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1. INTRODUCTION 

Geometric sums are proved to be a useful and efficient tool of modelling stochastic 
phenomena in theory of queues, risk theory, storage, dams emulation, reliability, 
e tc (see, for instance [1-4, 6, 7-11]. The geometric sum is defined as the random 
variable Ylk=i Xk, where P{y = k) = q{\ — q)k~l, k = 1,2,... and v is independent 
of a sequence of independent, identically distributed random variables Xi , X2, 

The problem of the stability (continuity) arises because of an inevitable uncer
tainty about input data, or about so-called governing "parameters" of a model. As 
to geometric sums, the governing "parameter" is the distribution function F of a 
"real" random variable A"i, which, at least to a certain extent, is unknown and, for 
this, is not at one's disposal to carry out a desired analysis of the output data, that 
is of the distribution of the sum XH=i xk- Consequently, an investigator should 
search for an available approximating distribution function G (of a random variable 
X\) obtained from theoretical considerations or (and) statistical estimation. With G 
in hand one replaces Ylk=i Xk by the approximating sum Ylk=i Xk in the study of 
the former. The reliability of inferences obtained in the course of such replacement 
depends decisively on the closeness of the distribution of XH=i xk and of that of 

m=ixk' 
Let fi and jl be certain metrics in the space of random variables (or rather, in the 

space of their distributions). It is natural to expect that \i \Y^k=\ xk, YH=\ xk) is 

a vanishing at zero function of JJL(XUX\) and it is even better to be able to control 
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the accuracy of approximation, i. e. to have stability inequalities (bounds) of the 
form: 

/ M £ * * ' E * * ) <</>(£(*!,*i)), (i.i) 
\k=i k=i J 

where lima._>0+ ip(x) = 0. 
There are several works offering the versions of (1.1) for geometric convolu

tions. In [8-10] the bounds as in (1.1) with the uniform metric p = p = p are 
given under the condition: EX\ = EX\\ EX\,EX\ < oo. (Here and throughout 
p(X, Y) := supx E R \Fx(x) - Fy(x)\.) These bounds provide %l)(x) = Cy/x in (1.1). 
Some inequalities related to (1.1) can be extracted from the stability results in [1, 
2, 11, 13]. 

Under the hypotheses EXX = EXU Var(Xi) = Var(Ari); £|-K ip, E\XX\* < oo 
and a certain "smoothness" assumption on the known density of X\ we obtained 
in [5, 6] the variants of (1.1) with a linear function if). There /i = V was the total 
variation metric, while p. = max{V, ^ k 3 } , with k3 being a difference pseudo-moment 
of order 3 (see (1.3)). 

In the present paper we deduce (and apply to the stability study of some models) 
estimate (1.1) with the uniform distance p = p. In applications this metric is often 
more useful than the total variation distance. 

Instead of a usual geometric sum ]C!t=i -̂ *> w e treat its generalization not as
suming that the random variables X\, X2,... are identically distributed and that v 
has the geometric distribution. 

Together with the most important case of equal means (of Xk and of Xk), we 
pay attention to the more tight stability bounds which hold under the condition: 

EXJ
k = EX3

k, jfe>l, j = l , 2 , . . . , m - l ( m > 2 ) . 

Precisely, we prove the following inequality: 

\fc=l k=l J 

< cmE ( ^ " ^ J supmax jp(Xfc,.Xjb), —km(Xk,Xk) > , 

(1.2) 

where 

/

CO 

| * p - 1 | F x ( : r ) - F y ( x ) | d * (1.3) 
-OO 

and cm is a constant calculated in the explicit form, which depends on certain 
properties of characteristic functions of (Xk, k>l) and of (Xk, k > 1). 

