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Let V be a closed algebraic subvariety of the n-dimensional projective space over the com­
plex or real numbers and suppose that V is non-empty and equidimensional. In this paper 
we generalize the classic notion of polar variety of V associated with a given linear subva­
riety of the ambient space of V. As particular instances of this new notion of generalized 
polar variety we reobtain the classic ones and two new types of polar varieties, called dual 
and (in case that V is affine) conic. We show that for a generic choice of their parame­
ters the generalized polar varieties of V are either empty or equidimensional and, if V is 
smooth, that their ideals of definition are Cohen-Macaulay. In the case that the variety 
V is affine and smooth and has a complete intersection ideal of definition, we are able, 
for a generic parameter choice, to describe locally the generalized polar varieties of V by 
explicit equations. Finally, we use this description in order to design a new, highly efficient 
elimination procedure for the following algorithmic task: In case, that the variety V is 
Q-definable and affine, having a complete intersection ideal of definition, and that the real 
trace of V is non-empty and smooth, find for each connected component of the real trace 
of V a representative point. 
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1. INTRODUCTION 

Let P n denote the n-dimensional projective space over the field of complex numbers 
C and let, for 0 < p < n. V be a pure p-codimensional closed algebraic subvariety 
of IPn. In this paper we introduce the new notion of a generalized polar variety of 
V associated with a given linear subspace K, a given non-degenerate hyperquadric 
Q and a given hyperplane H of the ambient space P n , subject to the condition that 
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Q n if is ajion-degenerate hyperquadric of H. We denote this generalized polar 
variety by WK{V). It turns out that WK{V) is either empty or a smooth subvariety 
of V having pure codimension i in V, if V is smooth and K is a "sufficiently generic", 
(n - p - i)-dimensional, linear subspace of P n , for 0 < i < n — p (see Corollary 10 
and the following comments). 

The concept of generalized polar varieties has two instances of particular interest. 
One instance reproduces the classic polar varieties, which we call direct. The other 
instance produces a certain type of non-classic polar varieties, which we call dual. 

In this paper we are mainly concerned with the case that H is the hyperplane at 
infinity of P n determining thus an embedding of the complex n-dimensional affine 
space An into the projective space P n . Let 5 := V n H be the affine trace of V and 
suppose 5 is non-empty. Then 5 is a pure p-codimensional closed subvariety of the 
affine space An. The affine traces of the direct polar variety of V give rise to two 
types of polar varieties of the affine variety 5, called conic and cylindric, respectively. 
A conic polar variety of 5 is associated with an affine linear subspace of An and a 
cylindric polar variety is associated with a linear subspace of the hyperplane at 
infinity of P n , namely H. The concept of the conic polar varieties seems to be new, 
whereas the cylindric polar varieties of 5 are the classic ones. 

The affine trace WK{S) := WK{V) n An is called the affine generalized polar 
variety of 5 associated with the linear subvariety K and the hyperquadric Q of P n . 
The affine generalized polar varieties of 5 give rise to cylindric (i. e., classic) and dual 
affine polar varieties. However, the conic polar varieties of 5 cannot be obtained in 
this way because of the particular choice of the hyperplane H. Let us denote the 
field of real numbers by R and the real n-dimensional projective and affine spaces 
by Pg and Ag, respectively. Assume that V is R-definable and let VR := V D Pg 
and 5 R := 5 n Ag = 17 n Ag be the real traces of the complex algebraic varieties V 
and 5 . Similarly, define HR := H C\ Pg. Suppose that the real varieties VR and 5 R 
are non-empty and that K and Q are M-definable. JThen the generalized real polar 
varieties WK{VR) := WK{V) n Pg and WK{SR) := WK{S) n Ag = WK{V) n Ag are 
well defined and lead to the corresponding notions of dual polar variety of VR and 5 R 
and of cylindric polar variety of 5R. Suppose that 5R is smooth. Then "sufficiently 
generic" real dual polar varieties of 5 R contain for each connected component of 
5R at least one representative point. The same is true for the real cylindric polar 
varieties if additionally the ideal of definition of 5 is a complete intersection ideal 
and if 5R is compact (see Proposition 1 and Proposition 2). 

Let Q be the field of rational numbers, let X\,... ,Xn be indeterminates over IK 
and let a regular sequence F i , . . . , Fp in Q [Xi,... , Xn] be given such that (F\,... , Fv) 
is the ideal of definition of the affine variety 5 . Then, in particular, 5 is a Q-
definable, complete intersection variety. Suppose that the hyperquadric Q is Q-
definable and that Q n HR can be described by the standard, n-variate positive 
definite quadratic form (inducing on Ag the usual euclidean distance). Assume 
that the projective linear variety K is spanned by n — p — i + 1 rational points 
(ai,o : • • • : fli,n), • • • , (fln-p-i-f i,o : • • • : an_p_;+i,n) of P n with ajiU... ,ajyU generic 
f o r i < j < n — p — i + 1. Thus K has dimension n — p — i. Suppose that 5 is 
smooth. Then the generalized affine polar variety WK{S) is either empty or of pure 
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codimension i in 5. Moreover, the ideal of definition of WK(S) in Q[X\,... ,Xn] 
is Cohen-Macaulay and generated by P\,... ,FP and all (n - i + l)-minors of the 
polynomial ((n — i + 1) x n)-matrix 

dF\_ 
a x i 

dFp 

a x i 
-*i,i — ai,o-^i 

- P - І + 1 , 1 ,0-^1 

ӘFi 

дFp 

әxn 

Ûl.n — Лl.O-^n 

O n - p - i + l .n — Û n - p - t + l . O ^ n -(see Theorem 9). It is even possible to show that WK(S) is smooth. However, the 
proof of this fact is considerably more involved and less transparent than the proof 
of the Cohen-Macaulay property of WK(S) given in this paper. For details we refer 
to [2]. The algorithmic applications described below do not require the smoothness 
of WK(S), the Cohen-Macaulay property suffices. 

In [5] and [4], cylindric (i. e., classic) polar varieties were used in order to design a 
new generation of efficient algorithms for finding at least one representative point of 
each connected component of a given smooth, compact hypersurface or complete in­
tersection subvariety of Ag. The dual polar varieties introduced in this paper can be 
used for the same algorithmic task in the non-compact (but still smooth) case. This 
leads to a complexity result that represents the basic motivation and (in some sense) 
the main outcome of this paper: If the real variety SR is non-empty and smooth and 
if S is given as before by a regular sequence P\,... , Fp in Q [X\,... , Xn] such that, 
for any 1 < h < p, the ideal generated by Pi,... ,Fh is radical, then it is possi­
ble to find a (real algebraic) representative point of each connected component of 
SR in (polynomial) sequential time (n)L2(nd5)°^ (counting arithmetic operations 
in Q at unit costs). Here d is an upper bound for the degrees of the polynomials 
F\,... ,FP, L denotes the (sequential time) arithmetic circuit complexity of them and 
5 < cf1 pn~p is the (suitably defined) degree of the real interpretation of the polyno­
mial equation system F\,... , Fp (see Theorem 11). Although this complexity bound 
is polynomial in 5, it may become exponential with respect to the number of vari­
ables n, at least in the worst case. This exponential worst case complexity becomes 
unavoidable since SR may contain exponentially many connected components. On 
the other hand, the elimination problem under consideration is intrinsically of non-
polynomial character with respect to the syntactic input length for any reasonable 
continuous data structure (compare [23] and [13]). 

In view of [14] we may conclude that no numerical procedure (based on the bit 
representation of integers) is able to solve this algorithmic task more efficiently than 
our symbolic-seminumeric procedure. 

On the other hand, we would like to emphazise an important practical outcome of 
our fairly theoretical contribution: Combining the algorithm described in the proof 
of Theorem 11 below with the software package "Kronecker" ([37, 50]), designed for 
the solution of polynomial equations over the complex numbers, it was possible to 
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find the coefficients of suitable one-dimensional wavelet transforms (multiresolution 
analysis, MRA) for the construction of optimal filters for image compression and 
decompression (see [39]). 

2. INTRINSIC ASPECTS OF POLAR VARIETIES 

For two given linear subvarieties A and B of the complex n-dimensional projective 
space P n we denote by (A,B) the linear subvariety of P n spanned by A and B. 
We say that A and B intersect transversally (in symbols: A rh B) if (A, B) = P n 

holds. In case that A and B do not intersect transversally, we shall write A ţ\ B. 
Let V be a projective subvariety of P n and suppose that V is of pure codimension 
p for some 0 < p < n (this means that all irreducible components of V have the 
same codimension p). We denote by Vreg the set of all regular (smooth) points of V. 
Observe that Vreg is a complex submanifold of P n of codimension p and that Vreg 

is Zariski-dense in V. We call Vs\ng := V \ Vreg the singular locus of the projective 
variety V. Let V and W be two given pure codimensional projective subvarieties 
of P n and let M be a given point of P n belonging to the intersection of Vтeg and 
VVГeg. We say that V and W intersect transversally at the point M if the Zariski 
tangent spaces TмV and TмW of the algebraic varieties V and W at the point M 
intersect transversally (here we interpret TмV and TмW as linear subvarieties of 
the ambient space P n that contain the point M). 

For the rest of this paper let us fix integers n > 0, 0 < p < n and a projective 
subvariety V of P n having pure codimension p. Using the projective setting, we first 
recall in Subsection 2.1 the classic notion of a polar variety of V associated with a 
given linear subvariety of P n (in this paper, we shall call such polar varieties direcť). 
Then, in Subsection 2.2 we introduce the new notion of a дeneralized polar variety of 
V associated with a given linear subspace K, a given non-degenerate hyperquadric 
Q and a given hyperplane H of the ambient space P n , subject to the condition that 
Q П H is a non-degenerate hyperquadric of H. The dual polar varieties of V are 
introduced and the direct polar varieties of V are reobtained as particular instances 
of generalized polar varieties of V. 

We will pay particular attention to the case that H is the hyperplane at infinity of 
P n . We may then consider the complex n-dimensional affine space An as embedded 
in P n . In this context we may define the affine direct (conic and cylindric), dual 
and generalized polar varieties of the affine variety 5 := V П An, which we suppose 
to be non-empty. Finally, in Subsection 2.3 we will introduce and discuss the real 
(generalized, direct, dual, affine) polar varieties of the real varieties VR := V П Pg 
and 5 R := 5 П Ag (supposing that VR and 5 R are non-empty). We will formulate 
two sufficient conditions for the non-emptiness of such real polar varieties. 

