case that the condition (A3) is not satisfied, also points of Type 
4 and 5 may appear. The assumption (A4) will be justified by a perturbation theorem. 
Illustrative examples are presented. 
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1. INTRODUCTION 

Let B be an n x n-matrix, q G Mn, and 

ML := {xeMn\Bx + q>0,x >0,xTBx + qTx < 0}. 

We consider the well-known linear complementarity problem (for its practical im
portance we refer e.g. to [9] and the papers cited there): 

(LCP) Find a point x G ML. (1.1) 
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If we introduce 

(b'r \ 
B=\ : with V ^ 0, j = l,...,n, and b> € Rn, 

\ 6"T / 

then we can write M L in the following form 
M L = {x G Rn | VTx + qj > 0, Xj > 0, j G J, xT.Bx + qTx < 0} , 

where J := { 1 , . . . , n} . 
We assume that 

(Al) M L ^ 0. 

Let E(p) := {x G Rn \ ||x||2 < p} with p G iR and p > 0. 

Then there exists a p 0 > 0 such that M L H E(p) y«- 0 for all p > p0. (1.2) 

If M L is compact, then we even have: There exists a po > 0 such that 

M L C JS(p) for all p > p0 . 

Instead of the (LCP) (cf. (1.1)) we now consider the following optimization problem 

(PL) min \\(x- x°)T-4(x - x°) | x G M L | , (1.3) 

where A is a symmetric n x n matrix (.A G JRn(n+1)/2 , here the space of symmetric 
nxn matrices is identical to iR n( n + 1 )! 2) . 

Now we introduce the well-known concept of embedding for the general nonlinear 
optimization problem 

(P) min{/ (x) |x G M } , (1.4) 

where 
M := {x G Rn | gj(x) > 0, j G J } , (1.5) 

J : = {1, . . . ,8} a n d / , £ , eC3(Rn,R),i G 7, j G J . 
We choose a one-parametric optimization problem 

P(t) min{/(x, t) | x G M(*)}, * G [0,1], 

where 
M(t) := {x G iRn | gj(x,t) > 0, j G J } , 

with the following properties: 

(VI) A local minimizer for P(0) is known and the corresponding Lagrange multi
pliers are known or easy to compute. 

(V2) P(t) has a global minimizer for all t G [0,1]. 
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(V3) P(l) is equivalent to (P). 

(VI) and (V2) are the minimum of properties for finding a discretization of [0,1]: 

0 = t0 < • • • < tk < t*+i < . . . < tN = 1 (1.6) 

and corresponding local minimizers, stationary or generalized critical points x(tk) 
(g. c point) of P(tk), k = 1 , . . . ,1V. For the definition of a g .c point we refer to 
[16,17,18]. 

Remark 1.1. Note that the concept for finding a discretization (1.6) and corre
sponding optimal points was already proposed by F. Nozicka (see [20,21]) for linear 
one-parametric optimization problems. 

One of the classical standard embeddings of the problem (1.4), (1.5) is the fol
lowing one 

Ps(t) min{tf(x) + (1 - t)\\x - x°\\2 | x G Ms(t)}, t G [0,1], 

where 
Ms(t) := {x e Mn | t9j(x) + (1 - t)v/} > 0, j e J} 

with w? > 0, j e J. 
Then the problem (PL) is embedded by 

Ps(t) mm{(x-x°)TA(x-x°)\xeMs(t)}, te[0,l], (1.7) 

Ms(t) :={xe Mn \gj(x,t) > 0 , j = 0 , 1 . . . , n,hi(x) > 0, i = 1 . . . ,n + 1}, (1.8) 

where 
= t(-xTBx - qTx) + (1 - t)w%, 

= t(VTx + qj) + (l-t)w^ j = l,...,n, 

—— *Li) * ~— --j • • • j '-"} 

= p — ||x||2, p sufficiently large. 

go(x,t) 

gj(x,t) 

hi(x) 

hn+i (x) 

We assume 

(A2) w<} > 0, i = 0 , 1 , . . . , n and ||x°||2 < p. 

Here we use the pathfollowing procedure (cf. the Program Package PAFO in Chapter 
2). We will see that we obtain a very good starting situation for t = 0. If we achieve 
t = 1, we will have a solution of the (LCP). The use of pathfollowing methods for 
Complementarity problems is not new (e.g. [4]-[10], [12,13,20,21,28,29] and the 
papers cited there). Modified standard embeddings (cf. [26]) are not new either. 
What is new is the application of this embedding to the (LCP). It will turn out 
that we achieve t = 1 by using a pathfollowing procedure only if we do not make 
an assumption on the matrix J5, in distinction to what was done in the papers 
cited above. The matrix B could also be indefinite. Furthermore, the path we are 
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following may include singularities. This is the real advantage of the approaches in 
[1] and here. From this point of view it is not necessary to compare our pathfollowing 
procedure with others for (LCP). Chapter 2 includes a summary of the theoretical 
background and a short description of the program package PAFO (only the part 
used here). 

In Chapter 3 important properties of Ps(t) (i.e., the starting situation and the 
singularities that may appear) will be discussed. Under the assumptions (Al) - (A4) 
there exists a path in the set of stationary points connecting the chosen starting 
point for Ps(0) with a certain point for Ps(l) and this point is a solution for the 
(LCP). The path may include types of singularities, namely points of Type 2 and 
Type 3 in the class of Jongen-Jonker-Twilt for t e [0,1). 

