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The aggregation of preference relations in group decision-making (GDM) problems can 
be carried out based on either the reliability of the preference values to be aggregated, as 
is the case with ordered weighted averaging operators, or on the reliability of the source of 
information that provided the preferences, as is the case with weighted mean operators. 

In this paper, we address the problem of aggregation based on the reliability of the 
source of information, with a double aim: a) To provide a general framework for induced 
ordered weighted operators based upon the source of information, and b) to provide a study 
of their rationality. We study the conditions which need to be verified by an aggregation 
operator in order to maintain the rationality assumptions on the individual preferences in 
the aggregation phase of the selection process of alternatives. In particular, we show that 
any aggregation operator based on the reliability of the source of information does verify 
these conditions. 
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1. INTRODUCTION 

Preference relations are the most common representation structures of information 
used in decision-making problems because they are a useful tool in modelling decision 
processes, above all when we want to aggregate experts' preferences into group 
preferences [14, 22, 23]. Many important decision models have been developed using 
mainly two kinds of preference relations: fuzzy preference relations [7, 14, 21, 24] 
and multiplicative preference relations [22], 

Fuzzy preference relations: (See [14, 24].) A fuzzy preference relation P on a 
set of alternatives X is a fuzzy set on the product set X x X, that is characterized 
by a membership function 

HP:X xX —> [0,1]. 
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When cardinality of X is small, the preference relation may be conveniently repre
sented by the n x n matrix P = (pij) being pij = p,P(xi,Xj) Vi,j G {1, . . . ,n). 
Pij is interpreted as the preference degree of the alternative Xi over xy. p^ = 1/2 
indicates indifference between Xi and Xj (xi ~ Xj), p^ = 1 indicates that Xi is abso
lutely preferred to Xj, and p^ > 1/2 indicates that Xi is preferred to Xj (xi y Xj). 
In this case, the preference matrix, P, is usually assumed additive reciprocal, i.e., 

Pij +Pji = 1 Vi,j G { 1 , . . . ,n}. 

Multiplicative preference relations: (See [22].) A multiplicative preference 
relation A on a set of alternatives X is represented by a matrix A C X xX, A = (a^), 
being a^ interpreted as the ratio of the preference intensity of alternative Xi to that 
of Xj, i. e., it is interpreted as Xi is aij times as good as Xj. Saaty suggests measuring 
ciij using a ratio-scale, and precisely the 1 to 9 scale: a^ = 1 indicates indifference 
between Xi and Xj, a^ = 9 indicates that Xi is absolutely preferred to Xj, and 
a^ G {2,... ,8} indicates intermediate preference evaluations. In this case, the 
preference relation, A, is usually assumed multiplicative reciprocal, i.e., 

љjг 1 Vi,j Є {1,. . . ,n}. 

The aggregation of a set of preference relations can be done taking into account 
the reliability of the preference values to be aggregated, as is the case with ordered 
weighted averaging (OWA) operators, or taking into account the reliability of the 
source of information, as is the case with weighted mean (WM) operators (see Ap
pendix A.l). 

A fundamental aspect of the OWA operators is the reordering of the arguments 
to be aggregated, based upon the magnitude of their respective values, which allows 
an importance to be given to the values to be aggregated. However, it is clear 
that a set of values can be reordered in a different way to the one used by the 
ordered weighted (OW) operators. This is the idea on which Yager and Filev based 
the definition of the induced OWA (IOWA) operator [28]. Motivated by this idea, 
and the fact that OWA operators are not appropriate aggregation operators for 
ratio-scale measurements (see Appendix A.2), we introduced the ordered weighted 
geometric (OWG) operator [16, 17] and the induced OWG (IOWG) operator [10]. 
The class of induce OW (IOW) operators includes both classes of OW and WM 
operators. 

In this paper, we address the problem of aggregation based on the reliability of 
the source of information, with a double aim: 

• To provide a general framework for IOW operators based upon the source of 
information. In particular, we present the importance IOW (I-IOW) oper
ator, when dealing with heterogeneous GDM, which induces the ordering of 
the argument values based upon the importance of the source of information, 
and the consistency IOW (C-IOW) operator, when dealing with homogeneous 
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GDM, which induces the ordering of the argument values based upon the con
sistency of the source of information. We also show that these IOW operators 
when guided by a linguistic quantifier allow the introduction of the importance 
and consistency concepts in the aggregation phase of a selection process of the 
alternatives in GDM. 

• Secondly, and as the main novelty of this paper, we study the conditions 
which need to be verified by an aggregation operator in order to maintain 
the rationality assumptions on the individual preferences in the aggregation 
phase of a selection process. In particular, we show that any aggregation 
operator based on the reliability of the source of information does verify these 
conditions, as do the I-IOW and the C-IOW operators. 

In order to do this, the paper is set out as follows. In Section 2, we deal with 
the issue of rationality in the aggregation of preference relations in group decision
making. In Section 3, we justify the election of IOW operators based upon the 
reliability of the source of information in order to get rational aggregation results, 
and shortly introduce the basic IOW operators: the IOWA and the IOWG opera
tors. In Section 4, we present two different IOW operators to aggregate preference 
relations in GDM problems based upon the reliability of the source of information, 
the I-IOW and the C-IOW operators. In Section 5, we study the conditions needed 
to guarantee both indifference, reciprocity and consistency properties of the indi
vidual preference relations trough the aggregation phase. Our concluding remarks 
are given in Section 6. Finally, in the appendix we provide some definitions needed 
throughout this paper. 