To illustrate applications of inequality (1.2) we offer a solution of the stability 
problem in the following models. Firstly, we give new stability bounds for the 
ruin probability in the classical risk process. Secondly, we estimate the stability 
of the S. Andersen risk process (see [8]). Finally, we evaluate the accuracy of the 
approximation of distributions of sums of random variables by Erlang's distributions. 
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2. THE RESULTS 

In what follows let v be an arbitrary random variable assuming integer positive 
values and independent of two given sequences of independent random variables 
Q = (Xk, k > 1) and Q = (Xk, k > 1) having finite second moments. Throughout 
the paper we shall denote: 

v v 

(i) 5 = £X*, S = ^2xk; 
k=i fc=i 

(ii) Sn = X1 + --- + Xn, Sn = X1 + --- + Xn, n = 1,2,... ; 

(iii) o\ = Var(Xfc), o\ = Var(Xfc), k > 1, a* = inf ok; a , = inf ok; 
«>1 k>l 

(iv) Fx,fx and <̂ x are, respectively, the distribution function, the density (if it 
exists) and the characteristic function of a random variable X\ 

(v) p(X, Y) = sup\Fx(x) - FY(X)\, (the uniform metric); 

/

oo 
\x\Tn~1\Fx(x) - FY(x)\dx, (the difference pseudomoment 

-oo 

of order m > 0); 

(vii) ^m(-Y,r) = m a x | / 9 ( X , F ) , — k m ( X , y ) i , (m an integer). 

Definition 1. Let m > 2, s > 1 be fixed integers and r, 0 < r < oo be a given real 
number. We say that a sequence of independent random variables Q = (Xk, k > 1) 
belongs to the class K m ( s ; r ) if the following holds: 

(a) a* > 0 and supE\Xk\
m < oo; 

k>i 

(b) sup|V j C f c / , . ( t) | < r |«|-(" l+1)/ s for \t\ > 1. 
Jfc>1 

Since the hypotheses of the below theorems require sequences under consideration 
to be members of K m ( s ; r ) , it is useful to get idea of how wide the classes K m are. 
The following simple assertion shows that the majority of sequences of continuous 
random variables (identically distributed, with finite variance) accustomed in prob
ability theory and its applications are in the class K2(s;r) (for some 5,r), and even 
in K m ( s ; r ) , m > 2, provided E\Xi\m < oo. 

Proposition 1. For a given integer m > 2 let Q = (Xk, k > 1) be a sequence of 
independent, identically distributed random variables such that: 

(i) Var(Xi) > 0 , -ElXil"1 < oo; 

(ii) There is an integer t such that a random variable Z = X\ + • • • + Xi has a 
differentiate density with a derivative in Li (K). 
Then there exist s > 1 and r < 1 for which Q E K m ( s ; r ) . 
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Remark 1. Inequalities for characteristic functions obtained in [15] supply us with 
another way to test whether a given density is in a class K m ( s , r ) . Let a random 
variable Z = X\ + • • • + Xt have a density fz of bounded variation V(fz) := 
lima_+00 V"a(fz), where V*a(fz) is the total variation of fz on the segment [—a, a]. 
Then, according to [15], the following upper bound for a characteristic function ipz 
holds: 

\<pz(t)\ < V(fz)/\t\, t e E. 

Moreover, if the density fz has n — 1 derivatives, and f^ ' is a function of bounded 
variation, then 

( n - l K 
IЫ0I < v(fГ ')/\t\n, t є 

Definition 2. Let [i be a simple probability metric (i.e. [i(X,Y) = fj,(Fx,Fy), 
see [11, 13, 16]) and H = (Zk, k > 1) H = (Zk, k > 1) be arbitrary sequences of 
random variables. We write (admitting infinite values): 

fi(H,H) := supfi(ZkjZk). 

Actually, the following Theorem 1 is a particular case of Theorem 2 below. We 
single out the former because it seems to be more important for applications and 
because of a simple formula for calculating the constant c in inequality (2.1). 

Theorem 1. Suppose that EXk = EXk, k = 1,2,... and Q,Q G K 2 ( s ; r ) . Then 

(2.1) 

where 

c = max 

p(S,S) <c/ ł 2 (Q,Q) < o o , 

T + s- 1 

{*-»•? 
1 

x inf Л2 

\:r\-3''<l 
s(r\-^s)s + 

1 - (rA- 3 !*) 2 

(2.2) 

Corollary 1. Let Sg := (Sn, n > 1), Sq := ( 5 n , n > 1). Under the conditions of 
Theorem 1 

p(Sq,Sq) < C/J,2(Q,Q). 