In Chapter 4 a perturbation theorem justifying the chosen approach is presented. 
Illustrative examples are given in Chapter 5, where we see that we achieve t = 1 
under the assumptions (A1)-(A4). Further, we present an example that we are 
successful even if (A3) is not satisfied. In the penalty embedding (cf. [1]) we have 
many more variables than in the standard embedding. This is a great advantage. 
Up to now, we have been successful with all our examples. Let us mention that the 
authors follow the same concept as for the penalty embedding in [1]. 

2. THEORETICAL BACKGROUND AND ON THE PROGRAM 
PACKAGE PAFO 

First, we present a very short version of 2.5, 2.6 from [17]. We consider the general 
one-parametric problem: 

P(t) min{/(x , t ) \x e M(t)}, t G M resp. t e [0,1], (2.1) 

where M(t) = {x e Mn\hi(x,t) = 0, i e I, gj(x,t) > 0, j G J}, and f,hi,gj G 
C3(Mn xM,M), iei,jeJ. 

Furthermore, we introduce the following notations: 

Sg c := {(x, t) e Mn x M | x is a g. c point of P(t)}, 

Sstat •= {(x,t) e Mn x M | x is a stationary point of P(t)}, 

Eioc := {(x,t) e Mn x M | x is a local minimizer of P(t)}, 

H := (hi,...,hm)T, G := {gu... ,gs)
T'. 

The Linear Independence Constraint Qualification (briefly LICQ) is satisfied at 
x e M(i) if the vectors Dxhi(x,t), i G / , Dxgj(x,t), j G Jo(x,t), are linearly 
independent (Jo(x,t) := {j G J\gj(x,t) = 0}). 

The Mangasarian-Fromovitz Constraint Qualification (briefly MFCQ) is satisfied 
at x e M(t) if: 

(MF1) Dxhi(x,t), i e I, are linearly independent, 

(MF2) there exists a vector £ G Mn with 

Dxhi(x,t)£ = 0, iel,1 

Dxgj(x,t)t>0, j eJ0(x,i). 
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Next, we cite our short characterization from [16]-[18] of the class J7, introduced 
by Jongen, Jonker and Twilt. 

If (/, H, G) G T, then E g c can be divided into 5 types. 

Typ«* I 

Tyiн. 2 

Tv,...:, 

Ty,„. i 

Ty,..- .1 

: i > £ 
•/..(r)--Ø ./..(-) ?-í ./,,!-) = « ./..(r) = tЗ 

(</) lh) (i) (/') 

MFCQholih MFCQ violaltd MFCQ violalttl 
U> (/) (m) 

Fig. 2.1. The full curve stands for the curve of stationary points z = (x,£), 
and the dotted curve represents the curve of g. c points that are not stationary points. 

Type 1: A point (x,i) G S g c is of Type 1 (non-degenerate critical point), i.e., 
(x,t) G SgC, if the following conditions are satisfied: 

There exist \i,jlj G M, i G / , j G Jo(x,t) with 

Dxf + Yl ~XiD*hi + ]C fijDx9j !(*,*)=(*,*) = 0. (2-2) 
iei jeJo(x,t) J 

the LICQ is satisfied at x G M(t), (2.3a) 

(therefore Aj, /Xj, i € I, j e Jo(x,~) are uniquely defined) 

A i ^ O , jeJ0(x,t), 

DlL(x,~)\T(xfi is nonsingular, 

where DXL is the Hessian of the Lagrangian 

L{x,t) = f(x,t) + ~~~]Xihi(x,t) + ~~~] iij9j(x,t), 
iei jeMx,t) 

*We consider all gradients as a row vector. 
Dxhi(x,t) is a row vector. 

(2.3b) 

(2.3c) 
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and the uniquely determined numbers Xi,fij are taken from (2.2). 

Furthermore, 

T(x,t) = {£elRn\ Dxhi(x,t)i = 0, i € / , Dxgj(x,t)£ = 0 , j 6 J0(x,t)} 

is the tangent space at (x,t). DlL(x,t)\r(x,t) represents VTD\LV', where V is a 
matrix whose columns form a basis of T(x,t). 

The set Sg c is the closure of the set of all points of Type 1, the points of the 
Types 2-5 constitute a discrete subset of Egc. The points of the Types 2-5 represent 
four basic degeneracies (for details of the definition we refer to [16]-[18]): 

Type 2 - violation of (2.3b), 

Type 3 - violation of (2.3c), 

Type 4 - violation of (2.3a) and \I\ -F | J0(z)\ - 1 < n, 

Type 5 - violation of (2.3a) and \I\ + | J0(z)\ = n -F 1. 

For each of these five types Figure 2.2 illustrates the local structure of Egc in the 
neighbourhood of stationary points. 

X z ^ 
y 

\ 
(„,» 1 

(«) 
Tҷ)» Ł 

ІЬ) 

ґ^ 
Ty)ж 2 

И 
Tц)» 2 

ґ-
TЧ,» Л 

(') 
Ty 

( 
)» 3 

/) 
Ty,» 4 

(9) 

Ty)» 4 

(M 

Ty,» "> 

(') 
Typr .') 

(j) 

1 Гÿ)ÌГ » 

(H 

Fig. 2.2. The full curve stands for a curve of local minimizers and the dotted curve in 
(c), (d), (e), (f) represents a curve of stationary points not being local minimizers. The 
dotted curve in (g), (h) stands for a curve of stationary points in case of Jo(x, t) = 0. 