2. THE PROBLEM OF RATIONALITY OF INFORMATION IN GDM 

In this section, we analize the fundamental rationality assumptions when dealing 
with preference relations in GDM, as well as the necessary compatibility between 
them. 

In a preference relation an expert associates a real number to each pair of alter
natives that reflects the preference degree, or the ratio of preference intensity, of the 
first alternative over, or to that of, the second one. When doing this, a first and 
natural question immediately arises: Which conditions have to be verified in order 
to obtain consistent results? 

There are three fundamental and hierarchical levels of rationality assumptions 
when dealing with preference relations [15]: 

• The first level of rationality requires indifference between any alternative and 
itself. 

• The second one assumes the property of reciprocity in the pairwise comparison 
between any two alternatives. 

• Finally, the third one is associated with the transitivity in the pairwise com
parison among any three alternatives. 
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The mathematical modelling of all these rationality assumptions obviously depends 
on the scales used for providing the preference values [12, 14, 20, 22, 24]. 

A preference relation verifying the third level of rationality is called a consistent 
preference relation and any property that guarantees the transitivity of the prefer
ences is called a consistency property. The lack of consistency in decision making 
can lead to inconsistent conclusions; that is why it is important, in fact crucial, to 
study conditions under which consistency is satisfied [14, 20, 22]. 

Clearly, the problem of consistency itself includes two problems [5, 6, 18]: 

(i) when an expert, considered individually, is said to be consistent and, 

(ii) when a whole group of experts are considered consistent. 

The first problem was addressed in [20], and thus in this paper we focus on the 
second one. We address the problem of rationality in the aggregation of rational 
(consistent) information in GDM problems. 

Due to the hierarchical structure of the three rationality assumptions for a prefer
ence relation, the verification of a particular level of rationality should be a necessary 
condition in order to verify the next level of rationality. This means that the third 
level of rationality, transitivity of preferences, should imply or be compatible with 
the second level of rationality, reciprocity of preferences, and the second level with 
the first one, indifference of any alternative with itself. 

This necessary compatibility between the rationality assumptions can be used 
as a criterion for considering a particular condition modelling any one of the ra
tionality levels as adequate or inadequate. In the case of fuzzy (multiplicative) 
preference relations, the indifference between any alternative, .r^, and itself is mod
elled by associating the preference value pa = 0.5 (an = 1). The reciprocity of 
fuzzy (multiplicative) preferences is modelled using the property pij +Pji — 1, Vi, j 
(aij - aji = 1, Vi, j ) . A necessary condition for a preference relation to verify reci
procity should be that indifference between any alternative and itself holds. Because 
reciprocity property implies the indifference of preferences, we conclude that both 
properties are compatible. 

In the case of multiplicative preference relations Saaty means by consistency what 
he calls cardinal transitivity in the strength of preferences, 

aij ' ajk = &ik Vi, j , k = 1 , . . . ,n, 

which is a stronger condition than the traditional requirement of the transitivity 
of preferences. Inconsistency for Saaty is a violation of proportionality which may 
not entail violation of transitivity [22]. Furthermore, consistency implies reciprocity, 
and therefore, they are both compatible. 

In [22] Saaty shows that a reciprocal multiplicative preference relation is consis
tent if and only if its maximum or principal eigenvalue Amax 1s equal to the number 
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of alternatives n. Perfect consistency is however difficult to obtain in practice, espe
cially when measuring preferences on a set with a large number of alternatives. For 
measuring consistency we can use Saaty's consistency index 

\ k —n 
fijk _ Amax ,l 

n - 1 

where A,^ax is the maximum or principal eigenvalue of Ak. The closer CIk to 0 
the more consistent the information provided by the expert ek is, and thus, more 
importance should be given to this information. 

In decision-making problems based on fuzzy preference relations, the study of 
consistency is associated with the study of the transitivity property, and more than 
one condition has been suggested for modelling the transitivity of preferences [20]. 
Thus, a study of the compatibility between them and the reciprocity property would 
be of great help in deciding which one of them is the most adequate to model 
the transitivity of preferences. Using the transformation function of proposition A 
(Appendix A), the additive transitivity property 

Ptj + Pjk +Pki = 2 Vz>-7>fc 

is the corresponding concept to use to model the additive consistency property for 
fuzzy preference relations [20]. Furthermore, additive transitivity implies reciprocity 
of fuzzy preference relations, and therefore, they are both compatible. In [20], 
Herrera-Viedma et al. gave a characterization of the consistency property defined 
by the additive transitivity property of a fuzzy preference relation Pk — (pkj). Using 
this characterizatioii^method, a procedure was given to construct a consistent fuzzy 
preference relation Pk from a non-consistent fuzzy preference relation Pk. 

3. THE ROLE OF IOW OPERATORS BASED UPON THE SOURCE OF 
INFORMATION IN GDM 

The classical GDM procedure follows two steps [14]: aggregation and exploitation. 
The aggregation of experts' preferences, consisting of combining the individual pref
erences into a collective one in such a way that it summarizes or reflects all the 
properties contained in all the individual preferences, is a necessary and very im
portant task to carry out when we want to obtain a final solution of GDM problems 
[13, 14, 21]. 