2.1. Classic polaг varieties 

Let L C P n be a linear subvariety. The direct polar variety of V associated with L, 
denoted by WL(V), ІS defined as the Zariski-closure of the constructible set 

{MeVтeg\L\TмVf\ (M,L) at Лf} . (1) 
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Remark that the direct polar variety VVL(^) is contained in V. The direct polar 
varieties occurring in this paper are always organized as a decreasing sequence 

V = WLo = -- = WLP-2 D WLP-i D • • • D • • • D WLn-2 D WLn-i = 0 

associated with a given flag of projective linear subvarieties of the n-dimensional 
projective space, namely 

C : L° C L> • • • C Lp~l C • • • C Ln~2 C Ln~l C F \ 

Here the superscripts indicate the dimension of the- respective linear subvariety. In 
order to simplify notations, we shall write 

Vi := WLp+i-*(V), 1 < i < n - p , 

and we call V% the ith direct polar variety of the subvariety V associated with the 
flag C. The subscript i reflects the expected codimension of Vi in V. Note that the 
relevant part of the flag C leading to non-trivial polar varieties ranges from Lp~l to 
Ln~2. 

Direct polar varieties allow nice affine interpretations. Let us therefore consider 
the n-dimensional affine space An embedded in the projective space P n . 

We assume now that the variety V is the projective closure of a given closed 
subvariety S of the affine space An and that S has pure codimension p. We call 
Sreg := Vreg H An and Sging : = King V1 -̂ -n the set of smooth (regular) points and 
the singular locus of the affine variety 5, respectively. For any smooth point M of 
the affine variety 5 we interpret, as usual, the tangent space TM S of S at M as 
a linear subspace of An passing through the origin. Thus, if we interpret M as a 
point of the projective variety V, the affine trace of the tangent space TM V of V 
at M, namely TM V n An , turns out to be the affine linear subspace of An that is 
parallel to TM S and passes through M, namely M + TM S. In the same sense we 
write M + A := (M, A) n An for any linear subvariety A of P n . 

Now we adapt the concept of a direct polar variety to the affine case. For any 
member L of the flag C we define WL(S), the affine direct polar variety associated 
with L, as the affine trace of the projective polar variety WL(V) introduced above, 
namely, WL(S) := WL(V) fl An . One sees easily that, in terms of the usual notion of 
(non-)transversality for affine linear subspaces of An, the affine polar variety WL(S) 
is nothing else but the Zariski-closure (in An) of the constructible set 

{M G Sreg \ (L H An) | M + TM 5; fl M + L at M} . 

Again the relevant part of the flag C leading to non-trivial affine polar varieties 
ranges from Lp~l to Ln~2. Similarly as above, we abbreviate 

Si := WLp+i-2(S), 1 < i < n - p , 

and we call Si the ith affine direct polar variety of S associated with the flag C. 
Again, the subscript i denotes the expected codimension of Si in S. 

The following two situations are of particular interest 
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- Ln~~l is the hyperplane at infinity with respect to the given embedding of the 
affine space An in the projective space P n . 

- The single-point variety L° is not contained in the hyperplane at infinity of 
P n . 

The affine direct polar varieties associated with the flag C are called cylindric in 
the first situation and conic in the second one. The cylindric polar varieties are the 
classic ones, the subject of extensive investigations: Let us mention among others 
the contributions of J.-V. Poncelet (who introduced the concept of polar varieties), 
F. Severi, J. A. Todd, S. Kleiman, R. Piene, D.T. Le, B. Teissier, J.-P. Henry and 
M. Merle (see e.g. [42] and the references cited therein). 

It is evident that any conic polar variety can be transformed into a cylindric one 
by means of a suitable (linear) automorphism of the projective space. 

Suppose now that Ln~l is the hyperplane at infinity of P n . Thus, for 1 < j < n—1, 
we may interpret the affine cone of the projective linear variety LJ as a (j + 1)-
dimensional subspace of An . Due to this interpretation the flag C of projective 
linear subvarieties becomes a flag of linear subspaces 

I : 71 C / 2 C • • • C / n - 1 C An . 

As above, the superscripts indicate the dimension of the respective linear subspaces 
of An . Observe now that, for any 1 < j < n — 1, and any regular point M of S, 
the identity (M + Lj~l) fl An = M + P holds. Moreover, the affine linear spaces 
M + TM S and M + L-7""1 intersect transversally at M if and only if the linear spaces 
TM S and P intersect transversally. This implies that the affine direct polar variety 
WLJ-I(S) is the Zariski-closure of the constructible set 

{MeSreg\TMSfiP}. 

Remark that this is just the usual definition of the polar variety of S associated with 
the linear space P. 

Thus we have shown that our cylindric polar varieties are exactly the classic 
polar varieties. In case that S is a smooth closed subvariety of An , it is well known 
that the classic cylindric polar varieties associated with a generic flag T of linear 
subspaces of An have the expected, pure codimension in S (see e.g. [48], Corollaire 
1.3.2 and Definition 1.4, [36], Proposition 4.1.1 and Theoreme 4.1.2 or [4], Theorem 
1). Moreover, we shall show in Corollary 10 below that these varieties are Cohen-
Macaulay (this fact seems to be folklore). 

Therefore, if L n _ 1 is the hyperplane at infinity and if the remaining part of the 
flag C is chosen generically, the cylindric polar varieties S i , . . . , S n _ p are Cohen-
Macaulay and of pure codimension 1 , . . . ,n — p in S. Since any affine direct polar 
variety can be obtained from a cylindric one by means of an automorphism of the 
projective space P n , we conclude that, for any generic flag C of projective subvarieties 
of P n , the corresponding (conic) polar varieties of S are Cohen-Macaulay and have 
the expected, pure codimension in S. 
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2.2. Generalized polar varieties 

Let Q be a non-degenerate hyperquadric defined in the projective space P n . For a 
linear variety A C P n of dimension a, let _4V denote its dual with respect to Q. The 
dimension of _4V is n — a — 1. 

Further, let H be a hyperplane such that the intersection Q fl H is a non-
degenerate hyperquadric of if (this means that H is not tangent to Q, or equiv­
alent^, that H does not belong to the dual hyperquadric of Q). If A is a linear 
subvariety of P n contained in H, we denote by A* its dual with respect to Q fl H. 
The dimension of A* is n — a — 2. Observe that the linear varieties A* and Aw C\ H 
coincide. 

We are going to introduce the notion of a generalized polar variety contained in 
the projective space P n . Such polar varieties will be associated with a given flag of 
linear subvarieties, a non-degenerate hyperquadric and a hyperplane of P n , which 
is supposed not to be tangent to the hyperquadric. We consider this situation to 
be represented by a point of a suitable parameter space given as a Zariski open 
subset of the product of the corresponding flag variety, the space of hyperquadrics 
and the dual space of P n . We will denote a current point in this parameter space by 
P = {K,Q,H). 

In view of subsequent algorithmic applications to real polynomial equation solv­
ing, the principal aim of this paper is the proof of suitable smoothness results for 
generic polar varieties associated with the given projective variety V. For this pur­
pose we will work locally (in the Zariski sense) in the variety V. This allows us to 
restrict our attention to locally closed conditions in the parameter space (instead of 
the more general constructible ones). 

For a given a point P = (/C,Q,i_T) we define, for any member K of the flag /C, 
the generalized polar variety WK{V) associated with K as the Zariski-closure of the 
constructible set 

{M G VTeg \(KUH)\ TMV (fl (M, ((M, K) fl H)*) at M} . (2) 

Note that WK(V) is contained in V. Let us denote the given flag by 

K : P n D Kn'1 D Kn"2 D---D Kn~p-1 D • • • D Kl D K°. 

Then the generalized polar varieties associated with /C are organized as a decreasing 
sequence as follows: 

V = WKn-i = . . . = WKn-P D WKn-P-i D---DWKiD WKO. 

In order to simplify notations, we write in the same spirit as in Subsection 2.1: 

Vi := WKn-P-i, 1 < i < n — p. 

We call Vi the ith generalized polar variety of V associated with the parameter point 
P. The subscript i reflects the expected codimension of Vi in V. Note that the 
relevant part of the flag /C leading to non-trivial polar varieties ranges from Kn~p~1 
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to K°. Let K be any member of the flag /C and assume that H is the hyperplane 
at infinity of P n and that V is the projective closure of ajjiven pure^p-dimensional 
closed subvariety S of the affine space An . Then we call WK(S) := WK(V) n An the 
affine generalized polar variety associated to K. 

Two particular choices of the parameter point P = (/C,II, Q) are noteworth. 
Let us fix a non-degenerate hyperquadric Q and a hyperplane H not tangent to Q. 
Furthermore, let be given a flag 

C : L° C L1 • • • C Lp-X C • • • C Ln~2 C L71'1 C P n 

organized as an increasing sequence of linear subvarieties of the n-dimensional pro­
jective space and suppose that Ln~l = H holds. 

We associate two new flags of linear subspaces of P n with the flag £, both orga­
nized as decreasing sequences. We call these two flags the internal and the external 
flag of C and denote them by /C and /C, respectively. 

We write the internal flag /C as 

/C : P n D K_n~l D Kn~2 D--D Kn~p~l D - • D K1 D K°. 

For i ranging from 1 to n—p, we define the relevant part of /C by / £ n ~ p _ l
 : = (Lp+l~2)* 

(observe that the linear variety Lp+l~2 is contained in the hyperplane H). The 
irrelevant part KJ1"1 D K_n~2 D - - D Kn~p of /C may be chosen arbitrarily. 

Consider now an arbitrary member K_ of the relevant part of the internal flag 
/C. Furthermore, let L be the member of the flag C determined by the condition 
K_= L*, and let M be a point belonging to VTeg \ H. Taking into account that K_ is 
contained in if, whereas M does not belong to II, we conclude that 

(M,K)C)H = K 

holds. This implies 

(M, ( (M,K) HII)*) = ( M , I O = (M,L). 

Provided that II does not contain any irreducible component of V, we finally infer 
from (1) and (2) that 

WK(V) = WL(V) (3) 

holds. 
As before let II be the hyperplane at infinity of P n and let V be the projective 

closure of a given pure p-codimensional closed subvariety S of the affine space An . 
Then II does not contain any irreducible component of V and from (3) we deduce 
that the affine generalized polar variety % ( S ) = W^(V) n An is exactly the cylin-
dric polar variety WL(S). Moreover, all cylindric polar varieties of S can be obtained 
in this way, by a suitable choice of the flag C with L n _ 1 = II. 

More generally, choosing the flag C and the hyperplane II appropriately, one 
obtains any direct polar variety of V as a generalized polar variety associated with 
some member of the internal flag of C. 
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We write the external flag K as 

X: P " D K n - 1 D F l - 2 D - - o F n - p - 1 D - - o 7 ? 1 D 7 ^ ° . 

For i ranging from 1 to n — p, we define the relevant part of /C by ~~n P := 
tLP+--1)v. The irrelevant part Kn~l D ~Kn~2 D ••• D ~Kn~P of K may be chosen 
arbitrarily. 