The usefulness of bound (2.1) is conditioned by a magnitude of c in (2.1), (2.2). 
The following table gives an inkling of possible values of s, r and, so of c in (2.2) for 
sequences of independent, identically distributed random variables with a common 
density fx-

For the "best" density in this table, i. e. for the triangular one we find (taking 
cr* = 1.5, fr* = 1.4 and A = 1 in (2.2)) that c = max{3,3.03021} = 3.03021. See also 
Section 3 for further numerical examples. 
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The density fx Q = (Xkì fe>l)єK2(5;r) Q = ( X f c | k > l ) є K з ( * ; r ) 

Normal K 2 ( l ; 1.81959), K 2 (2; 0.90980) K 3 (2; 1.21306) 

Uniform K 2 ( 3 ; 0.57735) K 3 (4; 0.57735) 

Triangular K 2 (2; 0.66667) K 3 ( 3 ; 0.66667) 

Exponential K 2 ( 3 ; l ) K 3 ( 4 ; l ) 
Gamma 

Л° a - 1 - A x 
Г ( a ) X C 

with а = 4 
(Л is arbitrary) 

K 2(2;1.2) 

K 2(3;0.8) K 3 ( 3 ; 1.06667) 

Gamma with 
а = 6 
Л is arbitrary) 

K 2 ( 3 ; 0.75470) 

Gamma with 
а > 2 and 
aгbitrary Л 

K 2 (2; 1.36470) 
K 2 ( 3 ; 0.9080) 

T h e o r e m 2. Let m > 2 be a fixed integer. Suppose that EX I = EX3

k, k > l , j 

1,2,... ,m — 1 and that Q, Q G K m ( s ; r ) . Then 

where 

c m = max 

p(S,Š) < CmЏm(Q,Q)E (v-^) , 

| ( 2 S - l ) r ø / 2 , 
fil-m/2 l(m,s) j(m,s) 

x inf Лm[^i(Л)+^(Л)]}; 
A:rA-tm + 1 >/ J <l ) 

[n/2] 

(2.3) 

(2.4) 

7(m'S) := K VjЏ^^2' 7 (m'S) = JgŁ <» - [n/2Г/-
m - 2 

n 2 < oo; 

(m+Dfe rkkml2 

Ф\(A) = Vi(A;r,m,8) := supЛ - h ( m Л m Л \ — ~ < °°'' 
k>s k(rn + 1) — ms 

(2.5) 

ф2(X) = ^ 2 (A;r,m) 

93m/2- l 

: = < 

( l - r - Л - 2 ^ ) 

2m/2 

m/2 

(m - 1)! 

! for m even, 

(2.6) 

[ (l-r-A-^^Ҷ^)! 
for m odd. 



262 E. GORDIENKO 

Corollary 2. Let Q = (Xk,k > 1) and Q = (Xk,k > 1) consist of identically 
distributed random variables. Then, under the conditions of Theorem 2, 

p(Sn,Sn) < Crn^XuX^n-^, n = l,2,... . (2.7) 

Remark 2. For m = 3 and Xi,.K2,- • being normally distributed, inequalities 
(2.7) give an estimate of the rate of convergence in the central limit theorem. (See, 
for instance, [12-14, 16] for other, more specialized results on this developed topic.) 

Remark 3. For m = 3 the calculation of ipi(X) in (2-5) (for a given A) can be 
carried out as follows: 

(i) Calculate S = rX~A's. 

Compute the value o 

where [x] stands for the integer part of x and 

5xx3/2 

(ii) Compute the value of the function — at the points [xo] and [x0 + 1], 
Ax — 3s 

x0=(^sloS5-l\ + ((^s\ogS-l\ +^s) 

(iii) Take the greater value among the computed ones. 

Also note that 7(3,1) = 2>/3, 7(3; 1) = y/2. 