The aggregation of a set of preference relations can be done taking into account 
the reliability of the preference values to be aggregated, as is the case with OW 
operators, or taking into account the reliability of the source of information, as is 
the case with WM operators. Furthermore, in any GDM process the final solution 
must be accepted by a majority of experts. The majority is traditionally defined as 
a threshold number of elements. However, this concept is not always included in the 
GDM process. Fuzzy logic provides one possible way of modelling it. 
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Fuzzy majority is a soft majority concept expressed by a fuzzy quantifier [30], 
which is manipulated via a fuzzy logic based calculus of linguistically quantified 
propositions. Therefore, using fuzzy majority guided aggregation operators we can 
incorporate the concept of majority into the computation of the solution. The 
OWA operators have been extensively implemented in the last few years in the 
resolution process of different problems and have also proved to be very important 
in solving GDM problems because they allow the implementation of the concept of 
fuzzy majority, which is fundamental when looking for a final solution of consensus 
[7, 21]. However, as far as we are aware no resolution process using WM operators 
has, so far, been proposed that implements the concept of fuzzy majority. 

As shown in [3, 4], the proper aggregation operator of ratio-scale measurements 
is not the arithmetic mean but the geometric mean. However, this operator does not 
allow the concept of fuzzy majority in the decision processes to be implemented. We 
could use the OWA operator but as it presents a similar behaviour to the arithmetic 
mean this is not advisable. In [7] the OWG operator based on the OWA operator 
and the geometric mean was introduced. These operators allow the implementation 
of the concept of fuzzy majority in the decision processes of a GDM problem with 
ratio-scale measurements in a similar way to OWA operators [7, 16, 17]. 

As we have mentioned, a fundamental aspect of the OW operators is the reorder
ing of the arguments to be aggregated, based upon the magnitude of their respective 
values, which allows an importance to be given to the values to be aggregated. How
ever, it is clear that a set of values can be reordered in a different way to the one 
used by the OW operators. This is the idea on which Yager and Filev based the def
inition of the IOWA operator [28]. Motivated by this idea, and the aforementioned 
fact that OWA operators are not appropriate aggregation operators for ratio-scale 
measurements, in [10] we introduced the IOWG operator. 

The OW operators allow the implementation of the concept of fuzzy majority but 
fail to maintain the rationality assumptions [9, 17], in contrast to WM operators, 
which maintain the rationality assumptions but do not allow the implementation of 
the fuzzy majority concept. The solution to this situation would be the use of IOW 
operators in the resolution process. In particular, the type of IOW operator that 
induces the ordering of the argument to be aggregated based upon the reliability of 
the source of information, will, on the one hand, guarantee the conservation of the 
rationality assumptions because they act in the same way as a WM operator, and, 
on the other hand, will allow the implementation of the concept of fuzzy majority 
because they are based on the OW operator. 

Therefore, in this paper, we focus on the aggregation of preference relations based 
upon the reliability of the source of information (the experts). This would allow 
us to design a rational resolution process based on IOW aggregation that both 
implements the concept of fuzzy majority, and maintains the rationality assumption 
of the individual preference relations. Before that, we provide the basic definitions 
of the IOWA and IOWG operators. 
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3.1. The IOWA operator 

Definition 1. (See [28].) An IOWA operator of dimension n is a function 

$vV : (R x E ) n — r M , 

to which a set of weights or weighting vector is associated, W = (iHi,... ,wn), 
such that Wi G [0,1] and HiWi = 1, and it is defined to aggregate the set of second 
arguments of a list of n 2-tuples {(ui,pi),... , (un,pn)} according to the following 
expression, 

ФW « w i , P i > , . . . Лun,Pn)) = ^Щ 'Pа(i) 
i = i 

being a is a permutation of {1, . . . , n} such that ua^ > fi^i+i), Vi = 1,... , n — 1, 
i. e., (^£7(i),P(7(i)) 1s the 2-tuple with ua^) the ith highest value in the set {?ii,. . . , un}. 

In the above definition the reordering of the set of values to be aggregated, 
{Pi,- — ,Pn}, is induced by the reordering of the set of values {TXI,.. . ,un} asso
ciated to them, which is based upon their magnitude. Due to this use of the set 
of values {711,... , un}, Yager and Filev called them the values of an order inducing 
variable and {p i , . . . ,p n} the values of the argument variable [27, 28, 29]. As we 
have mentioned, the main difference between the OWA operator and the IOWA op
erator resides in the reordering step of the argument variable. In the case of OWA 
operator this reordering is based upon the magnitude of the values to be aggregated, 
while in the case of IOWA operator an order inducing variable has to be defined as 
the criterion to induce that reordering. 

An immediate consequence of this definition is that if the order inducing variable 
is the argument variable then the IOWA operator is reduced to the OWA operator. 
A detailed list of properties of the IOWA operator and some of their uses can be 
consulted in [27, 28, 29]. 

Note 1. In this paper we focus on the aggregation of numerical preferences, which 
is why we assume that the nature of the first argument of the IOWA operators is 
also numeric, although it could be linguistic [27, 28, 29]. 

Note 2. In the case of using an IOWA operator in the aggregation phase of a GDM 
problem, the concept of fuzzy majority can be implemented by means of fuzzy lin
guistic quantifiers [30]. When a fuzzy linguistic quantifier Q is used to compute the 
weights of the IOWA operator <£, then it is symbolized by $ Q . 