Consider now an arbitrary member K of the relevant part of the external flag /C. 
Further, let L be the member of the flag C determined by the condition K = L v , 
and let M be a point belonging to Keg \(K \J H). From K C K we deduce that 

K is contained in (M, K). Taking into account that K = Ln~l = H holds, we 
conclude that any element of (M,K)W belongs to the hyperplane H. Thus (M,K)V 

is contained in ((M, K) n H)v n H. A straightforward dimension argument implies 
now 

(M,K)V = ((M,K)HH)V HH = ((M,K)HH)*. 

Hence, from (2) we conclude that the generalized polar variety Wj^(V) coincides 
with the Zariski-closure of the constructible set 

{M e Keg \(KUH)\ \TMV ft (M, (M,K)W) at M} . (4) 

We call Wj?(V) the dual polar variety ofV associated with K. 

Again, let us assume that the variety V is the projective closure of a given closed 
subvariety 5 of the affine space An , that S has pure codimension p and that H is the 
hyperplane at infinity of P n . We denote by Wj^(S) the affine dual polar variety of 
S associated with K^ defined as the affine trace of the projective dual polar variety, 
namely WW(S) := WW(V) n An . 

Now from (4) one easily deduces that the affine dual polar variety Wj^(S) is 
nothing else but the Zariski-closure (in An) of the constructible set 

{M e S reg \ (K n An) I M + TM S ft M + (MK)V at M} . (5) 

Let M be a regular point of S that does not belong t o K n An . Since the linear 
subvariety (M, K)v is contained in the hyperplane at infinity of P n , we may interpret 
the affine cone of (M , K)v as a linear subspace IM ^ of An . In the same way we may 
interpret the affine cone of the linear variety L as a linear subspace I of An . Then 
the linear space IM -^ consists exactly of those elements of I that are orthogonal 
to the point M with respect to the bilinear form induced by Q D H. From (5) one 
easily deduces that the affine dual polar variety Wj^(S) is the Zariski-closure of the 
constructible set 

[M € 5 r e g \ (K D An) ITM S ffi 7 M F } 

In conclusion: Internal flags lead to direct polar varieties that include the classic 
(cylindric) ones and external flags lead to a new type of polar varieties, namely the 
dual ones. 
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The affine interpretation of direct and dual polar varieties plays a fundamental 
role in the context of semialgebraic geometry, the main subject of this paper. In the 
next subsection we will discuss real polar varieties. 

2.3. Real polar varieties 

Recall the following notation: Pg and Ag for the real n-dimensional projective 
and affine spaces. Sometimes, we will also write P n := Pg and An := Ag for n-
dimensional complex projective and affine spaces. 

Let a flag of real linear subvarieties of the projective space Pg be given, namely 

C : L° C Ll C • • • C Ln~l C Pg. 

Let H be the hyperplane at infinity of Pg, and let HR := H D Ag be its real trace. 
Thus HR fixes an embedding of the real affine space Ag into Pg. Furthermore, let an 
R-definable, non-degenerate hyperquadric Q of Pg be given and suppose that QOH 
is also non-degenerate, and that Q D HR can be described by means of a positive 
definite bilinear form. Observe that Q fl HR induces a Riemannian structure on the 
affine space Ag and that C induces a flag of IR-definable linear subvarieties of the 
complex projective space Pg. We call this flag the complexification of C. Suppose 
that we are given a purely p-codimensional, R-definable closed subvariety S of Ag 
whose projective closure in Pg is V. We denote by VR := V fl Pg and SR := S fl Ag 
the real traces of V and S. 

For the given flag C of linear subvarieties of Pg we define the notion of an internal 
and an external flag and the notion of a real generalized, direct, cylindric, conic and 
dual polar variety of VR and of SR in the same way as in the Subsections 2.1 and 2.2. 
It turns out that these polar varieties are the real traces of their complex counterparts 
given by V, S and the complexification of C and its internal and external flag. All our 
comments on direct and dual affine polar varieties made in the Subsections 1.1 and 
1.2 are valid mutatis mutandis in the real case^ Again we denote the (real) internal 
and external flag associated with C by K and K>_ respectively. For any member L of 
the flag £, K_ of the flag K and K of the flag /C, we denote the corresponding real 
polar variety by 

WL(VR), WL(SR), WK(VR), WK(SR), WJ<(VR) and W«(SR). 

Let us now assume that L n _ 1 = HR and let us consider_the real affine polar varieties 
associated with the internal and external flags K and K of C. 

Let us first consider the case of the internal flag K. As we have seen in Subsec­
tion 2.1, the flag C of linear subvarieties of Pg induces a flag of linear subspaces of 
Ag,say 

I : J1 C ^ C - c r ^ c A g . 

Let now L be any member of the relevant part of the given flag C, let I be the 
member of the flag 1 representing L and let K be the member of the internal flag K 
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defined by K_:= L*. Observe that K_ is contained in the hyperplane at infinity HR. 
Prom our considerations in the Subsections 1.1 and 1.2 we deduce that 

WK(SR) = WK(VR) n Ag = wL(vR) n Ag = wL(SR) 

holds and that the real cylindric polar variety WL(SR) is the Zariski-closure of the 
semialgebraic set 

{Me(SR)Teg\TMSRfiI} 

in Ag. 

Observe that the affine cone of the real linear subvariety K_ of Pg corresponds to 
the orthogonal complement of I in Ag (here we refer to orthogonality with respect 
to the Riemannian structure induced by Q on Ag). In this sense, the real polar 
variety WK_(SR) is of cylindric type and orthogonal to the directions of K_ defining 
it. 

In principle, the cylindric real polar variety WK_(SR) may be empty, even in case 
that S contains real smooth points. However, under certain circumstances, we may 
conclude that WK_(SR) is non-empty. This is the content of the following statement: 

Proposition 1. Suppose that S is a pure p-codimensional complete intersection va­
riety given as the set of common zeros of p polynomials F\,... , Fp G R[Xi,... , Xn], 
where X\,... ,Xn are indeterminates over the reals. Suppose that the ideal gen­
erated by F\,... , Fp is radical and that SR is a smooth and compact real variety. 
Then WK_(SR) contains at least one point of each connected component of SR. 

Proposition 1 is an easy consequence of the arguments used in [4], Section 2.4, 
which will not be repeated here. 

Let us now consider the external flag /C. Observe that K is a zero-dimensional 
linear subvariety of Pg, namely the origin of An . Therefore any member of the exter­
nal flag /C has a non-empty intersection with Ag. Assume now that the Riemannian 
metric of An induced by the hyperquadric Q is the ordinary euclidean distance. 
These assumptions lead to the following proposition: 

Proposition 2. Suppose that SR is a smooth, pure p-codimensional real variety. 
Let K be any member of the external flag /C and suppose that .ftTflAg is not contained 
in SR. Then, the real affine dual polar variety W-^(SR) is non-empty and contains 
at least one point of each connected component of SR. 

Proof. Since K fl Ag is not contained in SR, there exists a point P of KD An that does 
not belong to SR. Consider now an arbitrary connected component C of SR. Then C is a 
smooth, closed subvariety of Ag whose distance to the point P is realized by a point M of 
C. Since P does not belong to SR, one has M — P ^ 0. 

The square of the euclidean distance of any point X of Ag to the point P is a real 
valued polynomial function defined on Ag whose gradient in X is 2(X - P). Applying 
now the Lagrangian Multiplier Theorem (see e. g. [47]) to this function and the polynomial 
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equations defining SR we deduce that M — P belongs to the orthogonal complement of 
the real tangent space TM(SR) (observe that M is a smooth point of SR). The real trace 
IM 7f H AJJ of the linear space IM -^ introduced in Subsection 2.2 consists of all elements of 
the orthogonal complement of KC\ AR that are also orthogonal to M. Observe now that the 
linear space TM(SR) + (IM,1< H A£) is strictly contained in AJJ, since otherwise any point 
of A£ would be orthogonal' to M - P. On the other hand, TM(SR) + (IM,1< n K.) ^ K 
implies that TM(SR) (f) (IM,~K ^ A£) holds. From (5) we finally deduce that the point M 
belongs to the real affine dual polar variety W-^-(SR) = W-g(S) O A£ and therefore we have 
C HWW(SR) T- 0. n 

Observe that the statement of Proposition 2 becomes trivial for K belonging to 
the irrelevant part of /C, since in this case W-^-(Su) = SR holds. 

3. EXTRINSIC ASPECTS OF POLAR VARIETIES 

In this section we will describe more closely the generalized polar varieties of a closed 
subvariety S of An , which is given by a system of polynomial equations. We suppose 
that these polynomial equations form a regular sequence and generate the ideal of 
definition of S. Let K be a "sufficiently generic" lineaxsubvariety of P n of dimension 
at most n — p. We will show that the polar variety WK(S) of S is either empty or 
equidimensional of expected codimension in S. We will describe WK(S) locally by 
transversal intersections of explicitly given hypersurfaces of An and, in case that 
S is smooth,^globally by explicit polynomial equations, which generate the ideal of 
definition of WK (S). 

3.1. Explicit description of affine polar varieties 

Let P n and An be the n-dimensional projective or affine space over C or E, according 
to the context. As above, we consider An to be embedded in P n in the usual 
way. For given complex or real numbers £0 , . . . ,xn that are not all zero, x := 
(XQ : x\ : ... : xn) denotes the corresponding point of the projective space P n . 
Moreover, for xo = 1 we denote the corresponding point of the affine space An by 
( x i , . . . ,x n ) := (1 : xi : . . . : xn). Let Xn, . . . , X n be indeterminates over C (or E). 

As of now we suppose that the given projective, purely p-codimensional variety V 
is defined by p nonzero forms / 1 , . . . , fp over C (or 1R) in the variables X 0 , . . . , Xn. 
In other words, we suppose 

V:=V{fu...,fp), 

where V(f\,... , fp) denotes the set of common zeros of / 1 , . . . , fp in P n . Therefore, 
the homogeneous polynomials / 1 , . . . , fp form a regular sequence in the polynomial 
ring C [ X 0 , , . . . ,Xn] (or R[X0 > > . . . ,Xn]). Let S := V n An and assume that 5 is 
non-empty. The dehomogenizations of / 1 , . . . , fp are denoted by 

F\ : = / I ( 1 J - ^ I > - • • ,Xn),... ,FP := / p ( l , X i , . . . , X n ) . 
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Observe that F i , . . . , Fp are nonzero polynomials in the variables X\,... , Xn over 
C (or R). Thus we have 

S = VDAn=V(Fu...,Fp), 

where V(F\,... , F p ) denotes the set of common zeros of F i , . . . , F p in An . Note 
that the polynomials F i , . . . , F p form a regular sequence in C [X\,,... , Xn] (or in 
lR[Ki,,... ,Xn]). 