Remark 4. Let us consider a family of sequences of independent identically dis
tributed random variables Q^ = (Xj^ ,k > 1) depending on parameter 9 G Re, 
(£ > 1). Let a common density fx of Xk,k > 1 exist and G(8) be some distribu
tion function on Re with a support B C Re. Assume that there are integers s > 1, 
m > 2 such that 

(i) Q ^ G K m ( 5 ; r , ) , 6 e B; 

(ii) supP;|X1
Wr<oo; 

eeB 

(iii) sup 7*0 < r < 00. 
eeB 

By simple calculations one can verify that a sequence Q of independent, identically 

distributed random variable with a common "mixed" density fx (x) — l fx (x)dG(9) 
JB 

belongs to the class K m ( s ; r ) . 
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3. APPLICATIONS 

Example 1. (The stability e s t ima te of ruin probability.) 

Let us consider the so-called classical risk process: 
N(t) 

Z(t) = x + Kt- ] T Z * (3.1) 
k=l 

and its approximation 
N(t) 

Z(t) = x + Kt-J22k, (3.2) 
k=i 

(by convention, ^2k=l = 0). 
Here x > 0 is an initial capital, n > 0 is a gross premium rate, N(t) is the Poisson 

process modelling the number of claims occurred within [0, t] and the sequences of 
nonnegative independent, identically distributed random variables Q = (Zk, k > 1), 
Q = (Zk, k > \) (independent of N(t)) represent the costs of successive claims. 

We are concerned with an upper bound for the following uniform distance 

p(if>, * ) := sup |*(x) - i>(x)\ 
x>0 

between the ruin probabilities 

*(*) := P( inf Z(t) < 0), *(*) := P(jnf Z(<) < 0). 

Let 7 = EN(\); a := EZ\, a := EZ\ < oo and Fz^F^ denote, correspondingly, 
a distribution function of Z\ and of Z\. It is well known (see, for instance, [8]) that 
if the relative safety loading p := -̂ - — 1 is positive, then 

V(x) = (l-q)pHrXk>x\, (3.3) 

where the random variable v has a geometric distribution with parameter q = j ^ — , 
it does not depend on sequence (Xk, k > 1) and X\,X2,... are independent, 
identically distributed random variable with the common distribution function 

FXl (x) = 1 / " (1 - Fz(u))du, x > 0. (3.4) 
° jo 

Let us assume that a = a, EZ\ = EZ\ and ElZxp.Elzil3 < oo. Then (similarly 
to (3.3) and (3.4)) 

*(x) = (l-q)P\Y/Xk>x], 

*> . (*) = " / X ( 1 " FM) **, x > 0, (3.5) 
G JO 
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and, moreover, EXX = EXX; E\XX\
2, E\X\\2 < oo. 

Consequently, to estimate p ( * , * ) we can apply Theorem 1, assuming that the 
sequences Q = (Xk, k > 1) and Q = {Xk, k > 1) belong to the class K 2 ( s , r ) (for 
some s,r). Using (3.4) and (3.5) it is easy to show that: 

a2 = Var(Xi) = ( S a ) " 1 ^ 3 - ( 4 a 2 ) " 1 {EZ2)2, 

a2 = Var(Xi) = (3a)-lEZf - {Aa2)~l{EZ2)2, 

On the other hand, 

p(Xi,Xi) = i s u p / [ F z ( u ) - F ^ ( u ) ] d u 
a x>o |Jo 

and by virtue of inequality (18.3.19) in [13] 

1 f°° 
C 2 ( X i , X i ) < - y o x2\dFXl{x)-dF^{x)\ 

= : -џ{Z\,Ž\) 
a 

2a J0 
x2\Fz(x) -Fž(x)\dx = ^-k3(ZuŽi), 

where ĉ 2 is Zolotarev's metric of order 2 defined in (4.1). As it is seen from the 
proof of Theorem 2 (and, so of Theorem 1; see (4.10)) the distance /x2 in (2.1) can 
be replaced by the distance max{p, £2} . 

Thus, we get 

p{^,^)<^{l-q)maxL{Z1,Z1),^k3{Zl,Z1)\, 

where the constant c is given by (2.2). 
It is natural to ask: "When Q,Q G K 2 (s , r )?" . The nice property of distribution 

functions given by (3.4), (3.5) is that Q,Q G K2 (3, | ) for every pair of random 
variables Z\,Z\. Indeed, integrating by parts in the definition of characteristic 
function one can see that |(yOXi (01 !_- 2/a|£|, t > 0. 