Example 1. Suppose three experts provide the following fuzzy preference relations 
on a set of three alternatives 

P1 = 0.25 0.5 0.66 P2 = 0.34 0.5 0.87 P 3 = 
0.5 0.75 0.87 
0.25 0.5 0.66 
0.13 0.34 0.5 

0.5 0.66 0.94 
0.34 0.5 0.87 
0.06 0.13 0.5 

0.5 0.66 0.75 
0.34 0.5 0.66 
0.25 0.34 0.5 
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and have the following values associated to them b = (0.65,0.13,0.22). Using them 
to induce the ordering of the fuzzy preference values to be aggregated, and the fuzzy 
linguistic quantifier "most of", we obtain the following collective fuzzy preference 
relation 

/ 0 . 5 0.67 0.81\ 
Pc = *most ((0.65, Pl), (0.13, P 2 ) , (0.22, P3)) = 0.33 0.5 0.72 . 

\0.19 0.28 0 . 5 / 

For example, the value pc
l3 is obtained as follows: 

Pis = *most ((0.65,0.87), (0.13,0.94), (0.22,0.75)) 

= 4 * °-87 + 7? * °-75 + 4 ' 0-94 = ^ - °-81-15 15 15 15 

3.2. The IOWG operator 

Suppose that we want to aggregate a set of two-tuples {(^i, a\),... , (un,an)} where 
{u\,... ,un} is the set of order inducing values associated to the set of argument 
values {a i , . . . ,an}, which are given on the basis of a positive ratio-scale. In this 
case, we can use the IOWA operator on the set {(u\,p\),... , (un,pn)}, where the 
argument values {p\,... ,pn} are obtained using the transformation function / (see 
Appendix A.2), i.e., pi = /(a^) = | ( 1 + log9 ai). Thus, we obtain: 

n 

p = $VV ( v U i , P i ) , . . . ,(un,pn)) = ^Twi -/V(i) 
i=l 

where (ua(i),p(7(i)) is the two-tuple with ua(i) the ith highest value in the set 
{uu... ,un}. 

The set of two-tuples {(u\,ai),... , (un,an)} and {(^ i ,P i ) , . . . , (un,pn)} have the 
same set of order inducing values, and therefore the same order of the arguments 
{a i , . . . ,an} and {p i , . . . ,pn} is induced: 

n 1 - / n n \ 

p = Y^Wi- - (l + logga^ij) = - y^Wi + ^Wi-logga^i) I 
i=l \i=l i=\ J 

= 2 ( 1 + .5ZloS9K(i))U,,'j = 2 (1 + loS9n(a-w)^j • 

This last expression justifies the definition of the IOWG operator as follows: 

Definition 2. (See [10].) An IOWG operator of dimension n is a function 

$ & : ( R x R + ) n —>R+-, 

to which a set of weights or weighting vector is associated, W = (w\,... ,wn), 
such that Wi G [0,1] and T>iWi = 1, and it is defined to aggregate the set of second 
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arguments of a list of n two-tuples { (u i , a i ) , . . . , (un,an)}, given on the basis of a 
positive ratio-scale, according to the following expression, 

n 

* & ( ( u i , a i ) , . . . ,{un,an)) = Y[ {a<r(i))Wl 

being a a permutation of { 1 , . . . , n} verifying ua^ >wfT(j+1), Vi = l , . . . , n—1, that is 
(^(i)5

a<r(i)) 1s t r i e two-tuple with ua^) the zth highest value in the set { u i , . . . , u n } . 

Example 2. Suppose a set of three experts provide the following multiplicative 
preference relations on a set of three alternatives 

/ 1 3 5 \ / 1 2 7\ / 1 2 3> 
A1 = 1/3 1 2 1 A2 = 1/2 1 5 A3 = 1/2 1 2 

Vl/5 1/2 1/ VV7 1/5 1/ \l/3 1/2 1, 

If these experts are associated with the following values b = (0.65,0.13,0.22), then 
the collective multiplicative preference relation obtained using them to induce the 
ordering, and the same fuzzy linguistic quantifier "most of", is 

/ 1 1.08 3.89\ 
Ac = *So8t (<0.65, A1), (0.13, A2>, (0.22, i43>)= 1/1.08 1 2.55 . 

Vl/3.89 1/2.55 1 / 

4. IOW OPERATORS BASED ON THE RELIABILITY OF THE SOURCE 
OF INFORMATION 

In this section we present a general framework for the definition of IOW operators 
for GDM problems based on the reliability of the source of information. 

In [10, 11] we present two general studies on the IOWG and IOWA operators, 
respectively. Here, we present a particular study focused on the induced aggregation 
based on the reliability of the source of information. In particular, we study the 
importance IOW (I-IOW) operator, which induces the ordering of the argument 
values based upon the importance of the source of information; and the consistency 
IOW (C-IOW) operator, which induces the ordering of the argument values based 
upon the consistency of the source of information. These IOW operators allow the 
introduction of some semantics or meaning in the aggregation. 

4 .1 . The Importance IOW operator 

In many cases, each expert e*. G E has an importance degree associated to them. 
This importance degree can be interpreted as a fuzzy subset, \xi : E —> [0,1], 
in such a way that /x/(e^) G [0,1] denotes the importance degree of the opinion 
provided by the expert e*.. When this is the case, we call this a heterogeneous GDM 
problem [19]. The general procedure for the inclusion of these importance values 
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in the aggregation process involves the transformation of the preference values, pf , 
under the importance degree jii(ek) to generate a new value, p^. This activity is 
carried out by means of a transformation function g : 

Pij =9{Pij^i(ek)). 

Examples of functions g used in these cases include the minimum operator [19], the 
exponential function g(x,y) = xy [25], or generally any t-norm operator [31]. 