Remark 2.1. In Chapter 4 we need a complete description of a point of Type 4. 
Let J0(x, i) = {1, . . . ,p} (w.l.o.g.). 

(x,i) G SgC, if the following conditions are satisfied: 
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a) 1 <m+p<n and it holds that 

/ Dxhx{x,i) \ 

rank 
Dxhm(x,t) 

Dxgi(x,ť) 
= m + p — 1. 

\ Dxgp(x,t) J 

b) Qm+j ̂  0 for all j E {1, . . . ,p}, where q is fixed and defined in 

v 
Y^QiDxhi(x,t) + ^2qm+jDxgj(x,i) =0, q ^ 0m+p. 
ІЄI 3=1 

c) (x,q\,... ,qm+p-i,t,0) E jR n + m +P+ 1 i s a non-degenerate critical point of the 
problem 

(P) mm{T(x, q, t, q0) \ Q(x, q, t, q0) = 0}, 

where 

/ DxC(x,q,t,q0) \ 

h\(x,t) 

T(x,q,t,q0) = t, Q(x,q,t,q0) = hm(x,t) 

9i(x,t) 

\ 9P(x,t) J 

and C(x,q,t,q0) = q0f(x,t) - E i e I ^ O M ) ~ E j=J Qm+j9j(x,t) - qm+pgp(x,t). 

There are two theorems justifying that (/, H, G) belongs to the class T of Jongen, 
Jonker and Twilt. 

Theorem 2.2. (Genericity theorem, cf. [18]) Let (f,H,G) G C3(lRnxlR,M1+m+s). 
The class T is Cf-open and Cf-dense in C3(Mn x M,M)1+rn^s, where Cf denotes 
the strong (or Whitney-) Cf-topology. 

The following theorem provides a special perturbation of (/, H, G) with additional 
parameters that can be chosen arbitrarily small such that the perturbed function 
vector belongs to the class T. Let the space of symmetric n x n-matrices be identified 
by iR n ( n + 1 )/ 2 . 
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Let EgC, v G { 1 , . . . , 5} be the set of g. c points of Type v. The class T is defined 
by 

T = | (/,H,G) G C3(Mn x M^M)1*™*8 | Egc c (J £*c 1 . 

Theorem 2.3. (Perturbation Theorem, cf. [25]) 
Let ( / , i / ,G) G C3(iRn x i ? , i ? 1 + m + 5 ) . Then, for almost all 
(6, A,C,Dye,F) G Mn X Jjn(n+l)/2 x ^ m x ^mn x jR* x JR*^ w e h a y e 

(/(a;, £) -f 6Tx + xTAx, H(x, t) +c + Dx, G(x, t) + e + Fx) G T. 

Here "almost all" means: Each measurable subset of 

{(b, A,c, F>, e, F) | (/(:z, 0 + bTx + xTAx, H(x, t)+c + _Dx,G(x, t) + e + Fx) <£ F) 

has the Lebesgue-measure zero. 

Definition 2.4. Let K C ML) {±oo}. The problem P(t) is called regular in the 
sense of Jongen-Jonker-Twilt (briefly JJT-regular) with respect to K if (/, H, G) e 

EU((iRnxK)nsgccu"=1s-c). 

Now, we present a theorem that is essential for our analysis. 

Theorem 2.5. (follows from [14]) We assume that 
(CI) M(t) is non-empty and there exists a compact set C with M(t) C C for all 

*€[0,1]; 
(C2) P(t) is JJT-regular with respect to [0,1]; 
(C3) there exists a *i > 0 and a continuous function x : [0,*i) -> Mn such that x(t) 

is the unique stationary point for P(t) for t G [0,£i); 
(C4) the MFCQ is satisfied for all x G M(t) for all t G [0,1]. 
Then there exists a PC2-path in .£stat that connects (x , 0) with some point (x*, 1). 

On the program package PAFO (this is a very short version of Chapter 4.5 
and 5.2 in [17]). 

PAFO is based on a pathfollowing method (called PATH III in 4.5 [17]) and jumps 
(called JUMP I in Chapter 5.2 [17] and JUMP II in Chapter 5.3 [17]). 

Remark 2.6 (i) Pathfollowing methods are also called homotopy- and continua
tion methods in the literature. The great amount of publications shows the interna
tional acceptance of this procedure not only for complementarity problems (cf. e. g. 
[2,24,27]). 

(ii) There is much numerical experience with such kind of methods (cf. e.g. 
[4,5,10,24], PAFO is the only method that works in the class T of Jongen, Jonker 
and Twilt, i.e., the types of singularities described above are admitted. 

We explain the main ideas of PATH III, but not those of JUMP I, II, as we will 
not use them here. 
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PATH III 
This algorithm computes a numerical description of a compact connected component 
in ^ g c , i.e., in particular it finds a finite discretization of an interval [^,£1?], tA < 
0 < ts (not necessarily [ ^ , ^ B ] D [0,1]), and corresponding g. c points starting at 
(x°,0) G Sgc- The algorithm is based on the active index set strategy and is a 
so-called predictor-corrector scheme (we refer e.g. to [2,24]) if the active index set 
is constant. A Newton-like corrector is used. 

We note that we do not have any numerical difficulties walking around turning 
points of the Types 3 or 4. The main point of the approach consists in the compu
tation of the new index sets for the possible continuations at points of Type 2 and 
5. This is easily done without any numerical problems. 