Example 2. (The stability estimate of a risk process.) 

In the current example we consider risk processes Z{t) and Z{t) defined by 
(3.1), (3.2), but we relax assumptions made in the preceding example. Namely, 
we do not suppose that random variables Zi, Z 2 , . . . (correspondingly, Zi, Z 2 , . . . ) 
are identically distributed and we let N{t) to be any integer-valued process (inde
pendent of (Zfc),(Zjt)). The goal is to manifest an upper bound for the quantity 
supp{Z{t),Z{t)) in terms of a deviation of Q = (Z*., k > 1) from Q = (Z^, k > 1). 
t>o 

Supposing Q and Q to be in the class K 2(s ; r ) (for some s,r) and EZk = EZk-, 
k > 1 we can apply inequality (2.1) in Theorem 1 to give an upper bound of 
p{Z{t),Z{t)). For instance, assume that a "real" density fk = fzk is represented 
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as a mixture of Gamma densities with a G [2,M], /? G [A),-3], where /3n, A/, L? are 
some positive finite numbers. That is 

/•M pB na a-l 

fk(x)= / ^T-y-e-P*dA k (a)dB k ( l3) , k > 1, 
J2 J/3o F ( a ) 

where Ak,Bk are given distribution functions. Let one be uncertain about Ak,Bk 

and approximate them by distribution functions Ak,Bk, i.e. the density of the 
approximating random variable Zk is 

pM pB na a - l 

f"W = / / ^7^^X^Ma)^Bk(P). 
J2 J/30

 r ( a ) 

Assuming 

rM nB rM pB 

/ / -dAk(a)dBk((5) = / / -di ,(a)d£,(/3) 
J2 JI3o ^ -12 J/3o /^ 

for k = 1,2,.. . , we find the hypotheses of Theorem 1 to be fulfilled with Q,Q G 
K2(3; 0.90980) (see the table and Remark 4 in Section 2). Therefore, taking A = 1.3 
in (2.2) we obtain from (2.1) 

p(Z(ť),Z(ť)) <max<{5, — 
7Г 

1.34 n i 

ol + al\) Џ2(Q,Q). (3.6) 

Under the above mentioned restrictions on distributions of Z\ and on those of Z\ 
bound (3.6) considerably improves the stability estimates of the risk process given 
in [13], Chapt. 16. In the particular case of the same distributions of numbers of 
claims in the original risk process and in its approximation these bounds appear in 
inequality (16.2.15) in [13]. Namely, requiring the existence of a bounded density pt 

of the random variable 
N(t) 

[EN{t)]-iy£Zk, 
k=l 

(16.2.15) in [13] provides the following estimate: 

p(Z(t),Z(t)) < (12\/5)1/3[l + suppt(x)][/i;Ar(0]-1/3[k2(z1,z1)]1/3, (3.7) 
X 

which holds if EZ\ = Z\ and EZ\ = EZ\. 
If iV(£) is the Poisson process (with parameter 7 > 0), then for all sufficiently 

large t 
sup^(x) > c' > 0, 

X 

1 N{t) -

where pt is the density of the random variable —-= > Zk. This follows from the 

central limit theorem for densities (see, e.g. the supplement to Chapt. VII in [12]). 
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Thus supx pt(x) is greater than y/ytc' for the mentioned t, and therefore, the time-
depending term in (3.7) is of order c"t1^ as t —>• oo. On the other hand, making 
minor modifications in the proof of (16.2.15) and taking advantage of inequality 
(14.1.4), [13] one can get the following inequality valid when two first moments of 
the random variables Z\ and Z\ are equal: 

p(Z(t),Ž(t))< 1 + sup pt(x) 
xeR 

I i/з 
^ M Z Í . Ž Í ) ] . (3.8) 

The main difference between (3.6) and (3.8) are the values of exponents (a linear 
function against (-)1^3) involving in the factors measuring the accuracy of approx
imation. (These factors are expected to be small in the setting of the stability 
problem.) To make these comments more clear and to give a numerical illustration 
we consider the following example. 