The projective Jacobian of f \ , . . . , fp is denoted by 

J(/i,...,/P):= 

For any point x of P n we write 

J(/i,...,/p)(*):= 

дfj 

дXk 

•дfi 

- < > < P 
0<fc<n 

дXk 

(x) 
- < / < P 

0<fc<n 

for the projective Jacobian of the polynomials / i , . . . , / p at the point x. Similarly 
we denote the affine Jacobian of the polynomials F i , . . . , F p by 

J(FU...,FP):= 

and we write for any point x of An : 

J(Fu...,Fp)(x):= 

дFj 

дXk 

дFj 

1 < І < P 
Kk<n 

дXk 

(x) 
- < І < P 
K f c < n 

A point x of V (or of V H An) is called (/i , . . . , /p)-regular (or ( F i , . . . , Fp)-regular) 
if the Jacobian J ( / i , . . . ,fP)(x) (or J ( F i , . . . ,Fp)(x)) has maximal rank p. Note 
that the (/i, . . . ,/p)-regular points of V are always smooth points of V, but not 
vice-versa. For the sake of simplicity, we shall therefore suppose from now on that 
all smooth points of V are (/i, . . . ,/p)-regular. In other words, we suppose that 
/ i , . . . , fp (and hence F i , . . . , F p ) generate a radical ideal of its ambient polynomial 
ring. Any smooth point of S is therefore ( F i , . . . , Fp)-regular. On the other hand, by 
assumption, the polynomials F i , . . . , F p form a regular sequence in C[JKi,... ,Xn]. 
Therefore, we conclude that the coordinate ring C[5] of the affine variety is Cohen-
Macaulay. 

Suppose for rest of this section that our ground field is C. Next, we will generate 
local equations for the generalized polar varieties of the affine complete intersection 
variety S. To this end (and having in mind the algorithmic applications of our 
geometric considerations to real affine polar varieties in Section 4) we may restrict 
our attention to the case where H is the hyperplane at infinity of F n (defined by the 
equation X$ = 0) and where the given non-degenerate hyperquadric Q is defined by 
a quadratic form R, which can be represented as follows: 

n n 

R(X0,... , Xn) := X0

2 + £ 2ckX0Xk + £ X,2 

k=l k=l 
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with Ci , . . . , c n belonging to C or R, according to the context. Observe that this 
representation of R implies the hyperquadrics Q and Q fl H to be non-degenerate in 
P n and if, respectively. Further, observe that Qf)H is defined by the quadratic form 
Ro(X\,... ,Xn) := £ L i - Y k G R[X\,... ,Xn]. Therefore, in particular, Q fl HR is 
represented by a positive definite quadratic form that induces the usual euclidean 
distance on Ag. Let us note that the special shape of R (and hence, of the quadratic 
form .Ro representing QnHR) does not limitate the generality of the arguments which 
will follow. These may be applied mutatis mutandis to any non-degenerate hyper-
quadric whose intersection with the hyperplane at infinity H is still non-degenerate. 

Fix now 1 < i < n — p and choose for each 1 < j < n — p — i + 1 a point 
Aj = (aJto • • • • ' a>j,n) of -Pn with a^o = 0 or a^o = 1 and a ^ i , . . . , a^ n generic (our 
genericity conditions will become evident in the sequel). By this choice, we may 
assume that the points A\,... ,yln_p_i+i span an (n — p — z)-dimensional linear 
subvariety K := Kn~p~% of the projective space IPn. 

Let us consider an (f\,... , /p)-regular point M = (xo : . . . : xn) of V with x0 7- 0 
and M fi K. Then one easily sees that the (n — p — i)-dimensional linear subvariety 
(M, K) fl H is spanned by the n — p — i + 1 linearly independent points 

x0 A\ - aly0 M , . . . , x0 An_p_i+i - an_p_i+i,0M. 

Let Y\,... , Yn be new indeterminates and let 0 := _C/k=i XkYk, Q G R[X\,... , Xn, 
Y\,... , y n ] , denote the (polarized) bilinear form associated with the hyperquadric 
QHH. Foil<j<n-p-i + l,let£j€C[X1,...,Xn] be defined by 

tj := ^ x ° ' - ' X n
 : = O(x0 a^i — a^o-Ci,... ,£0 aj,n — a^o-^n? -X"i- • • • ,Xn) 

andGj- G C [ X 0 , X i , . . . ,X n ] by 

Gj ~G(~°>~^) ~ X o ^ - x - \ x u . . . ,Xn)-Xol(xo--Xn)(xu...,xn). 

Then the linear forms l\,... , £n_p_i+i define the (p+i—2)-dimensional linear variety 
((M, K) fl H)* in H and are therefore linearly independent. Moreover, the linear 
forms G i , . . . ,Gn_p_i+i vanish at M and at any point of ((M, K) fl H)*. Hence, 
they vanish at any point of the (p + i — l)-dimensional linear variety (M, ((M, K) fl 
H)*). From the linear independence of l\,... , ̂ n_p_i+i one easily deduces the linear 
independence of the linear forms G i , . . . ,G n_ p_i+i . Therefore G i , . . . ,Gn_p_i+i 
describe the linear variety (M, ((M,K) n H)*) used in (2) to define the generalized 
polar variety WK(V) (see Subsection 2.2). 

Observe now that for any 1 < j <n—p — i + l the linear form Gjy" "Xrx) can be 
written as 

G(*o,...,*„) _ -(X0-x0)e
<jX0''x")(x1,... ,xn) 

+ x0e
<f°'-'Xn)(x1-x1,...,xn-xn) 

n 

= -(Xo - xo) i^0""tXn)(x\,... ,x n ) + x o ^ ( x 0 a i > A . -aji0xk)(Xk - xk). 
k=i 
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Without loss of generality suppose that XQ = 1 holds. Then x := (x i , . . . ,x n ) is an 

(P\,... , Fp)-regular point of S = V n An and the polynomial GJ- 'X 1 ' "" ' depends 

only on the variables X\,... , JKn. Therefore, it makes sense to consider the Jacobian 

T(i) ~т^(Хи...,Хп) := J{FU...,FV,G\ ( 1 , 1 1 , . . . . Z n ) ( l . Z l , . . . ,Xn)\ 

p-i-fl 1' 

whose entries belong to the polynomial ring C[.Ki,... , Xn]. Observe that the poly­
nomial matrix T ^ is of the following explicit form, namely 

rp(І) _ 

дғx 

дxx 

әғP 

дXг 
-*i,i — <-i,oxi 

• + 1,1 — Û n - p - t + 1,0-^1 

дFj 

дXn 

_ _ P _ 

дXn 

fli,n — a i . o - X n 

ť-n— p— » + l ,n — O-n— p — i + l , O x n ' 

with a i ) 0 , . . . ,an_p_i+.i )o being elements of the set {1,0}. 
Moreover, observe that the condition 

TM(V)$\ (M,((M,K)nH)*) 

from (2) is equivalent to the vanishing of all (n — i + l)-minors of the ((n — i +1) x n)-
matrix T ^ at the point x. Therefore the polynomials F\,... , Fp and the (n — i +1)-
minors of T^) define the generalized affine polar variety WK(S) outside of the locus 
Ssing (recall that by assumption all smooth points of S are (F\,... , Fp)-regular). Let 
W be the closed subvariety of An defined by these equations. Then any irreducible 
component of WK(S) is an irreducible component of W. In particular, we have 
WK(S) n 5 r e g = W n S r e g , and WK(S) = W if the affine variety S is smooth. 
Note, that i is the expected codimension of WK(S) = WK^-P-i(S) in S. These 
considerations lead to the following conclusion: 

L e m m a 3. Any irreducible component of WK(S) = WK^-p-i(S) has codimension 
at most i in 5. 

The proof is given in [3]. 

In the further analysis of the generalized affine polar variety WK(S) we shall 
distinguish from time to time two cases, namely the case that the linear projective 
variety K = Kn~p~l

y spanned by the given points A\y... ,.An_p_i+i of IPn, is con­
tained in the hyperplane at infinity H of P n , and the case that K is not contained 
in H. If K is contained in if, we have a^o = • • • = an_p_i+i,o = 0 and if K is 
not contained in iiI, we may suppose without loss of generality that an_p_i_|_i>0 = 1 
holds. 

Let us now discuss the particular case that K = Kn~p~l is contained in the 
hyperplane at infinity H of P n . Let 5 be the Zariski closure of the affine variety S 
in the projective space P n and let L := K*. Thus L is a (p + i — 2)-dimensional 
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linear projective subvariety of H, the projective variety S is of pure codimension p 
in lPn and none of the irreducible components of S is contained i n # . Furthermore, 
we have K = L* and S = S n An. From (3) we deduce now that WK(S) = WL(S) 
holds. This implies 

wK(S) = wK(s) n An = wL(s) n An = wL(S). 

Therefore WK(S) is the cylindric polar variety associated with the (p + i — 2)-
dimensional linear subvariety L of the hyperplane at infinity H of P n . 

We now return to the analysis of the general situation. Let be given a complex 
((n — p — i + 1) x (n + l))-matrix 

6:= 

Ьi.o 

6n_p_t-,o 

Ьn-p-ť + 1,0 

Oтi _ p — t , П 

Ьn-p-ť + l,n 

with bn_p_i+i)0 = a n_ p_i+-i ?o, • • • ,&n-p-i-fi,n = ttn-p-i+i,n and with bi,o,---, 
bn-p-iyo being elements of the set {1,0} and suppose that b has maximal rank 
n — p — i + 1 and that the entries a n _ p _ i + i ) n _ i + . i , . . . , a n _ p _ i + i , n are generic with 
respect to the other entries of b (e. g., a := ( a ^ ) i<j<n-P-.+i is such a ((n — p — i + 

0<fc<n 

1) x (n + l))-matrix). 
Let K(b) be the linear subvariety of )Pn spanned by the n — p — i + 1 projective 

points 

(bl.O : • * • : &l, n ) j • • • j ( & n - p - i + l , 0 - ' * * - bn-p-i+ l ,n)-

Observe that 7^(6) is (n — p - z)-dimensional and that K(a) = Kn~p~l holds. For 
the sake of notational succinctness let us use, for 1 < j < n-p — i + 1 and 1 < k < n, 
the abbreviation 

r S k ( X * ) ~bj,k-bjt0Xk. 

We consider now the polynomial ((n - i + 1) x n)-matrix 

т (*) _ 

dFl 

dX1 

dFp 

dXi 

r[b}(Xi) 

Lrn_p_í+ltl(-Vi) 

дFx 

дxn 

дFp 

дxn 

r[bX(xn) 

n ( ь ) n-p-ť + l , n ( ^ ) . 