In our case, we can implement this importance degree variable by an alternative 
method, which consists of using it as the order inducing variable of the IOW operator 
to be applied in the aggregation stage of our resolution process. Thus, the ordering 
of the preference values is induced by the ordering of the experts from the most to 
the least important one. We call this importance degree based IOW operator the 
I-IOW operator and denote it as $w. 

Definition 3. If a set of of experts, E = {e i , . . . , e m } , provide preferences about 
a set of alternatives, X = {x\,... , x n } , by means of the set of preference relations, 
{R1, •.. , I?m}, and each expert e& has an importance degree, fii(ek) £ [0,1], asso
ciated to them, then an I-IOW operator of dimension n, 3>{y, is an IOW operator 
whose set of order inducing values is the set of importance degrees. 

Example 3. Suppose that the importance pairwise comparisons of the set of three 
experts of example 1 are given in the following fuzzy preference relation 

/ 0 . 5 0.87 0.75> 
I = 0.23 0.5 0.38 

\0.25 0.62 0.5 

As shown in [7], the vector of importance of a consistent fuzzy preference relation 
induces the same ordering among the set of experts as the vector of quantifier guided 
dominance degrees, no matter which linguistic quantifier is used. For this reason, we 
propose to calculate the importance associated to the expert ei as the total sum of 
the values of the row z, i.e., ///(e^) = J2jPij- The normalized vector of importance 
for this matrix is I = (0.46,0.24,0.30). 

Using the fuzzy linguistic quantifier "most of'\ the collective fuzzy preference 
relation obtained using the corresponding Importance IOWA (I-IOWA) operator 

^ m o s t 1 S 

0.5 0.67 0.81 
0.33 0.5 0.72 
0.19 0.28 0.5 

Pc = * L s t ( ( 0 . 4 6 , ^ ) , (0.24, P 2 ) , (0.30, P3)) 

whose elements can be considered as the preference of one alternative over another 
for most of the more important experts. 

Example 4. Suppose that we have a set of three experts E = {ei,e2,e3} and a 
set of four alternatives X = {xi, .r2 ,x3 ,X4}. Suppose that the importance pairwise 
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comparisons of these three experts are given in the following reciprocal multiplicative 
preference relation 

/ 1 6 4> 
7 = 1 / 6 1 3 

Vl/4 1/3 2, 

According to Saaty, the next step would be the computation of a vector of pri
orities, in our case of importance, from the given matrix, for which the principal 
eigenvector is computed and normalized. The vector of importance for this matrix 
is I = (0.70,0.19,0.11). 

Suppose that these experts provide the following reciprocal multiplicative prefer
ence relation on the set of alternatives 

Al = 

( 1 6 6 3 \ 
1/6 1 4 3 
1/6 1/4 1 1/2 

\l/3 1/3 2 1 ) 

A2 = 

( 1 6 6 8 \ 
1/6 1 2 3 
1/6 1/2 1 1/2 

Vl/8 1/3 2 1 ) 

A3 = 

'1 1/5 1/3 1 \ 
5 1 4 1/5 
3 1/4 1 1/4 
1 1/5 4 1 / 

Using the the fuzzy linguistic quantifier "most of'\ the collective multiplicative 
preference relation using the I-IOWG operator <&mo% is: 

Ae = Ф.^S ((0.701, Л 1 ) , (0.193, A2), (0.106, A3)) 

( 1 2.42 3.65 4.3 \ 
0.41 1 2.52 1.46 
0.27 0.4 1 0.42 

\0.23 0.68 2.38 1 ) 

whose elements can be considered as the preference of one alternative over another 
for most of the more important experts. 

4.2. T h e Consis tency IOW o p e r a t o r 

When the experts have equal importance, i.e., in a homogeneous GDM problem, the 
I-IOW operator is reduced to the Average Mean (AM) operator. Thus, in this case 
the application of the I-IOW operator does not introduce any new meaning and its 
application is not advisable. However, in a homogeneous situation, each expert can 
always have a consistency index (CI) value associated to them, with the following 
interpretation: the closer CI to 0 the more consistent the expert is. Usually, for 
each expert this consistency index value is obtained by analyzing the consistency of 
the preference relation provided. These values can be used as the order inducing 
variable in the aggregation of preferences by means of IOW operators. In this case, 
we call this a C-IOW operator. 
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Definition 4. If a set of experts, E = {e i , . . . , e m } , provides preferences about 
a set of alternatives, X = { x i , . . . , x n } , by means of the preference relations, 
{I?1,... , I? m } , then a C-IOW operator of dimension n, $ ^ , is an IOW oper
ator whose set of order inducing values is the set of consistency index values, 
{C I 1 , . . . , C I m } , associated to the set of experts. 

Example 5. (See [21].) Suppose a set of four alternatives X = {xi,x2,X3,:r4} and 
a set of four experts E = {ei,e2,e3,e4}, whose fuzzy preference relations on X are: 

E1 

/0.5 0.3 0.7 0 .1\ 
0.7 0.5 0.6 0.6 
0.3 0.4 0.5 0.2 

\0.9 0.4 0.8 0.5/ 

/0.5 0.5 0.7 °\ 
0.5 0.5 0.8 0.4 
0.3 0.2 0.5 0.2 

\ 1 0.6 0.8 0.5/ 

Pг = 

P4 = 

/0.5 0.4 0.6 0.2\ 
0.6 0.5 0.7 0.4 
0.4 0.3 0.5 0.1 

\0.8 0.6 0.9 0.5/ 

/0.5 0.4 0.7 0.8\ 
0.6 0.5 0.4 0.3 
0.3 0.6 0.5 0.1 

үЭ.7 0.7 0.9 0.5/ 

The consistency indexes are C I --- (-0.6,-0.14,-0.73,-0.77). The collective 
fuzzy preference relation obtained by using a C-IOWA operator guided by the same 
linguistic quantifier "most of", with weighting vector (0,0.4,0.5,0.1), is 

Pc = *£ost ((-0-6, P1), (-0.14, P2), (-0.73, P 3 ) , (-0.77, F4)) 

/ 0 . 5 0.41 0.7 0.12\ 
0.59 0.5 0.68 0.47 
0.3 0.32 0.5 0.19 

\0.88 0.53 0.81 0 . 5 / 

whose elements can be considered as the preference of one alternative over another 
for most of the more consistent experts. 