Let Zfc, k = 1,2,... be identically distributed and Zk k = 1, 2 , . . . be so. Let 
Bk assigns masses 1 — p and p = 0.1 to the points (3 = 2 and /3 = 6.2/3. Also A^ 
allocates a mass (1 — p) to a = 6 and a mass p — to a = 6.2. On the other hand, 
we choose A^, B^ to be concentrated at the points a = 6,/? = 2, respectively. We 
have Q,Q e K2(3;0.73470) (see the table), a\ > 1.49929 and a\ = 1.5. Thus, we 
find that c -= max{5,4.89405} = 5 and (3.6) turns into the following inequality: 

p(Z(t),Z(t)) < 5 max I p(Z\,Z\), ±k2(ZuZ\)\. (3.9) 

Finally, we calculate by computer: 

p(Z\,Z\) < 0.00051537, k2{ZuZ1) < 0.0053486 

to write out the following estimate (valid for every t): 

p(Z(t),Z(t)) < 0.026743. 

In contrast to this bound provided by (3.9) in the current example inequality 
(3.8) offers the estimate 

p(Z(t),Ž(t))< 1 + sup pt(x) 0.220339. 

Remark 5. Concerning inequality (2.3) in Theorem 2 we note that if the number 
of summands v = max{l,iV(£)}, where N(t) is the Poisson process with parameter 
7* then, for some constant c 

( m —2 \ , v m —2 

v—5-) < č ( 7 ť ) — ~ , t > 0. 
Meanwhile in this case the right-hand side of inequality (16.2.15) in [13] is of 

m —1 . 1 
order t m + ! ^2, as t -* oo. 
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Example 3. (Estimating the stability of the approximation by Erlang's 
distributions.) 

The so-called Erlang's distributions (Gamma distributions with integer parameter 
a) proved to be useful to model a random service time (as well as, an input flow) 
in queueing systems (see, e.g. [10,11]). For instance, these distributions appear 
in modelling of multiphase service. If n is a number of service phases and Xk is 
the duration of the kth phase, then a total service time is Sn = X\ + • • • + Xn. 
The problem of stability estimating arises every time when one tries to justify a use 
of a customary approach to modelling replacing a "real" Xk by an exponentially 
distributed random variable Xk (say, with parameter fik > 0). Hence, Sn = X\ + 
•• • + Xn is adopted to imitate Sn. When fik = fi, k = 1,2,. . . , n , Sn has the 
Gamma density with parameters n/3, /?. In practice, nonnegative Xk, k = 1, 2 , . . . , n 
are different from exponential random variables, but often they are, in some sense, 
close to them. 

Denote: Q = (Xk,k > 1),Q = (Xk,k > 1), where Xi ,X 2 , . . . are independent 
(as well as, X\,X2, • • • are) and Xk has the exponential distribution with parameter 
0k > 0, (k > 1). We assume that EXk = EXk = 4^, k > 1. There are good statis
tical tests to determine whether Xk is close to Xk (in distribution). For instance, 
let cik and o\ be some statistical estimates of mean and variance of Xk and suppose 
that A"jfc belongs to the class of aging distributions called NBUE (new better that 
used in expectation, see [11] for the definition). If o\/a\ « 1, one can conclude that 
the distribution of Xk is in close proximity to the exponential one. Moreover, the 
following stability estimates are known [11, 13]: 

ч-ИУ 
1/2 . 

p(Xк,Xк)< ( 1 - ^ f ) , Шk,Xк)<-(al-a2

к), 

where o\ := Var(Xfc) < a\ := (EXk)2 and £2 is Zolotarev's metric of order 2. 
We additionally suppose that Q = (Xk,k > 1) G K 2 (3; l ) , relaxing, if needed, the 
condition (a) in Definition 1, assuming, instead: 0 < Var(A^) < 00, k = 1, 2 , . . . ,n. 
Note that all sequences of independent, identically distributed random variables 
with distributions given in the table of Section 2 are in K2 (3;1). As it follows from 
the proof of Theorem 1 the term \ k2 in the definition of the metric /x2 (and in 
Theorem 1, respectively) can be replaced by Zolotarev's metric C2- Therefore, from 
(2.1), (2.2) we obtain, for each n > 1: 