Observe that r i ° = T ^ holds. 

Let 5 G {n — t ,n — t + 1}. For any ordered sequence (fci,... , k s ) of different 
elements of the set {1, . . . ,n} we denote by M<6)({A;i,... ,ks}) := M^(ki,... ,fcs) 
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the minor that corresponds to the first s rows and to the columns k\,... , ks of the 

matrix T6

( i ). 

Let us fix an ordered sequence I oin — i different elements of the set {1,. . . , n}, 
say I := ( 1 , . . . , n — i), and let us consider the upper (n — i)-minor 

m(ь) :=M(b)щ : = d e t 

дFi 
дXг 

дFp 

дXx 

r[Ь}(Xг) 

n < Ь > -І,I(XI) 

дFг 
дXn.i 

дғp 

ӘXn-i 

r[Ьl(Xn-i) 

rn

Ь)-p-i,n(Xn-i). 

of the matrix 2^ . 

Note that mSb) depends only on the entries b^, 1 < j < n—p—i, 0 < k < n — i, of 
the matrix b. In what follows we will assume that b satisfies the additional condition 
m(b) T-= 0. Let us assume without loss of generality that the polynomial (pxp)-matrix 

дғ_ 
Ђxl 

әғp 

ӘXi 

dF\_ 
axp 

dFp 

dxvJ 

is non-singular. Then, in particular, the genericity of the entries a ^ of the ((n — p — 
i + 1) x (n + l))-matrix a implies that m^a) is a nonzero element of the polynomial 
ring C [ X i , . . . ,X n ] . Therefore the matrix a satisfies this condition. 

The Exchange Lemma of [4] implies that, for any ordered sequence (ki,... , A;n_i+i) 
of different elements of the set {1, . . . , n}, the identity 

m ( 6 ) M ( i ) ( f c l r . . , U i ) 

£ / i /M( 6 ) ( {A: i , . . . ,A : n _ i +i} \{ / } )M( 6 ) ( l , . . . , n - z , 0 (6) 
.€{*! , . . . ,kn-i + i } \ { l , . . . , n - i } 

holds with [ii G {-1,0,1}, for any index / E {fci,... ,fcn_i+i} \ { 1 , . . . ,n - i}. 

Let us abbreviate Mn
b)_i+l :=M<6>(1, . . . , n - z + l ) , M n _ i + 2 := i l fW(l , . . . , n -

z,n - i + 2 ) , , . . . , M n ' := M ^ ( l , . . . >n - i,n). Assume now that there is given a 
point x of S satisfying the conditions m(b) (x) 7-= 0 and 

Mibli+l(x) = ... = MW(x)=0. (7) 

Then we infer from (6) that M(6)(fci,... ,fcn_i+i)(x) = 0 holds for any ordered 
sequence (fci,... ,fcn_;+i) of different elements of the set { 1 , . . . , n } . This means 
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that all (n-i + l)-minors of the matrix Tfc

(l) vanish at the point x. Since m ( 6 ) (x) ^ 0 

implies x G 5 r e g , we conclude that x belongs to the polar variety WK(b)(S). On the 

other hand, any point x of WK(b)(S) satisfies the condition (7). Therefore, the polar 

variety WK{b)(S) is defined by the equations F\,... , F P , M n _ i + 1 , . . . , M n

6 ) outside 

of the locus V(m^). 

Let Z n _ i + i , . . . , Zn be new indeterminates and consider the ((n - i + 1) x n)-
matrix 

ӘFг дFг 
дXn-i 

ӘFi ÖFi 

дXi 
дFг 

дXn-i ӘXn-í+i әxn 

дFp дFp әғp ØFP 

дXг Ә X n - . Öxn- i + l ÖX n 

r[ЬMx_) • r ' l . n - t ( * * « - - ) 
Г (Ь) 

- t + l ^ 7 1 - 1 + l ) r[bl(*n) 

r^.i^X,) .. • гn*2 P-І.П-І{XП-І) r ( Ь ) 
' n - p - i . n - i + l í "^" i - i + l ) • rìV-.«<*«) 

( ь > . . . _(Y-\ . . .. -(м (Y л z . . . _ . fl - V  . 7 — h . . . ~ 

Let M ^ _ i + 1 , M ^ _ i + 2 , . •. , M n denote the (n — i + l)-minors of this matrix obtained 
by successively selecting the columns 1,. . . ,n — i, n — i + 1, then 1,.. . ,n — i,n — i + 2, 
up to, finally, the columns 1,. . . ,n — i,n. Let U& := An \ V(mSb\ and observe that 
Ub is non-empty since m^b\ by assumption, is a non-zero polynomial. 
Now we consider the following morphism of smooth, affine varieties 

$\b) : UbxAl->Ap xA\ 

defined by 

•ft- ,-) := (F1(x),... ,Fp(x)Mbli+1(x,z),... MbHx,z) ) 

for any pair of points x 6 EI6, z £ A*. Analyzing now the Jacobian J(<I^ ))(x,z) of 
$j 6 ) at an arbitrary point (x,z) of ( ^ j 6 ^ ) " 1 ^ , . . . ,0) with x e Ub and z G A1 one 
concludes the next Lemma. 

Lemma 4. The origin ( 0 , . . . ,0) of the affine space Ap x A1 is a regular value of 

the morphism $[ ) . 

Applying now the Weak-Transversality-Theorem of Thorn-Sard (see e. g. [17]) 
to $ j 6 ) , we deduce from Lemma 4 that there exists a residual dense set ft of A* such 
that, for any point z £ ft, the polynomials 

Fu... , F P , M{
n

b\+l(Xly... , .X n , z ) , . . . , M n
6 ) ( X l 5 . . . ,Xn,z) 

of C [X\,... , Xn] intersect transversally in any of their common zeros outside of 
the positive codimensional, Zariski closed locus An \ Ub (we call the subset ft of 
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A1 residual dense if 17 contains with respect to the Hermitian topology of A* the 
intersection of a countable family of open dense sets). From the genericity of the 
entries bn_p_i+i>n_i+i = an_p_i+i,n_i+i, • • • ^n-p-i+\,n = Qn-p-i+i,n of the ma­
trix Tb we deduce that we may assume without loss of generality that the point 
a := (an_p_i+i> n_i+i , . . . ,an_p_i+i ,n) belongs to the set $1 Observing now that 
Mn

62 i+1 = M n
6 j i + 1 ( X i , . . . , X n , a ) , . . . ,Mn

6 ) =Mn
b)(Xu... , X n , a ) holds, we con­

clude that the equations F i , . . . , F p , M n _ i + 1 , . . . , Mn
b>i intersect transversally at any 

point of WK{b)(S) not belonging to the locus V(m^) and that such points exist. 
We have therefore shown the following statement: 

Lemma 5. Let the notations and assumptions be as before. Then the polynomial 
((n - i + 1) x n)-matrix T6 satisfies the following condition: 

The equations Pi,... , Fp , M n _ i + 1 , . . . , M n define the generalized polar variety 
Wn{b)(S) outside of the locus V(m^) and intersect transversally in any point of 
the affine variety WK{b)(S) \ V(m^). In particular, WK{b)(S) \ V(m^) is either 
empty or a smooth, complete intersection variety of dimension n — p — i. 

Observe that all upper (n — i)-minors of T^ vanish at a given (F \ , . . . , i r ­
regular point x of S if and only if x belongs to the polar variety WKn-P-i-i(S) 

which is contained in WK(S) = WKn-P-i(S). Applying now Lemma 5 to any upper 
(n - i)-minor of the matrix T^ = Ta we conclude: 

Proposi t ion 6. For any ( F i , . . . ,Fp)-regular point x of WKn-P-i(S)\WKn-P-i-i(S) 
there exist indices 1 < k\ < • • • < kn-i < n with the following property: 
Let m := M({k\,... ,kn-i}) be the upper (n — i)-minor of the polynomial ((n — 
i + 1) x n)-matrix T ^ determined by the columns (fci,... , fcn-i), let { 1 , . . . ,n} \ 
{fci,... ,kn-i} = {A:n_i+i,... ,fcn} and let Mn_i+i := M({ku... ,kn- i yA:n_i+i}), 
Mn_i+2 := M({ku... ,fcn_i,fcn_i+2}),... , M n :=M({kly... ,kn-i,kn}). Then the 
minor m does not vanish at the point x and the equations F\,... , Fp , M n _ i+ i , . . . , M n 

intersect transversally at x. Moreover, the polynomials F i , . . . , F p , M n _ i+ i , . . . , M n 

define the polar variety WKn-P-i(S) outside of the locus V(m). 

Fix for the moment 1 < j < n - p - i + 1 and let Ej be the (n-p-i—l)-dimensional 
linear projective subvariety of IPn spanned by the points -4 i , . . . , Aj_i , .Aj+i, . . . , 
.An_p_i+i. In particular, we have Fn_p_i+i = Kn~p~l~l. 

From the generic choice of the complex numbers a^jt, 1 < j <n — p — i + 1, 1 < 
k < n we infer that Proposition 6 remains still valid if we replace in its statement 
the upper (n - i)-minor ra = M(ku ... , kn-i) by the (n - i)-minor of T(l) given by 
the rows 1 , . . . ,p + j — 1, p + j + 1 , . . . , n — p — i + 1 and the columns fci,... , fcn_i 
and the polar variety WKn-P-i-i(S) by WE5(S). 

Let Ai := f)i<j<n^P-i+i WES(S). Then Af is contained in WKn-P^^(S) and 

Proposition 6 implies that, outside of the locus Ai, the polar variety VVKn_p_^(5) is 
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smooth and of pure codimension i in S. It is not too difficult to deduce from Proposi­
tion 6 that the codimension of A» in S is at least 2i + l. Hence, for n~P~1 <i < n-p, 
the algebraic variety A* is empty and therefore, the polar variety VV/fn-P-»(S) is 
smooth in any of its ( F i , . . . , Fp)-regular points. In the next subsection we will 
show this property of W/o-P-»(S) for any 0 < i < n —p (see Theorem 9 below). 

Finally, let us consider the case i := n — p. Observe that T^n~p^ is a ((p+ 1) x n)-
matrix which contains the Jacobian J ( F i , . . . , Fp) as its first p rows. Thus, for any 
(P i , . . . , Fp)-regular point x of WKO(S), there exists an upper p-minor m of T^n~p^ 
with m(x) yf- 0. Therefore, we define W/^-i as the empty set. Thus, in particular, 
A n _ p is empty and this implies that WKO(S) is smooth and of pure codimension 
(n — p) outside of the locus Ssing. This leads us to the following statement which is 
shown in [3]. 