Example 6. If we take the same data as in Example 2, the consistency index values 
associated to these experts are CI = (0.002,0.007,0.005), and the collective multi
plicative preference relation obtained by using a C-IOWG operator guided by the 
same linguistic quantifier "most of" is 

1 1.08 3.89> 
Ac = $g-° ((-0.002, A1), (-0.007, A2), (-0.005, A3)) = [ 0.93 1 2.55 

,0.26 0.39 1 

whose elements can be interpreted as the preference intensity, measured in [1/9,9] 
[22], of one alternative over another for most of the more consistent experts. 
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5. RATIONALITY OF IOW OPERATORS BASED ON THE RELIABILITY 
OF THE SOURCE OF INFORMATION 

In GDM models we normally assume that preference relations are reciprocal. How
ever, it is wrell known that reciprocity is not generally maintained after aggregation is 
carried out in the resolution process [9, 17]. An aggregation operator that maintains 
the rationality assumption is called a rational aggregation operator. In the follow
ing, we study the conditions needed to guarantee that an aggregation operator is 
rational. 

Definition 5. An aggregation operator F of preference relations is a rational ag
gregation operator when it maintains the indifference, the reciprocity and the con
sistency properties. 

A desirable property to be verified by a rational aggregation operator is that a 
small change in the arguments to be aggregated should produce a small change in 
the value of the operator. In other words, we consider rational aggregation operators 
to be continuous. 

Assuming that F is a rational aggregation operator and Rc = (rcj) is the collective 
preference relation obtained from the set of m individual consistent preference rela
tions { i t 1 , . . . , i t m } , the above definition of a rational aggregation operator implies 
that F has to verify the following properties: 

1. Fuzzy preference relations: 

(a) Indifference property: rc
{ = 0.5 V i = 1,2,... , n. In terms of function F : 

F(0.5,0.5, . . . ,0.5) = 0.5. 

(b) Reciprocity property: rCj+rj{ = 1 V i, j = 1, 2 , . . . , n. In terms of function 
F: 

F(rl- r2- r171) + Fir1-- r2- r m ) = 1 
\'iji ' ^J'> ' ' ' » ' ij ) ~ x V' j i > ' J U • • * 5 ' ji ) -1-* 

(c) Additive consistency property: rcj + rc-k + rki = 1.5 V i , j = l , 2 , . . . , n . 
In terms of function F : 

F(r\jyj,...,rTj) + F(r)kyjk,...,rfk)+F(r\i,rli,...,r^i) = 1.5 

2. Multiplicative preference relations: 

(a) Indifference property: rc
{i = 1 V i = 1,2,... , n, or equivalently 

F ( l , l l . . . , l ) = l 

(b) Reciprocity property: rcj • r^ = 1 V i, j = 1,2,... , n, or equivalently 

FO 1 . r?- rm>) • F(rl- r2- r m ) = 1 
v ij » ij ' * * ' ' t j 1 V jii' jn • ' * >' ji ) ±m 
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(c) Multiplicative consistency property: rc- • rc^k • rki = 1 V i, j = 1, 2 , . . . , n, 
or equivalently 

F\rij->rij, • • • ,rij) ' F(rjkirjki ' • • >rjfc) ' F(rki>rkii ' • • >rto) — 1-

The following result holds: 

Proposition 1. A continuous aggregation operator of fuzzy preference relations 
that maintains the additive consistency property is a rational aggregation operator. 

P r o o f . Assuming that F is a continuous aggregation operator verifying 

F\rij->Vij> ' ' • >rij) + F\rjkirjk-> ' ' ' >rJfc) + Fvki^kii ' ' ' > rjfe!) = l-^, 

firstly, we have 

F(0.5,0.5, . . . , 0.5) + F(0.5 ,0 .5 , . . . , 0.5) + F(0.5,0.5, . . . , 0.5) = 1.5 

and thus F(0.5,0.5, . . . ,0.5) = 0.5, that is, F maintains the indifference property. 
Secondly, taking {rl

jk,r
2

k,... ,rj£) = (0.5,0.5,. . . ,0.5) and k = j we have 

^ r l i - r ? , . , . . . , r £ ) + F(0.5 ,0 .5 , . . . ,0.5) + F ^ r * , . . . ,rj?) = 1.5, 

which implies 
F(rl- r2- r771) + F(rl-r2- r™) = 1 

V iji ' iji ' ' ' i ' ij J * * \' j n ' jii - ' ' •>' jx J -1-' 

that is, F maintains the reciprocity property. • 

The dual result for multiplicative preference relations also holds: 

Proposition 2. An aggregation operator of multiplicative preference relations that 
maintains the multiplicative consistency property is a rational aggregation operator. 

The following result characterises the aggregation operators that maintain the 
reciprocity property, and therefore, also the indifference property. 