Remark 2.7. If there exists a PC2-path connecting (x°,0) and a point (x*,l) , 
PAFO constructs a finite number of predictor steps in [0,1], i.e., a discretization 
0 = to < • • • < ti < £i+i < • • • < £Iv = 1, and, by corrector steps using Newton
like methods, corresponding approximations x(U) of stationary points x(U), i = 
1,. . . ,7V, where the rate of convergence will be at least superlinear and the points 
x(ti) will be obtained by a finite number of Newton-like steps. This procedure is 
numerically stable. 

3. PROPERTIES OF THE MODIFIED STANDARD EMBEDDING 

We consider the problem (PL) (cf. (1.3)) and the corresponding modified standard 
embedding Ps(t), t G [0,1] (cf. (1.7), (1.8)). 

Theorem 3.1. Let (Al) and (A2) be satisfied. Then we have the following prop
erties for Ps(t): 

(i) If we choose the matrix A to be positive definite, then x° is a global minimizer, 
the unique stationary point for P s(0). Furthermore, x° is a non-degenerate 
critical point for P s(0) . 

(ii) Ms(t) is non-empty for all t G [0,1]. 

(iii) P 5 ( l ) = (P L ) . 

We introduce the following assumptions: 

(A3) The MFCQ is satisfied for all x G Ms(t) and all t G [0,1), 

(A4) Ps(t) is JJT-regular with respect to [0,1]. 

Remark 3.2. We have to take into account that the MFCQ can be violated at 
points in Ms(\) = ML C\ E(p) because these points are points of Type 5. 

Using Theorem 2.4 we obtain 
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Theorem 3.3. Let (Al), (A2), (A3), and (A4) be satisfied. Then there exists a 
PC2-path in Ss tat that connects (x°,0) and some point (x,i) for all i e (0,1), and 
only points of Type 1, 2 and 3 may appear. 

Remark 3.4. Since the point-to-set mapping t —r Ms(t) is closed at t = 1 (cf. 
e.g. [3]) and Ms(t) C E(p) for t e [0,1], there exists a sequence {(xk,tk)} with 
xk e Ms(tk) that converges to a point (x*,l). Prom this point of view we are 
successful. 

Now we introduce a condition that is weaker than (A3) to be successful with 
the proposed procedure. We know that the starting point x° for Ps(0) (the only 
stationary point, cf. Theorem 3.1) lies on a uniquely determined connected compo
nent C(x°,0) in Estat- Furthermore, we know that C(x°,0) is the only connected 
component in Es tat crossing the hyperlane {(x,t) e Mn x JR\t = 0}. By clA we 
describe the closure of the set A. 

Now we introduce the following condition for Ps(t) : 

(Fl) The MFCQ is satisfied for all x e Ms(t) with (x,t) e clC(x°,0)|[o£] 

for all te (0,1). 

Theorem 3.5. Let (Al), (A2), (Fl) and (A4) be satisfied. Then there exists a PC2 

-path in Es tat connecting (x°,0) with some point (x*,l), where x* is a stationary 
point of (P) if and only if (Fl) is satisfied. 

Remark 3.6. (concerning the proof): Use the same concept as in the proof of 
Theorem 2.4. 

Remark 3.7. If the condition (Fl) is satisfied and if we do not attain t = 1, then 
ML fl E(p) is empty. The program package PAFO provides information whether 
(Fl) is satisfied or not. 

4. A JUSTIFICATION THEOREM FOR THE JJT-REGULARITY 

We ask whether we can justify the very important assumption (A4). We refer to 
the perturbation theorem (Theorem 2.2) for the general one-parametric optimization 
problem P(t) (cf. (2.1)). We have to note that, from Theorem 2.2 we cannot directly 
derive a perturbation theorem for the special one-parametric optimization problem 
P8(t) (cf. (1.5)) Theoretically could be appear for Ps(t) other singularities as we 
know in the class T. From this point of view we consider the perturbation vector 
V := (A,x°,B,q,w°) where A e «iW»+i>, x° eMn,Be fiHn+1>, q e Mn, w° e 
m n + l . 

We consider the following perturbed embedding 

P^(t) : min {(x - x°)TA(x - x°) | t(-xTBx - qTx) + (1 - t)w° > 0, 

t(vTx-qj) + (l-t)ti/? > o, je J, XJ > o, je J, p - ||x||2 > o}, t e [0,1], 
where .A is a symmetric regular matrix, w® > 0, i = 0 , 1 , . . . ,n and ||x°||2 < p. 
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Theorem 4 .1 . (Perturbation Theorem) For almost all V the problem Px>(t) is 
JJT-regular with respect to [0,1]. 

P roo f . We have to prove that for almost all V = (A,x°,B) with B := (B,q,w°) 
each g. c point of Px>(t) is one of the five types in the class T. Now we introduce 
the following notations: Jo := Jo(x,t) = {j £ { 0 , 1 , . . . ,n} \gj(x,t) = 0} U {j G 
{ l , . . . , n + l\hj(x) = 0}, Ji := J0 fl {0 ,1 , . . .,n},J2 := {1, . . . , n + 1}, where 

9o(x, t) 

9j(x,t) 

hj(x) 

hn+ï + (x) 

= t(-xтBx - qтx + (1 - t)w%, 

= t(Vтx - q,) + (1 - t)w°, j Є J, 

= XJУ 3 Є J> 

:=p-| |x |r. 
We consider B and -PE(£) as well as a g. c point (x,t) for Pe(t), and distinguish two 
cases: 
Case I: The LICQ is satisfied at the g. c point (x,t). 