L e m m a 7. The generalized polar variety WKO (S) is either empty or of (expected) 
codimension n—p in S (i.e., WKO(S) contains at most finitely many points). More­
over, WKO(S) is contained in S r eg . 

3.2. Geometric conclusions 

The geometric main outcome of this section is Theorem 9 below, which is a basic 
result for generalized affine polar varieties in the reduced complete intersection case. 
The proof of this result requires two technical statements, namely Lemma 7 and 
Proposition 8 below. 

Let the assumptions and notations be as before. Proposition 6 and Lemma 7 
imply our next result whose proof is contained in [3]. 

Proposition 8. Suppose that the generalized affine polar variety VV/<-n-P-t(5) is 
non-empty. Then W/fn-P-.(S) is of pure codimension i in S (and therefore, the 
codimension of VV#n-P-.(S) in 5 coincides with the expected one). Moreover, for 
each irreducible component C of W^-p-i (S) there exists an upper (n — i)-minor m 
of TW such that m does not vanish identically on C. In particular, no irreducible 
component of WK^-P-i(S) is contained in Wtfn-P-*-i(S). 

Let us remark that, for a generic choice of the parameters a ^ , 1 < j < n—p, 1 < 
k < n, Propositions 6 and 8 yield a local description of the generalized polar varieties 
of a given complete intersection variety by polynomial equations. 

Theorem 9. Let the assumptions and notations be as at the beginning of Section 
3. Suppose furthermore that any point of 5 is ( F i , . . . ,.Fp)-regular and that the 
affine polar variety VV/^n-P-.(5) is non-empty. Then the (radical) ideal of definition 
of VV^n-p-i (S) in C [X \ , . . . , Xn] is Cohen-Macaulay and generated by P\,... , Fp 

and all (n - i + l)-minors of T^%\ 
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P r o o f . Let a be the determinantal ideal of C [S] induced by the (n — i + l)-minors 
of T ( l ) . Since, by assumption, any point of 5 is ( F i , . . . , Fp)-regular, the ideal a defines 
the (non-empty) polar variety WKn-P-i(S) in 5 . From Proposition 8 we infer that any 
isolated prime component of the ideal a has height i. Therefore, since C [S] is a Cohen-
Macaulay ring, the grade of the ideal a coincides with its height i. Observe that a is the 
ideal generated by the maximal minors of the ((n — i + 1) x n)-matrix induced by T ^ in 
C[S). 

From [9], Theorem 2.7 and Proposition 16.19 we conclude now that the determinantal 
ideal a is Cohen-Macaulay (compare [18, 19], and [20], Section 18.5 for the general context 
of determinantal ideals in a Cohen-Macaulay ring). In particular, the ideal a has no 
embedded associated primes and the ideal generated in C [K i , . . . ,K n ] by F i , . . . , Fp and 
all (n — i + l)-minors of T ^ is Cohen-Macaulay. 

Let p be an arbitrary prime component of the ideal a. Then p is an isolated component 
of a and has height i. From Proposition 8 we infer that there exists an upper (n — z)-minor 
m of T ^ that does not vanish identically on the irreducible component of WKn-P-i(S) 
defined by p in S. Considering the coordinate ring C [S] as a C [ K i , . . . , Kn]-module, we 
may localize C [S] and the ideals a and p by the non-zero polynomial m, obtaining thus 
non-trivial ideals am and p m of C [ 5 ] m . Since the variety S is smooth by assumption, we 
deduce from Lemma 5 that (C [5']/a)m is a regular ring. This implies that p m is a primary 
component of the ideal am , and therefore, p is also a primary component of the ideal a. 
Since p was chosen as an arbitrary prime component of a, we conclude that the ideal a is 
radical. Therefore a is the ideal of definition of the affine variety WKn-P-i(S) in S. We 
conclude now that the polynomial ideal generated by F i , . . . , Fp and all (n — i + l)-minors 
of T ^ is Cohen-Macaulay and the ideal of definition of WKn-P-i (S) in C [K i , . . . , Kn]rj 

In the case of classic, cylindric affine polar varieties (i. e., in the case Kn~p~l C H) 
Propositions 6 and 8 and Theorem 9 are nothing else but a careful reformulation 
of [4], Theorem 1. In terms of standard algebraic geometry, Theorem 9 implies the 
following result: 

Corollary 10. Let S be a smooth, pure p-dimensional closed subvariety of An . Let 
If be a linear, projective subvariety of P n of dimension (n—p — i) with 1 < i < n — p. 
Suppose that K is generated by n — p — i + 1 many points A\ = (ai>0 : • • • : 
al,n)> • • • J -4j = (fljjO - " • • - Gj.n), • • • j -4n-p- i+l = (an-p-i+l,0 : ' ' * : an-p-i+l,n) °* 
IPn with cijfl = 0 or a^o = 1 and a ^ i , . . . , a^n generic for any 1 < j <n — p — i + l. 

Then WK{S) is either empty or a Cohen-Macaulay variety of pure codimension i in 

5. 

In the case of classic, cylindric affine polar varieties (i.e., in the case Kn~p~~l C 
II), Corollary 10 seems to be folklore (compare [48], Corollaire 1.3.2 and Definition 1.4). 

Observe that Corollary 10 remains mutatis mutandis true if we replace in its 
formulation the affine variety S by the projective variety V and if V is smooth. 

4. REAL POLYNOMIAL EQUATION SOLVING 

The geometric and algebraic results of Section. 2 allow us to enlarge the range of ap­
plications of the new generation of elimination procedures for real alge'braic varieties 
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introduced in [4] and [5]. 

Let S be a pure p-co dimensional and Q-definable, closed algebraic subvariety 
of the n-dimensional, complex, affine space Ag and suppose that S is given by p 
polynomial equations F\,... , Fp of degree at most d, forming a regular sequence 
in Q[.K i , . . . , Xn\. Assume that, for any 1 < k < p, F\,... , Fk generate a radical 
ideal. Moreover, suppose that the real algebraic variety SR := S C\ Ag is non-empty 
and smooth. 

In this section we will describe an elimination procedure that finds a representa­
tive point for each connected component of SR. The complexity of this algorithm 
will be of intrinsic type, depending on the maximal geometric degree of the dual po­
lar varieties of S that are associated with the external flag of a generic, Q-definable 
flag contained in the hyperplane at infinity II of the n-dimensional, projective space 
IPS. 

In order to explain this algorithm, let us first discuss these polar varieties and 
then the data structure and the algorithmic model we will use. 

Let us choose a rational point u = (i*i, . . . , un) of An \SR with generic coordinates 
i*i,... , un and, generically in the hyperplane at infinity II, a flag C of Q-definable, 
linear subvarieties of Pg, namely 

C : L° C Ll C • • • C Lp~l C • • • C Ln~2 C Ln~l C P£ 

with Ln~1 = II. Let Qu be the hyperquadric of Pg defined by the quadratic form 

RU(XQ,X\, . . . ,X n ) := X0 — 2 2_^ UkX$Xk+ 2_^ ^k* 
l < k < n l<fc<n 

Observe that the hyperquadrics Qu and Qu D II are non-degenerate in Pg and II, 
respectively, and that QUDHR is represented by the positive definite quadratic form 
Ro(X\,... , Xn) = ~2i<k<n X% that introduces the usual euclidean distance on Ag. 
One verifies immediately "that the point (1 : u\ : • • • : un) G P n spans, with respect 
to the hyperquadric Qu, the dual space of Ln~l = II. 

Let us consider the external flag /C associated with £, namely 

with .ft7" v~% := (L p 4 " i _ 1 ) v , for 1 < i < n - p, and with an arbitrarily chosen 
irrelevant part 

-zr=n— 1 -=rrn — 2 -=r=n — p 

K D K D ••• D K . 

Observe that K consists of the rational point (1 : U\ : • • • : un) G P n . 
Let 1 < i < n - p and recall that the (p + i - l)-dimensional, Q-definable, linear 
subvariety Lp+l~l was chosen generically in the hyperplane at infinity II of Pg. 
Therefore, ~xn~p~x is an (n — p - i)-dimensional, Q-definable, linear subvariety of 
Pg, which we may imagine to be spanned by n - p — i + 1 rational points 

-4l = (fll.o ' '" ' Gl,n)> • • • > - 4 n - p - i + l = (^n-p- i+1 ,0 ' " ' ' 0>n-p-i+l,n) 
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of Pg w i t h a i j = m , . . 

a n d ai ,o = 1,^2,0 = 

ìаi ,n = v>n аnd a^д,. 
• • = ӣn-p-ifl = 0. 

-P-I 

• • »aj,n generic, for 2 < j < n—p—i+1, 
Observe that the point u belongs to 

K" " "flA" and is not contained in SR. Thus Proposition 2 implies that the real 
affine dual polar variety W - - - - P - . ( 5 R ) contains at least one representative point of 
each connected component of SR. 

In particular, the complex affine dual polar variety W-gn-P-i(S) is not empty. 
From the generic choice of the point u and of the flag C we deduce now that Propo­
sition 6, Lemma 7, Proposition 8 and Theorem 9 are applicable to the generalized, 
affine, polar variety Si := WV--n-p-.(S). Observe that Si is Q-definable and of pure 
codimension i in S. According to the terminology introduced in Section 1, wej:all 
Si the zth affine polar variety of S associated with the flag /C. Observe that Si is 
non-empty and intersects each connected component of the real variety SR. 

Thus, in particular, S n _ p is a Q-definable, zero-dimensional, algebraic variety 
that contains a representative point for any connected component of SR. 

We will now analyse the polar variety Si more closely. For 2 < j < n — p let 
Aj : = E i < f < n a j , ^ / a n d> for 1 < A: < n, choose C* = (CM>-- - >0fc,n) € Q" such 
that Ci, • • • , £p+I are zeros of A 2 , . . . , An_p and that £ i , . . . , £n form a Q-vector space 
basis of Q1 (recall that the coefficients of the forms A 2 , . . . , An_p are generic). Let B 
be the transposed matrix of (Cj,k)i<j,k<n. For 1 < k < n, let Zk = £ i< j<n CkjXj, 
where (Cfc,i, • • • , 0fc,n) is the fcth row of the inverse of the transposed matrix of B. Let 
Z := (Z\,... , Zn). As in Section 3, consider now the polynomial ((n - i + 1) x n)-
matrix 

Г ( i ) = 

ЭFi 
дXг 

___. 
ӘXi 

ÛI,I — a i . oXi fli, 

aFi 

дXn 

дFp_ 

әxn 
- ai.oJ-n 

-• + 1,1 — ûn-p-.-ł- i,o-^i •• o>n-P-i+i,n — a n _ p _ i + i t 0 X n J 

Observe that T^B is of the following form: 

T ( i ) ß = 
J(F,(Z),...,FP(Z)) 

b\ — c\X\ • • • bp+i — Cp+iXp+i bp+i+i — Cp+i+iXp+i+i • • • 6 n — cnXn 

CJn — p — i, p + t v * )n — p — «, n — P — i 

where 61, . . . , bn and the entries of ( * ) n _ p _i j n - p - i are all generic rational numbers 
and where c i , . . . , c n belong to Q \ {0}. For the sake of simplicity we shall suppose 
that ci = •••-= c n = 1 (this assumption does not change the following argumentation 
substantially). 