P(Sn,Šn) < m a x { 5 , ^ i n f A > 1 [ f + x £ r ] } 

r o2\1/2 1 1 (3 ,10) 

< m a x j m a x ^ l - ^ J , m « -(a\ - o\)j , 

where o2 := m i n i min ol, min -3- >. Bound (3.10) is "acceptable" in the case 

\l<fc<n * l<k<nf3\) 
of relatively large o and a small enough absolute deviation e := supk(a>l - 0*). F o r 
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instance, let infer* > 2 and infa* = inf — > 2. (In some sense the former yields 
k k k \5k 

the latter since in the approximation considered a* is somewhat like cr*..) Then, 
assuming e < 1 and taking A = 1.5 in (2.2) we get: 

p(SnJn) <2.5v^. 

4. THE PROOFS 

Proposition 1 of Section 2 easily follows from the well-known fact (see, [3], Chapt. 15) 
that f'z e Li (E) yields \ipz(t)\ = o(\t\~l) as t -+ oo. 

In what follows, we shall use Zolotarev's metric 

Cm(X,Y)= sup \E<p(X) - E<p(Y)\, (4.1) 

where F)m is the class of all functions cp : E —> E having (almost everjt-where) the 
rath derivative bounded by 1. It is well known that (see [11,13]) 

Cm(-Y,y)<-iTkm(x,r)<oo, 
ra! 

provided that EX* = EY*, j = 1,2,.. . ,ra - 1, E\X\m,E\Y\m < oo. 

Proof of Theorem 2. First of all, observe that 

p(X + Z,Y + Z)< snp\fz
m-1\x)\(:m(X,Y), (4.2) 

if the random variable Z has a density fz such that a bounded derivative fz 

exists almost everywhere on E. Indeed, 

I /"CO 

/ Fz(x-t)d[Fx(t)-FY(t)] 
J-oo 

and the functions 

¥»*(*) := 
supl/ÿ-^ИI 

Ez(ж-ť), x Є 

have almost everywhere the rath derivative bounded by 1. 
Now we take any positive A satisfying the condition 8 := r\~ 

arbitrary integers r,j such that j > 0, n > 5. Denoting 
< 1 and fix 

Y = 

Y = 
Л 

òџy/ñ 

(Xj+1 + Xj+2 H h -Yj+n), 

(-^j+l + Xj+2 H r- -Yj+n), 
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we show that the derivatives /y (x), /^ m '(x) of the corresponding densities 
exist everywhere on R and, moreover, 

s u p | / ^ m - 1 ) ( x ) | < i [ S V i ( A ) + V 2 ( A ) ] ) 

_eR 7 r 

s u p | 4 m - 1 ) ( x ) | < i [ s ^ 1 ( A ) + ̂ 2(A)]. 
xЄR 

Since the proofs are same for /y and /_>, we focus on /y. Let </?*., (pk and </?y 
denote the characteristic functions of X^/cr*, XXk/cr* and Y, respectively. 

/

oo 

|^|m~1 |(^y(^)|d^ < oo and, hence 
-oo 

1 r°° 
/i T O _ 1 ) (x) = — / (-it)m-le-itx<pY(t)&t exists, 

2 7 r j-oo 

and 

1 r°° _ _ / t \ 

supi/^wî /jr-^nj,,̂ ) 
„m/2 /" | ť |m-l J J | ^ ( í ) | d ř 

72 /' i-r-1 n î widí 

dť 

_1_ 

2тr 

-•5-IЛ + /J. 

We estimate I\ and 72 separately. By virtue of (b) in Definition 1 

M*)Mč*(Aí ) |<—-^ = ^ 1 " ' 
|Ať| > 

Consequently, 

h <2nm'25n I™tm~i-i^ 

Snnm/2 

dř 

= 2s < 25-01 (A; r ,m,s), 

(4.4) 

(4.5) 

(4.6) 

n(m + 1) — ms 

(see the definition of ipi in (2.5)). 