Case II : The LICQ is not satisfied at the g. c point (x,t). 

CASE I. In this case the corresponding Lagrange multipliers /Xj,j G Jo, are 
uniquely determined. We introduce the following set 

J' :=Jon{j\iij = 0}. 

Then the set of g. c points is described as a union of sets satisfying the following 
systems 

H(x,t) = 0, (4.1) 

M(x,t) = il, (4.2) 

fti = n2n^lnT, (4.3) 
N = 0, jeJ'CJ0(x), (4.4) 

where H(x,t) = DXy^L(x,fi,t) = 0 corresponds to the definition of a critical point, 
(4.4) corresponds to the zero Lagrange multipliers, and (4.2) - (4.3) describe the rank 
of D* pL(x,[i). Such a matrix ft has the following structure: 

ӣ = 
fil ft2 

where f.4 is symmetric, non-singular and has the rank of il. Therefore, il belongs 
to the manifold described by (4.3). Then we obtain 

( 2A(x - x°) + Xt[(B + BT)x + q} + tnlBi + n2I2 + 2fi°x \ 

t^Bx + qTx) + (1 - t)wl if 0 G J0(x, t) 

H(x, n, t) = t(Vx + qj) + (1 - t)w°; j G Ii C J0(x, t) 

Xj,j € J2 C J0(x,t) 

| | * | | a - P if IN|2 = p , 



562 S. ALLENDE ALLONSO, J. GUDDAT AND D. NOWACK 

and 

M(x,/i,t) 

( 2A + \t(B + BT) t[(B + BT)x + q) tBj IT 2x \ 

t[(B + BT)x + q]T 0 0 0 0 

tBx 0 0 

h 0 0 

2xT 0 0 

0 0 

0 0 

0 0 

where B\ (I2) are the rows of B (I) corresponding to the index sets J\ and J 2 . 
If the last (and/or first) constraint is not active, the last (and/or n + 1) row and 
column of M are eliminated. 

We construct the Jacobian of the system (4.1)-(4.4) with respect to 
xy /x, A, x°y B, t, w° = K , . . . , w°n)

T

y w%. 

дx 

I 2Л + ЛtB + B т 

t[в + в т x + <г]т 

tBi 
I2 
2x 

t[B + Bтx + q] 
0 
0 
0 
0 
0 

дџl дџ2 

V 

tвŢ 
0 
0 
0 
0 
0 

0 
Ij. 

iт 

0 
0 
0 
0 
0 

-V дA 
Әn дxo дt 

д„o ч 
2x 2(x-x°) 0 -2A <8> (8) 0 

0 0 0 0 (8) 0 1 - 1 
0 0 0 0 0 ( Í " 1 ) I 2 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 2 I n (n + l) 

0 
- I „ 0 (8) 0 0 

0 0 I**® 0 0 0 0 
0 0 0 0 0 0 

We note that a linear combination of the rows of the matrix above, which gives the 
null vector, has the coefficients corresponding to the first, second and third block 
equal to zero (because of the columns dxo,dwo,dWoy respectively). The relation 
between the structure of M and Q implies that the coefficients corresponding to 
the fourth and fifth block are also zero and, finally, the gradient vectors of the 
non-negativity and compactification constraints are linearly independent. Then the 
matrix has full rank. 

Using Sard's Lemma, we see that the rows of the sub-matrix corresponding to 
dx^d^ijd^i^d^c^dt are linearly independent. Furthermore, the number of rows is 
less than or equal to n + \ Jn| + (n + \ Jn|)(n + | Jo| + l ) /2 . Therefore, only three cases 
may occur. They correspond to the points of Type 1,2 or 3. 

CASE II . It is necessary to prove: 

a) For almost all ZJ, M(B) is the union of a finite set of zero dimensional manifolds. 

b) Let (xyt) b e a g . c. point. Then, for almost all B, the set {Dxtgj(x,t),j G Jo(-c,£)} 
is linearly independent. 
c) For almost all B the Lagrange multipliers corresponding to the g. c. point (x, t) 
are non-zero. 

In addition, let J* C J0 and 5 be the subspace generated by the gradient vectors 
Dx of the constraints corresponding to J*. 
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d) If 5 has a dimension less than or equal to n—1, then the gradient vector 2A(x—x°) 
of the objective function belongs to the subspace S. 

Under these condition we prove that the set (A,x°,.6), where (x,t) is not a point 
of Type 4 or 5, has the Lebesgue measure zero. Then Theorem 4.1 is proved by 
Fubini's Theorem. 

Now we prove a) and c): We will consider all possible sets of indices of active 
constraints. We fix one of them and assume that the quadratic and the compactifi-
cation constraints and some of the linear and non-negativity constraints are active. 
If they are not active, the proof is analogous. 

Let us consider a point (x, t) where the LICQ does not hold, and the associated 
multipliers (A,//1 ,^2 , / /0), which describe the linear dependence. A is the multiplier 
associated with the complementarity constraint, /i1 is the vector of multipliers of the 
inequalities in J\, /i2 that for the inequalities in J2, and /xc that for the compactifi-
cation constraint. Then we obtain the following system: 

t\[(B + BT)x + q] + t £ fjL}Bj + £ faj + 2/icx = 0, 
jeJi(x,t) jeJ$(*,t) 

-t[xTBx + qTx] + (1 - t)w% = 0, 

t(Vrx + qj) + (1 - t)w°j = 0 , j e J i , 

Xj = 0, j € J2 , 

IMI2 = P-

Since the gradient vectors of the non-negativity constraints and of the compacti-
fication constraints are linearly independent, either A ^ 0 or /11 7-= 0 holds. 