Thus the (n — i + l)-minors of the matrix T^B, which are not identically zero, 
are scalar multiples of the ( p + l)-minors selected among the columns 1,.. . ,p + i of 
the ((p + 1) x n)-matrix 

:= 
J(F 1 (Z), . . . ,F„(Z)) 

6i — Xi • • • bn — X„ 
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and vice versa. 

Consider now an arbitrary p-minor m of the Jacobian J(F\ (Z),... , FP(Z)). For 
the sake of definiteness let us suppose that m is given by the columns 1 , . . . ,p. For 
P + 1 < j < p + i, let Mj be the (p + l)-minor of the matrix 0 given by the columns 
I,--- iPJ-

Then we deduce from the Exchange Lemma of [4] that, for any point x of S with 
m(x) 7-- 0, the condition Mp+i(x) = • • • = Mp+i(x) = 0 is satisfied if and only if all 
(p + l)-minors of 9 vanish at x. 

Taking into account that m(x) ^ 0 implies the (Fu... ,P1
p)-regularity of the 

point x 6 5, we conclude that the equations F\,... , Fp, Mp+i,... , Mp+i define the 
polar variety Si outside of the locus V(m). 

Moreover, from Theorem 9 and its proof we deduce that the polynomials F\,... , Fp, 
Mp+i, . . . , Mp+i generate the radical ideal of definition of the affine variety Si \V(m) 
i n Q J X i , . . . ,Xn]m. 

For 1 < h < p, let Sh be the affine variety defined by the equations Pi,... , F^. 
Denote by deg Sh the geometric degree of Sh in the set-theoretic sense introduced in 
[28] (see also [21] and [49]). Thus, in particular, we do not take into account mul­
tiplicities and components at infinity for our notion of geometric degree. (Since by 
assumption the polynomials Pi,... , Fh form a regular sequence in Q [ X i , . . . , Xu], 
it turns out that the geometric degree of the (n — ^-dimensional algebraic variety Sh 
is the number of points by cutting Sh with (n — h) generic affine linear hyperplanes). 
We call 

S := maxImaxjdegS'/ill < h < p},max{deg.Si|l < i < n — p}} 

the degree of the real interpretation of the polynomial equation system Pi,... ,FP. 

From Proposition 6, Proposition 8 and the genericity of C in H we deduce that 
6 does not depend on the choice of the particular flag C. 

Since, by assumption, the degrees of the polynomials F\,... , Fp are bounded by 
d, we infer from the Bezout-Inequality of [28] the degree estimates deg S < dp and 
degSfc <dh < dp, for any 1 < h < p. 

Let 1 < i < n — p and recall from the beginning of Subsection 3.1 that each irre­
ducible component of the polar variety Si = W^n-P-i(S) is a (n-p- i ) -dimensional 
irreducible component of the closed subvariety of An defined by the vanishing of 
F\,... , Fp and of all (n — i + l)-minors of the polynomial ((n - i + 1) x n)-matrix 
T(*). Taking generic linear combinations of these minors, one deduces easily from 
the Bezout-Inequality that deg Si is bounded by 

(deg S) • (p(d - 1) + l ) i < dP+i pl < cf1 pn~p. 

This implies the extrinsic estimate 6 < dJ1 pn~p. 

We will now introduce a data structure for the representation of polynomials 
of Q[«Xi,... ,Xn) and describe our algorithmic model and complexity measures. 
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Our elimination procedure will be fomulated in the algorithmic model of (division-
free) arithmetic circuits and networks (arithmetic-boolean circuits) over the rational 
numbers Q. 

Roughly speaking, a division-free arithmetic circuit /? over Q is an algorithmic 
device that supports a step by step evaluation of certain (output) polynomials be­
longing to Q[X\,... , Xn], say F\,... ,FP. Each step of (5 corresponds either to an 
input from X\,... , Xn, to a constant (circuit parameter) from Q or to an arithmetic 
operation (addition/subtraction or multiplication). We represent the circuit /? by a 
labelled directed acyclic graph (dag). The size of this dag measures the sequential 
time requirements of the evaluation of the output polynomials F\,... ,FP performed 
by the circuit (3. 

A (division-free) arithmetic network over Q is nothing else but an arithmetic cir­
cuit that additionally contains decision gates comparing rational values or checking 
their equality, and selector gates depending on these decision gates. 

Arithmetic circuits and networks represent non-uniform algorithms, and the com­
plexity of executing a single arithmetic operation is always counted at unit cost. Nev­
ertheless, by means of well known standard procedures our algorithms will always 
be transposable to the uniform random bit model and they will be implementable 
in practice as well. All this can be done in the spirit of the general asymptotic 
complexity bounds stated in Theorem 11 below. 

Let us also remark that the depth of an arithmetic circuit (or network) measures 
the parallel time of its evaluation, whereas its size allows an alternative interpretation 
as "number of processors". In this context we would like to emphasize the particu­
lar importance of counting only nonscalar arithmetic operations (i. e., only essential 
multiplications), taking Q-linear operations (in particular, additions/subtractions) 
for cost-free. This leads to the notion of nonscalar size and depth of a given arith­
metic circuit or network /3. It can be easily seen that the nonscalar size determines 
essentially the total size of /3 (which takes into account all operations) and that the 
nonscalar depth dominates the logarithms of degree and height of the intermediate 
results of (3. 

For more details on our complexity model and its use in the elimination theory 
we refer to [10, 22, 29, 34, 40], and, in particular, to [26] and [37] (where also the 
implementation aspect is treated). 

Now we are ready to formulate the algorithmic main result of this paper. 

Theorem 11 . Let n,p,d,5,L and I be natural numbers with d > 2 and p < n. 
Let X\,... , Xn, Y be indeterminates over Q. There exists an arithmetic network J\f 
over Q of size (") L2(nd5)°^ and nonscalar depth 0(n(£ + lognd) log5) with the 
following property: 

Let Pi,... , Fp be a family of polynomials in the variables X\,... , Xn of a degree 
at most d and assume that F\,... ,FP are given by a division-free arithmetic circuit 
0 in Q [X\,... , Xn] of size L and nonscalar depth I. Suppose that the polynomials 
Pi,... , Fp form a regular sequence in Q [X\,... , Xn] and that Pi,... , Fh generate a 
radical ideal for any 1 < h < p. Moreover, suppose that the polynomials Pi,... ,FP 
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define a closed, affine subvariety S of Ag such that SR is non-empty and smooth. 
Assume that the degree of the real interpretation of the polynomial equation system 
is bounded by S. Then the algorithm represented by the arithmetic network N 
starts from the circuit /3 as input and computes the coefficents of n + 1 polynomials 
P, P i , . . . ,P n in Q[Y] satisfying the following conditions: 

— P is monic and separable, 
— 1 < d e g P < 5 , 
— max{degPfc 11 < k < n) < degP, 

— the cardinality # S of the (non-empty) affine variety 

S:={(Px(y),...,Pn(y))\yeC, P(y) = 0} 

is at most deg P , the affine variety S is contained in S and at least one point 
of each connected component of SR belongs to S. 

Moreover, using sign gates the network M produces at most # S sign sequences 
of elements {—1,0,1} such that these sign conditions encode the real zeros of the 
polynomial P "a la Thorn" ([15]). 

In this way, namely by means of the Thorn encoding of the real zeros of P and by 
means of the polynomials P i , . . . , P n , the arithmetic network M describes the finite, 
non-empty set 

SHRn = {(P^y),... ,Pn(y))\y ER, P(y) = 0}, 

which contains at least one representative point for each connected component of 
the real variety SR. 

Proof. We will freely use the notation introduced at the beginning of this section. 
Let P i , . . . , Fp be polynomials of Q [X\,... , Xn] satisfying the assumptions in the state­
ment of the theorem. Let S be the closed, affine subvariety of A£ defined by these poly­
nomials. For 1 < j , k < n, let Uk and Ujyk be indeterminates over C and let U := 
(Ui,... ,L/"n,£/i,i,... ,Un,n). Furthermore, for 1 < / < n, let Zx := J2i<k<n Ut,kXk. We 
write Z := (Z\,... , Zn). Let <£ be an algebraic closure of C(U) and fix a real closure D\ 
of R(U) in <£. Denote by An (<£) and An (9\) the n-dimensional, affine spaces over <£ and 9\, 
respectively. Further, for any Q-definable, closed, algebraic subvariety W of A£ denote by 
W(<£) and by W(9\) the closed, algebraic subvarieties of An (<£) resp. An(lH) given by an 
arbitrary set of defining equations of W in Q [X\,... yXn]. 

Observe that the irreducible and semialgebraically connected components of S(<£) and 
S(9\) correspond bijectively to the irreducible and connected component of S and SR, 
respectively. 

Consider the ((p+ 1) x n)-matrix 

T : = J(ЫZ) ғr(z)) 
UI-XІ • • • u„-xn 

The entries of T are polynomials belonging to 9\[X\,... , Xn]. 
For any choice of p columns 1 < i\ < ... < iP < n and any index j € {1 , . . . ,n} \ 

{t i , . . . ,iP} we denote by m ( i l ' •''p) the p-minor of J(F\(Z),... >FP(Z)) given by the 
columns t 'i,... , ip and by M{il ipJ) the (p+ l)-minor of T given by the columns i i , . . . , iP,j-
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Let Sn-P(<t) be the Zariski closure of the set of all ( F i , . . . , Fp)-regular points of S(<t), 
at which all (p -f 1)-minors of T vanish. 

Observe that Sn-p(<t) is the generalized, affine, polar variety of S(<t) associated with 
the zero-dimensional, linear, projective subvariety of the n-dimensional, projective space 
Pn(<t) over <t that is spanned by the point (1 : U\ : • • • : Un). Let H(<t) be the hyperplane 
at infinity of ¥n(<t) and let Qu be the hyperquadric of Pn(<t) defined by the quadratic form 
Ht/(Xo, • • • , Xn) := XQ - X lL i 1UkXoXk -f YH=\ xl- One verifies immediately that with 
respect to the hyperquadric Qu of Pn((£), the point (1 : U\ : — - : Un) spans the dual space 
of H(<t) in Pn(<£). Thus Sn-P(<t) is a dual polar variety with respect to the hyperquadric 
Qu of Pn(<t). 