Proposition 3. An aggregation operator verifying 

F ( l - x i , . . . , 1 - xn) = 1 - F ( x i , . . . ,x n) V(x i , . . . ,x n ) e Rn 

( F ( l / x i , . . . , l / x n ) = 1 /F(x i , . . . , xn) V (x i , . . . , xn) G E" ) 

maintains the additive (multiplicative) reciprocity. 

P r o o f . If F verifies 

F ( l - x i , . . . , l - x n ) = l - F ( x i , . . . ,x n ) V(x i , . . . ,x n ) eRn 

then 
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F(r\. r

2. r™) + F(r1- r 2 r7 7 1) = F O - - r?- r7 7 1) 
V t j » ' ? j J • • • > f i . 7 / ' ^ V /

t 7 ^ ? , J ^ ? • • • > ' j i / x V' ij ? ' ij ' * * * ^ ' xj ) 

+ F ( l - r l j , l - r 2

j , . . . , l - r 7 7 / ) 

- Ffr-- r2- r ^ + l - F f r ? - r 2 r 7 7 1 ) 
V -J ' *J ' " * * > i j ! ' V tjj ' ij »• • • ' ij / 

= 1. 

that is, F maintains the reciprocity property. 

The proof for the multiplicative case follows a similar reasoning to this one. • 

In the case of OW operators guided by a linguistic quantifier, in [9, 17] a similar 
result was obtained: 

Proposition 4. If Q is a linguistic quantifier with a membership function verifying 

Q(\-x) = l - Q ( x ) , Vx 

then the collective preference relation, obtained by aggregating a set of reciprocal 
preference relations, using an OW operator guided by Q, is reciprocal. 

Moreover, in the case of Q being a non-decreasing relative fuzzy quantifier with 
membership function: 

0 0 < x < a 

Q(x) = { F т a<x<Ь 
b — a — — 

1 b<x<1 

a,b G [0,1], the following characterization result was also obtained in [9, 17]: 

Proposition 5. If Q is a relative non-decreasing linguistic quantifier with parame
ters a and b then the collective preference relation, obtained by aggregating a set of 
reciprocal preference relations, using an OW operator guided by Q, is reciprocal if 
and only if a + b = 1. 

The corresponding results to guarantee the consistency property are not as straight
forward as the previous ones. However, the following general condition guarantees 
both reciprocity and consistency properties (see Appendix A). 

Proposition 6. A +-separable (x-separable) mean aggregation operator is a ratio
nal aggregation operator for fuzzy (multiplicative) preference relations. 

Proof . UX = (r}j,r^j,...,r^),Y = (r}k,r%,...,rpandZ = (rii,rli,...,rk^), 
then the consistency of individual fuzzy preference relations imply 

X + Y + Z = (rlj +r1

jk+r1

ki,^j+rjk + tii1... ,r^+rjl+r^) = (1.5,1.5,..., 1.5). 
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Because F is +-separable then: 

F(1.5,1.5,.. . , 1.5) = F((X + Y) + Z) = F(X + Y) + F(Z) = F(X) + F(Y) + F(Z). 

F is a mean operator then F(X + Y + Z) = 1.5. All these considerations together 
imply that 

F(rijiriji • • • irij) + F(rjkirjk> • • • >rJfc) + Fvki^ki-* • • • > r D — l-S, 

which proves the rationality of the operator F. 
The proof in the case of a x-separable mean aggregation operator follows a similar 

reasoning. • 

The following result characterises the +-separable (x-separable) continuous mean 
aggregation operators. 

Propos i t ion 7. A +-separable (x-separable) continuous mean aggregation opera
tor is a weighted averaging (geometric) operator. 

P r o o f , We will prove only the part corresponding to +-separable, as the x-
separable part is straightforward using the logarithmic function. Therefore, we have 
to prove that if a continuous mean aggregation operator verifies 

F(X + Y) = F(X) + F(Y) V X, Y G HT 

then 
n 

F(xu... ,xn) = ^Wi -xi, 
i=l 

with W = (iOr,... ,wn) a weighting vector verifying YA=I wi ~ 1-

Proof by induction will be used. 

1. Basis: For n = 1, we have that F(x + y) = F(x) + F(y) Vx, y G M. Because F 

is continuous then there exists a constant a G 1R such that F(x) = ax Vx G 1R 

[1, 2]. 

2. Induction hypothesis: Let's assume that any +-separable continuous mean 
aggregation operator of dimension k is a weighted averaging operator, i.e., 
F(X + Y) = F(X) + F(Y) V X, Y G IR* then 

F(xu... ,xk) = ^WІ -XІ, 
i=l 

with W = (wi,... ,wk) a weighting vector verifying Yl7=i wi ~ -̂
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3. Induction step: Let's assume that F is a -V-separable continuous mean aggregation 
operator of dimension k + 1 such that F(X + Y) = F(X) + F(Y) V I , 7 G Rk+1. 
Then, we have: 

F(xu... ,xk,xk+i) = F ( ( x i , . . . ,Xfc,0) + (0 , . . . ,0,£fc+i)) 

= F(xu... ,x j t,0) + F ( 0 , . . . , 0 , x M _ i ) . 