If A = 1, then the Jacobian with respect to x,£, the multipliers, WQ,W°,B, and q 
of the above system have the structure: 

dwo dq dB dt 

0 ti fi\i . . . tfj^I ®\ 
0 -tx ® ® 

(1 - t)h th ® ® 
0 0 0 0 
0 0 0 0 / 

If /i° = 0 and fil = 1, then the Jacobian of the system is the following matrix: 

(4.5) 

дx 
дpi дџi дßc дwo 

( ® ® Iт 

*2 
2x 0 

® 0 0 0 1 -
® 0 0 0 0 

h 0 0 0 0 
\2xт 0 0 0 0 

dx d\ 9Mi dy* d^c dwo dwo dq OB dt 

( ® ® ® Ij 2x 0 0 0 ®|/ip/|® ® \ 
® 0 0 0 0 (1 - 1 ) 0 ® ® ® 

® 0 0 0 0 0 (l-*Hi ( l - ' U i ® ® 
h 0 0 0 0 0 0 0 0 0 

\xT 0 0 0 0 0 0 0 0 0 / 

In both cases the matrices have full rank. 
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Sard's Lemma implies that, given a set of active constraints, the sub-matrix D 
given by the column blocks has full rank for almost all w°, w°, B and q : n + l + | J o | - l . 
Then the dimension of the set described by the system is 0. 

b) is a consequence of the previous analysis, considering the rows corresponding to 
the gradient of the constraints with respect to (x,t). 

For proving c): We consider the above system under additional conditions: fij = 
0,/ij G J ' C J0 . 

The Jacobian of the new system has now an additional block of rows: 

dx <9A„U dwo dwo OB dq dt 

0 Ij> 0 0 0 0 0 

By the same arguments, the submatrix Dx>Dt>D^ has full rank by the rows for 
almost all B,w°,w°,q. 

Since the dimension of the space is N + 1 + | Jo| — 1 = N + \ J0 | , it holds that 
-V + | J01 + \J'\ <N + | J0 | . Then we have \J'\ = 0. 

We have discussed properties related to the feasible set of the constraint. Before 
proving a property related the objective function, we note that the following property 
of M(t) is an immediate consequence of the above analysis: 

R e m a r k 4.2. For any t G [0,1) and for almost all w0 and w°, at most n + 1 
constraints of the parametric problem P[)(t) can be active at a feasible point. 

For proving d) we fix the g. c point (there is a countable number of candidates): 
Let J** C J0 be such that J* generates S. We look for the solvability of the 

following system S(/i) : 

2A(x - x°) + t\* [(B + BT)x + q\+t ^ ix)*V + ^ fifej + 2fi*cx = 0 
jeJml(*>t) jeJZ2(xyt) 

The Jacobian with respect to x, the multipliers, A and x°, reads: 

d\+ d^i* d^2* d^c* 3A dxo 

® ® ® ® ® -2A. 

Since A is regular, the last block of this matrix has rank n. So, using Sard's 
Lemma, the sub-matrix corresponding to A, /x1 , p2*, /ic has full rank n for almost all 
x°, which contradicts the assumption that S has a dimension less than n. Therefore, 
d) holds. 

Due to Remark 4.1 we consider two possibilities: 
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(i) \J0(x,t)\<n, 

(ii) |JoOM)l = n + l. 

In the first case, x, t satisfies the condition a) of a point of Type 4 (cf. Chapter 2). 
The property c) implies condition b), for almost all B,w°,WQ,q. 

For proving c) we show that (x, t) is a g. c. point of Type 4. The LICQ does not 
hold at (x,t), but the property b) implies that the set {DXyt9j(x,t),j G Jo(x,t)} 
is linearly independent, hence £ j € j 0 fijDx9j(x,t) = 0, EjeJo V>jDt9j{x>t) t 0> 
where all coefficients are non-zero. Without l6ss of generality, we assume that 
Y2jeJ0f

1JDt9j(x^) = 1- Then (x,t) is a g.c. point of Type 4. The gradients of 
the active constraints form a submatrix of M with rank n + \Jo\ for almost all per
turbations. Hence, the LICQ is satisfied at (x, t) and the subspace 54 is generated 
by the gradients of active constraints, has dimension n + | Jn| for almost all per
turbations. (x,t) is a non-degenerated critical point. Properties b) and d) allow 
to construct a orthogonal basis of 54. Then there exists a vector w ^ 0 such that 
wTD\xL±w 7-- 0, where L4 is defined by (2.4). 

The theorem is proved. Q 

5. ILLUSTRATIVE EXAMPLES 

Example 1. We consider the (LCP) defined by 

в = 

Í 

V 

- 4 

2 

0 

i П ( 1 \ 

4 1 , = - 6 

1 4 Ј \-ч 
B is an indefinite matrix. We have chosen A = In, the starting point x° = 
(0.1, 0.1, 0.1)T and p = 130. 
Passing 3 singularities of Type 2, we reach t = 1 at a point of Type 5, which is the 
solution x* = (0.68183, 0.96969, 0.75758)T of the (LCP): 

t x\ X2 xз 

NEWS 0.00000 0.10000 0.10000 0.10000 

T Y P E 2 0.15875 o.юooo 0.10000 0.10000 

T Y P E 2 0.29483 0.37697 0.65395 0.23849 

T Y P E 2 0.88693 0.51605 1.03258 0.70995 

T Y P E 5 1.00000 0.68183 0.96969 0.75758 
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In order to save space we show only Figure 5.1 with respect to x\. 

gu3b.dat 

O lypc2 
A lypeЗ 
O lyp~4 
O ІУP«5 

juнipк 

slлl. pninU: 

U2 1 

O lypc2 
A lypeЗ 
O lyp~4 
O ІУP«5 

juнipк 

slлl. pninU: 

ZĽŽ?-

Fig. 5.1. 