Observe now that the hyperquadric Qu C\H(<t) of H(<t) is defined by the quadratic form 
Ho(Ki, • • • , Xn) := £ n

= 1 Xl and that the point (U i , . . . , Un) of An (D\) does not belong to 
S(9\). Thus we may deduce from Proposition 2 and the Transfer Principle for real closed 
fields (see e.g. [8]) that the real polar variety Sn-P(D\) is non-empty. Thus Sn-P(<t) is 
non-empty, too. Now, Proposition 8 (OT alternatively Lemma 7) implies that Sn-P(<t) is 
zero-dimensional and consists of ( F i , . . . ,Fp)-regular points of S(<t). Thus Sn-p(C) is of 
pure codimension n — p in S(<t). Prom the generic choice of the entries of U we deduce that 
the geometric degree (i.e., the cardinality) of Sn-P(<t) is at most S. 

Let us consider an arbitrary point x of Sn-P(<t). Since x is (F i , . . . , Fp)-regular, there 
exist indices 1 < i\ < ... < ip < n such that m (M" , , p )(x) ^ 0 holds. Let i p +i , . . . , in be 
an enumeration of the set { 1 , . . . ,n) \ {i\,... , i p } . 

Taking into account the generic choice of the entries of U, we deduce from Propo­
sition 6 and Proposition 8 that the equations F i , . . . ,FP , M ( i l , - , i - '+ l ) ,M ( i l , - , i ' , , i - '+ 2 ) 

, . . . , M ( M »p',n) intersect transversally at the point x and that they define the alge­
braic variety Sn-P(<t) outside of the locus V(mSn'"',lp)) defined by the equation m ( M"" , , p ) 

in An(<t). 
Therefore, the polynomials F i , . . . ,F p ,M ( i l V H ^ M ^ 1 ' • • , , i p , i p + 2 ) , . . . , 

M ( i l »*P'*») form a regular sequence in Q(U)[X\,... iXn]m(il i p ) . 

Moreover, for any 1 < j < n — p, the polynomials ( F i , . . . , F p ) , M ( M ,'* , l p+ l ) , 
M ( i l , - i p , i p + 2 \ . . . ,M ( i l-- , i p , i p+> ) generate a radical ideal in Q(U)[X\,... ,-Yn]m(u.....<-,). 

From the genericity of the entries of U and the considerations at the beginning of this 
section we deduce that the Zariski closure of 

V(Fi,... ,F p , M ( i l i p + l ) , M ( i l ip« ip+2),... , M ( i l i p , i p+^) \ V(m{il i p ) ) 

in An (<t) is a pure (p + j)-codimensional variety of geometric degree at most S. 

We are now able to apply the elimination algorithm described in the proof of [24], 
Proposition 18 (and improved by [25], Theorem 31) to the following system of polynomial 
equations and inequations: 

Fi = . . = Fp = M ( i l ' • ' i p , i p+ l ) = . . = M ( i l i p ' i n ) = 0, m(<1' ~'ip) ? 0. (8) 

Observe that the degree of this system (in the sense of loc.cit.) is at most S. Moreover, the 
n-variate polynomials of the system are of degree at most pd and they can be evaluated 
by a division-free arithmetic circuit of size 0(Lnp4) and non-scalar depth 0(1 + logp) 
over the function field Q(t/). The mentioned elimination algorithm is represented by an 
arithmetic network over Q(t/), whose size and non-scalar depth are L(neW)°(1) and 0(n(£+ 
log(nd))log<5), respectively. 
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For the given input system (8) this network evaluates the coefficients of certain univari­

ate polynomials P ( i l i p ) , P ( i l ip),... . P ^ 1 ip) in Q(U)[Y] that satisfy the following 
conditions: 

P(*1 t p ) is monic and separable with respect to the variable Y, 
degY P(i> ip> = # ( 5 „ - p ( € ) \ V(m^ ip>)) < 5, 

max{degy P* ' 1 -" -ip),... , degY Pih- 'ip)} < degy P(i> *'\ 

S„-P(€)\V(m^ i p )) 

= { ( I f ' ip)(y),...,Piil''ip)(y))\ye€,P^ ip)(y) = o}. 
Now we repeat this procedure for each index set { i i , . . . , ip} with 1 < i\ < • • • < ip < n, 
thus obtaining an arithmetic network A/i over Q(U) that computes the coefficients of all 
polynomials P(il i" ) , P^1' " , i p ) , . . . , p ^ 1 - ' * ^ e Q(U)[Y] for the given input system 
(8). 

The network M has size (n)L(nd6")°(1) and non-scalar depth 0(n(£ + log nd) log 6). 
From these data we compute, for the given input systen (8), the coefficients of certain 
polynomials P, Pi,... , Pn E Q(U)[Y] that satisfy the conditions: 

P is monic and separable with respect to the variable Y, 
d e g y P = # 5 n _ p ( C ) < J, 

max{degy Pi,... , deg y Pn} < deg y P, 

5„-p(C) = {P i (y) , . . . , Pn(y)) | y E £, P(y) = 0}. 
This computation can be realized by an extension A/_ of the network A/*i, such that A/_ has 
asymptotically the same size and non-scalar depth as A/i. 

Without loss of generality we may consider the arithmetic network A/_ to be division-
free, representing rational functions by polynomial numerators and a common denominator. 
We choose now a correct test sequence 7 1 , . . . , 7 ^ G Z n + m for the polynomials of Q [U] 
whose circuit size is bounded by the size of A/2. From [33], Theorem 4.4 (see also [34]) 
we deduce that such a correct test sequence of length IV = (n)L(ndo")°(1) exists (observe 
that the argumentation in [33] and [34] is based on the non-scalar complexity model and 
that we have to perform a slight adaption of the proof). Let A/3 be the arithmetic network 
over Q, which we obtain by specializing the vector U of inputs of A/2 to the integer points 
71, • • • , 7.v and concatenating the resulting arithmetic networks over Q. 

Observe that the arithmetic network A/3 is of size (£) L2(ndS)°^ and of non-scalar 
depth 0(n(£ + lognd) log<5). For the given input system (8) there exists an index 1 < 
k < N such that no denominator vanishes on u = (_ i , . . . , u n , _ i , i , . . . ,itn>n) := 7* in 
the computation of the coefficients of the polynomials P, Pi,... , Pn E Q(U)[^] by the 
arithmetic network A/2 and such that (_ i , . . . , un) does not belong to S. 

Let P := P(u)(Y),Pi := Pi(tz)(Y),... , Pn := Pn(u)(Y) and let S be the general­
ized, affine, polar variety of S associated with the zero-dimensional, projective subvari-
ety K° of Pc, which is spanned by the point (1 : _i : • • • : un). In other words, let 
5 : = VV /^S). Consider the hyperquadric Qu of the projective space Pg defined by the 
quadratic form Ru(X0i... , Xn) := X% - Y2=\ ^kX0Xk + £ „ = i Xl a n d o b s e r v e t h a t t h e 

hyperquadric Qu C\ H of H is given by the quadratic form .Ro(Kr, • • • ,Kn) := z\_n=i xk 
and that, with respect to the hyperquadric Q u , the point (1 : u\ : • • • : un) spans the 
dual space of H in Pg. Thus 5 is a dual polar variety with respect to the hyperquadric 
Qu of Pg. From Proposition 2 we infer now that SR contains at least one representative 
point of each connected component of SR. In particular, S is non-empty. Furthermore, 
the polynomials P,Pi,... ,P n belong to Q[Y\. From the choice of u we deduce that S is 
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a Q-definable, zero-dimensional variety (i.e., S is of pure codimension n — p in S) with 
5 = {(Px(y)y... ,Pn(y))\y G C, P(y) = 0} and # 5 < S. Moreover, P is monk and 
separable, and we have max{degPi , . . . , degPn} < degP = # 5 < S. 

We apply now any of the known, well parallelizable Computer Algebra algorithms for 
the determination of all real zeros of a given univariate polynomial, where these zeros are 
thought to be encoded "a la Thorn" (see e.g. [15]), to the polynomial P G Q[Y]. This 
subroutine may be realized by an arithmetic network A/* over Q, which uses sign gates and 
extends the network A/3. The size and non-scalar depth of JV are asymptotically the same 
as those of A/3, namely (™)L2(ndS)°^ and 0(n(i + log nd) log S), respectively. r j 

Observe that the algorithm described in the proof of Theorem 11 is based on a 
generic transformation of the variables X\,... , Xn and on the generic choice of a 
point in Ag, namely (u\,... , u n ) , outside of the variety SR. Indeed, the projective 
point (1 : u\ : • • • : un) spans a zero-dimensional linear subvariety K° of P n which 
determines the polar variety S = WKO(S). The fact that S is a zero-dimensional 
algebraic variety for a generic choice of a point u = (u\,... ,un) G Ag \ S is im-
plicitely used in [45] and [1] for the purpose to find for any connected component of 
SR a representative point. However, the algorithm developed in loccit. is rewriting 
based, lacks a rigorous complexity analysis and is much less efficient than ours. 

Let us finally mention that a variant of the elimination algorithm described in 
the proof of Theorem 11 can be obtained by chosing a rational (but possibly non-
generic) point of Ag \ S and chosing the hyperquadric Q of F n generically, subject 
to the condition that Q fl HR is defined by a positive quadratic form. We do not 
go into the details of this algorithmic variant and its geometric foundations, which 
require only a suitable adaption of Proposition 2 and Lemma 4. 

Remark 12. A more precise estimate for the size of the network J\f of Theorem 
11, namely 0((n)L2n8p4d4S4), can be obtained by choosing more carefully in the 
proof of Theorem 11 the correct test sequence 7 1 , , . . . ,7Iv and by replacing the 
elimination algorithm of [24] and [25] by a refined version of it, which is described in 
[29] and [26] (here the O-notation indicates that we neglect polylogarithmic factors 
in the complexity estimate). 

A uniform, probabilistic version of the algorithm described in the proof of Theo­
rem 11 can be realized by a network of size 0((n)n4Lp2d?S2) and non-scalar depth 
0(n(i + lognd) log S), which depends on certain randomly chosen parameters. 

On the other hand, taking into account the extrinsic estimate S < dnpn~d of 
the beginning of this section and the straightforward estimates L < dn+1 and I < 
logd, we obtain the worst case bounds (n)(npn~pdn)°^ and 0((n log nd)2) for 
the size and non-scalar depth of the network J\f of Theorem 11. Thus, our worst 
case sequential time complexity bound meets the standards of todays most efficient 
d°(n)-time procedures for the problem under consideration (compare [6, 7] and also 
[11, 12, 16, 27, 30, 31, 32, 43, 44]). 

In the particular case that the real variety SR is compact, our method produces 
the algorithmic main result of [4]. 
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