In view of (4.5) |^*(*) | < S < 1 for \t\ > 1. Thus, by Theorem 1, Chapt. 1 in 
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[12], \Mt)\ < 1 
l-ő* 

t2 for |£| < 1. Therefore, 

h < 2П™!2 $ t™'1 [l - ^f^tЛ " dř 

= 2 / 0 ^-Ҷl-- i#l í]П dx 

/o < гiiШn-oo f/^x"1'1 l _ í _ _ _ l гî. 
8 n 

(4.7) 
dx 

= 2 / 0
o o x " l - 1 e x p ( - í ^ x 2 ) d a ; , 

by the Monotone Convergence Theorem. The last integral in (4.7) is calculated as 
the corresponding absolute moment of the Gaussian distribution. Consequently, 

h < 2^2(A;г,m), (4.8) 

where the function ip2 is defined in (2.6). Combining inequalities (4.4), (4.6) and 
(4.8) we arrive at the desired bound (4.3). 

For an arbitrary, but fixed n > 2s let k = [ft/2], where [x] is the integer part of 
x. Denoting 

Zk = Xi + — • + Xk', Zk — Xk+i + h Xn\ 

Zk — Xi+ h Xk\ Zk = Xk+i + h Xn, 

we obtain by the triangle inequality: 

p(Sn,Sn) < p(Zk + Z'k,Zk + Z'k) + p(Zk + Z'k,Zk + Z'k). (4.9) 

In view of (4.2), (4.3) we can write (using the homogeneity of p: p(aX,aY) = 
p{X,Y), a ^ 0 and denoting b = £[s^i(A) + ^2(A)]): 

p(Zk + Z'k,Zk + Ž'k) 

<b(m(\-^7ř,\-^7ř) = : / n . 
a*\fk a*\/k a^yk a*vk J \ a*Vk a+Vk 

The well-known (see [11,16]) property of Zolotarev's metric 
/ n n \ n 

Cm I a Y2 &> a ^2 ^ I - am _C Cm (Ci» Vi)> a > o 
i=l i=l i=l 

allows us to bound In as follows: 

( \ m 
5~ J k^r/2 Yl7=k+1 Cm(-Y*> -Yi) 

< b(—"T" J r ^ J ^ r max km(X.,X.) (4.10) 
V*7*/ [ n / 2 ] m / - m ! fc+i<i<„ m v " v ' 

b Л Ш - m-' 
-̂  —í-^7("г , s ) k m(Ö. ,Q)n _ Ш ^ 

m! <гm 
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In (4.10) k m ( Q , Q) < co by virtue of (a) in Definition 1 and of the definition of k^ 
The second summand on the right-hand side of (4.9) is estimated similarly: 

p(Zk + zк,žк + Z'к) 

zк +x-4L==,x- Zк 
+ A — ^ -

I d*\Jn — k o* yjn — k o+\/n — k cr* y/n — k 

b A m ~ m-2 
-̂  ~~I - _ - 7 ( m ' S ) k m ( Q , Q ) ^ ~ " T " . 

Combining (4.9) ~ (4.11) shows that 

(4.11) 

p(Sn,Šn)<bXr-
j(m,s) 7(m,a) 

Џm(Q,Q)n' 
m - 2 

2 (4.12) 

for n = 2s,25 + 1, . . . . 

By the regularity of the metric p we get for n = 1,2,..., 2s — 1, 

n 

p(Sn,Sn) < X>(x*,X f c ) < (2S - 1)P(Q,Q) 
k=\ 

<(2s-l)fim(Q,Q)<(2s-l)m^fim(Q,Q)n-::^1. 

(4.13) 

Thus, remembering the definition of b and taking into account the fact that the 
only restriction to choose A in the above calculations was the inequality r\~ * < 1, 
we deduce from (4.12), (4.13) and (2.4) the following inequalities: 

-» ~ m — 2 

p(Sn,Sn) < cmfim(Q,Q)n -~, n = 1,2,... . 

To complete the proof it is sufficient to apply the total probability formula: 

p(S, Š) = sup P[Y^Xk<x) -PІjГtXh<x 
Kk=l Kk=l 

< X^ s u p 

n=l xЄR 
P[Y,XП<X) -p[ү^Xn<x 

<k=l 
oo 

\fc=l 

P(v = n) 

< CmЏm^Q.Q^Y^П ^ P(l/ = n). 
n=l 
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