Example 2. We consider the (LCP) defined by 

/ 

в = 

V 

0 2 - 3 - 2 

- 2 0 1 2 

3 - 1 0 4 

2 - 2 - 4 0 

\ 

J 

( 9 

- 5 

- 9 

V 1 4 / 
We note that B is an antisymmetric indefinite matrix. We choose A = 7n, the 
starting point x° = (1, 1, 1, 1) and p = 100. Passing 4 singularities of Type 2 at 
t = 1 in a singularity of Type 5, we obtain the solution x* = (1, 2, 3, 2) of the 
(LCP): 

t X l X2 s з XĄ 

NEWS 0.00000 1.00000 1.00000 1.00000 1.00000 

T Y P E 2 0.10000 1.00000 1.00000 1.00000 1.00000 

T Y P E 2 0.19529 0.88534 1.06370 1.11466 0.82164 

T Y P E 2 0.20213 0.91570 1.07146 1.19511 0.84424 

T Y P E 2 0.63637 0.92857 1.21429 2.85715 1.71429 

T Y P E 5 1.00000 1.00000 2.00000 3.00000 2.00000 

Figure 5.2 shows the curves of stationary points connecting x° at t = 0 with the 
solution x* at t = 1 with respect to x\. 
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ku20.|)Г 

Fig. 5.2. 

Example 3. We consider the (LCP) with 

where B is indefinite. If we choose A = 7n, p = 100, and the starting point 

then we reach the solution x* = (1.42855, 0.85709, 0.00000) at t = 1, passing 3 
singularities of Type 2: 

t Xl X2 xz 

NEWS 0.00000 1.00000 1.00000 1.00000 

T Y P E 2 0.20001 1.00000 1.00000 1.00000 

T Y P E 2 0.55956 0.95655 0.60270 0.44809 

T Y P E 2 0.90401 1.40657 0.79854 0.09164 

T Y P E 5 1.00000 1.42855 0.85709 0.00000 
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ци-МмЫ 

Fig. 5.3. 

-ui.pf •k.i^. 

í" 
O typr2 
* «УI«3 
O «УP«4 

• IУI* 5 

... 

Ч 
JШJĄЖ 

•teLpoiau: 

R • c-poІNU: 

Fig. 5.4. 

Furthermore, beginning at the first singularity of Type 2, we have followed g. c 
points and, at t = 1, we obtain a further solution x** = (0, 3, 5 ) T of the (LCP). 
On this path we also have singularities of Type 3, Type 4, and Type 5: 

t XI X2 xз 
NEWP 0.20001 1.00000 1.00000 1.00000 

T Y P E 2 0.01060 3.91175 0.00000 4.44276 

T Y P E 2 0.00356 6.77931 0.00000 7.35126 
T Y P E 4 0.00356 6.74284 0.00000 7.38472 

T Y P E 5 0.00909 0.00000 0.00000 10.00000 

T Y P E 2 0.12603 0.00000 0.00000 2.18041 

T Y P E З 0.32143 0.00000 0.99945 1.33333 
T Y P E 4 0.31250 0.00000 1.39988 1.60000 

T Y P E 2 0.44974 0.00000 2.40026 2.57681 

T Y P E 5 1.00000 0.00000 3.00000 5.00000 

The above table illustrates that the assumption (A3) is not satisfied. Figure 5.4 
shows these curves with respect to xi, but we are also successful. 



A Modified Standard Embedding for Linear Complementarity Problems 569 

ACKNOWLEDGEMENT 

We thank G. Bouza Allende (Universidad de la Habana) for useful discussions and helpful 
hints. This research was supported by the Deutsche Forschungsgemeinschaft under grant 
Gu 304/14-1. 

(Received October 10, 2003.) 

REFERENCES 

[1] S. Allende Allonso, J. Guddat, and D. Nowack: A modified penalty embedding for 
linear complementarity problems. Investigation Oper. 23 (2002), 1, 37-54. 

[2] E. Allgower and K. Georg: Numerical Continuation Methods. An Introduction. 
Springer-Verlag, Berlin 1990. 

[3] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer: Non-Linear Parametric 
Optimization. Akademie-Verlag, Berlin 1982. 

[4] S. C. Billups: A homotopy-based algorithm for mixed complementarity problems. 
SIAM J. Optim. 12 (2002), 583-605. 

[5] S. C. Billups and L. T. Watson: A probability-one homotopie algorithm for nonsmooth 
equations and mixed complementarity problems. SIAM J. Optim. 12 (2002), 606-626. 

[6] J. V. Burke and S. Xu: The global linear convergence of a non-interior path-following 
algorithm for linear complementarity problems. Math. Oper. Res. 23 (1998), 719-734. 

[7] Ch. Chen and O.L. Mangasarian: Smoothing methods for convex inequalities and 
linear complementarity problems. Math. Programming 11 (1995), 51-69. 

[8] R .W . Cottle, J.-S. Pang, and R .E . Stone: The Linear Complementarity Problem. 
Academic Press, Boston, MA 1992, 

[9] F. Facchinei and J.-P. Pang: Finite-Dimensional Variational Inequalities and Com
plementarity Problems, Vol. I and Vol. II. (Springer Series in Operations Research.) 
Springer-Verlag, Berlin 2003. 

[10] M. C. Ferris, T . Munson, and D. Ralph: A homotopy method for mixed complementar
ity problems based on the PATH-solver. In: Numerical Analysis 1999 (D. F. Griffiths 
and G. A. Watson, eds., Research Notes in Mathematics), Chapman and Hall, London 
2000, pp. 143-167. 

[11] M. C. Ferris and J.-S. Pang: Engineering and economic application of complementarity 
problems. SIAM Rev. 39 (1997), 669-713. 

[12] A. Fischer: A Newton-type method for positive-semidefinite linear complementarity 
problems. J. Optim. Theory Appl. 86 (1995), 3, 585-608. 

[13] A. Fischer and Ch. Kanzow: On finite termination of an iterative method for linear 
complementarity problems. Math. Programming 14 (1996), 279-292. 

[14] H. Gfrerer, J. Guddat, Hj. Wacker, and W. Zulehner: Pathfollowing methods for 
Kuhn-Tucker curves by an active index set strategy. In: Systems and Optimization 
(A. Bagchi and T. Th. Jongen, eds., Lecture Notes in Control and Information Sciences 
66), Springer-Verlag, Berlin - Heidelberg - New York 1985, pp. 111-131. 

[15] R. Gollmer, U. Kausmann, D. Nowack, K. Wendler, and J. Bacallao Estrada: Com
puter programm PAFO. Humboldt-Universitat Berlin, Institut fur Mathematik 2004. 

[16] W. Gomez, J. Guddat, H. Th. Jongen, J.-J. Ruckmann, and C. Solano: Curvas criticas 
y saltos en optimizacion nolineal. Electronic Publication: The Electronic Library of 
Mathematics, http://www.emis.de/monographs/curvas/index.html. 

[17] J. Guddat, F. Guerra, and H.Th. Jongen: Parametric Optimization: Singularities, 
Pathfollowing and Jumps. BG Teubner, Stuttgart and J. Wiley, Chichester 1990. 

[18] H.Th. Jongen, P. Jonker, and F. Twilt: Critical Sets in Parametric Optimization. 
Math. Programming 34 (1986), 333-353. 



570 

[iэ; 

S. ALLENDE ALLONSO, J. GUDDAT AND D. NOWACK 

H. Th . Jongen, P. Jonker, and F . Twilt: Nonlinear Optimization in Finite Dimension: 
Morse Theory, Chebyshev Approximation, Transversality, Flows, Parametric Aspects. 
Kluwer, Dordrecht 2000. 

[20] Ch. Kanzow: Some boninterior continuation methods for linear complementarity prob
lems. SIAM J. Appl. Anal. 17(1996), 851-868. 

[21] M. Kojima, N. Megiddo, T. Noma, and A. Yoshishe: A Unified Approach to Interior 
Point Algorithms for Linear Complementarity Problems. Springer-Verlag, Berlin 1991. 

[22] F. Nozicka: Uber eine Klasse von linearen einparametrischen Optimierungsproblemen. 
Math. Operationsforschung Statist. 3 (1972), 159-194. 

[23] F. Nozicka, J. Guddat, H. Hollatz, and B. Bank: Theorie der linearen parametrischen 
Optimierung. Akademie-Verlag, Berlin 1974. 

[24] W. C. Reinholdt: Numerical Analysis of Parametric Nonlinear Equations. Wiley, New 
York 1986. 

[25] J.-J. Riickmann and K. Tammer: On linear-quadratic perturbations in one-parametric 
non-linear optimization. Systems Sci. 18 (1992), 1, 37-48. 

[26] R. Schmid: Eine modifizierte Standardeinbettung zur Behandlung von Gleichungs-
und Ungleichungsrestriktionen. Diplomarbeit, Humboldt-Universitat zu Berlin, 2000. 

[27] H. Sellami and S. M. Robinson: Implementation of a continuation method for normal 
maps. Math. Programming 76 (1976), 563-578. 

[28] J. Stoer and H. Wechs: Infeasible-interior-point paths for sufficient linear complemen
tarity problems and their analyticity. Math. Programming 83 (1998), 407-423. 

[29] J. Stoer, M. Wechs, and S. Mizuni: High order infeasible-interior-point-method for 
sufficient linear complementarity problems. Math. Oper. Res. 23 (1998), 832-862. 

[30] Hj. Wacker (ed.): Continuation Methods. Academic Press, New York 1978. 
[31] T. Watson: Solving the nonlinear complementarity problem by a homotopy method. 

SIAM J. Control Appl. 17 (1979), 36-46. 
[32] S. Xu and J. V. Burke: A polynomial time interior-point path-following algorithm for 

LCP based on Chen-Harker-Kanzow smoothing techniques. Math. Programming 86 
(1999), 91-104. 

Sira Allende Allonso, Facultad de Matematica y Computacion, Universidad de la Ha-

bana. Cuba. 

e-mail: sira@mathcom.uh.cu 

Jurgen Guddat and Dieter Nowack, Institut fur Mathematik, Humboldt-Universitat zu 

Berlin. Germany. 

e-mails: guddat, nowack@mathematik.hu-berlin.de 