We define G ( x i , . . . ,xk) = F ( x i , . . . ,xfe,0) and H(xk+i) = F ( 0 , . . . ,0,x fc+i). 
Function G is a ^-separable continuous aggregation operator of dimension k, 

and therefore, by applying the induction hypothesis, we obtain: G(x\,... ,xk) = 

T,i=lwi'Ti-
Function H verifies H(x + y) = H(x) + H(y) Vx,y G R, and therefore, there 

exists a constant u^+i G R such that H(x) = w^+i * x Vx G 1R. 
Both results together imply: 

A: k+1 

F ( x i , . . . ,xfc,xfc+i) = J ^ ^ i -Xi + wk+i -xk+i = ^ ^ i -Xi 
1=1 t = l 

Finally, because F is a mean aggregation operator 1 = F ( l , . . . , 1 , 1 ) - - 5Zi=i ^ i -
D 

This result guarantees that the IOW operators that induce the ordering of the 
arguments based on the reliability of the information source are rational aggrega
tion operators. In particular, both the I-IOW and C-IOW operators are rational 
aggregation operators. We note that the same cannot be assured in the case of OW 
operators as has been shown in [9, 17]. 

6. CONCLUDING REMARKS 

In this paper we have studied the use of IOW operators in the aggregation of pref
erence relations in GDM problems: the I-IOW operator, which induces the ordering 
of the argument values based upon the importance of the source of information; and 
the C-IOW operator, which induces the ordering of the argument values based upon 
the consistency of the source of information. 

Conditions have been given to assure the rationality of an aggregation operator 
of preference relations. In particular, we have shown that IOW operators inducing 
the ordering of the arguments based on the reliability of the source of information 
are rational ones. 

APPENDIX A. ORDERED WEIGHTED OPERATORS 

In this appendix, we present the OWA operator used to aggregate measurements 
given on a difference scale. When the measurements are given on a ratio-scale, 
the OWG Operator is the appropriate one. Firstly, we set out some definitions of 
aggregation operators. 
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Definition A . l . A function F : Rn —r R is called an aggregation operator of 
dimension n. 

Definition A.2. An aggregation operator of dimension n is *-separable if 

F(X *Y) = F(X)*F(Y) VX,r<ERn 

where * : R2 —> R is a continuous, commutative and associative operation such 
that x * 2 = 2 / * z V z £ R then x = y. 

Definition A .3 . An aggregation operator F : Rn —> R is a mean operator if 

min{xi , . . . , x n } < F(xu... ,x n ) < max{xi , . . . ,xn}. 

In the following we define the two special cases of weighted mean operators: 

Definition A.4 . An aggregation operator F : Rn —> R is a weighted averaging 
operator if 

F(xu... ,ж„) = ^WІ -XІ, 
i=l 

with W = (w\,... , wn) a weighting vector verifying Y17=i wi — ^-

Definition A . 5 . An aggregation operator F : Rn —> R+ is a weighted geometric 
operator if 

F(xu...,xn) = f[xiWi, 
t = i 

with W = (uvi,... ,wn) a weighting vector verifying ^17=1 Wi = •'•• 

Weighted averaging operators are separable with respect to the addition operation 
(+-separable), while weighted geometric operators are separable with respect to the 
product operation (x-separable). 

APPENDIX A.l. THE OWA OPERATOR 

In [7] Chiclana et al. considered GDM problems where the information about the 
alternatives is represented using fuzzy preference relations and designed a fuzzy ma
jority guided choice scheme that follows two steps to achieve a final decision from 
the synthesis of performance degrees of the majority of criteria: i) aggregation and 
ii) exploitation. This choice scheme is based on the OWA operator [26]. 
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Definition A.6. (See [26].) An OWA operator of dimension n is a function </> : 
IRn —•> E, that has associated to it a set of weights or weighting vector W = 
(iHi,... ,uvn) such that, W{ G [0,1] and Y17=i wi ~ 1> an<^ ls defined to aggregate a 
list of values {Pi,... ,pn} according to the following expression, 

<rK.Pl,-.. ,Pn) =^2wi 'Pv(i) 
i=l 

being a a permutation of { 1 , . . . ,n} such that pa(i) > pa(i-\-i), Vz = 1 , . . . ,n — 1, 
that is pa(i) 1s the zth highest value in the set {p\,... ,pn}« 

In [26], Yager proposed two ways to obtain the weighting vector associated to an 
OWA operator. The first approach is to use some kind of learning mechanism using 
some sample data; and the second approach is to try to give some semantic meaning 
to the weights. In this last case, the OWA operator can be used to implement the 
concept of fuzzy majority in the aggregation phase by means of the fuzzy quantifiers 
[30] which are used to calculate its weights, which in the case of a non-decreasing 
relative quantifier Q, is expressed as follows [26]: 

Wi = Q\~)~Q\ ~~~~ ) ' * = l j *' * 'n-

When a fuzzy quantifier Q is used to compute the weights of the OWA operator (/>, 
then it is symbolized by (J)Q. 

APPENDIX A.2. THE OWG OPERATOR 

The GDM problem when the experts express their preferences using multiplicative 
preference relations has been studied by Saaty using the decision analytic hierarchi
cal process (AHP), which obtains the set of solution alternatives by means of the 
eigenvector method [22]. However, this decision process is not guided by the concept 
of fuzzy majority. As shown in [3, 4], the proper aggregation operator of ratio-scale 
measurements is not the arithmetic mean but the geometric mean. However, the ge
ometric mean does not allow the concept of fuzzy majority to be incorporated in the 
decision process. Therefore, if we want to design a decision scheme for multiplicative 
preference relations that allows decision makers to implement the concept of fuzzy 
majority to obtain the final solution, then it is necessary to introduce a new class of 
operator to aggregate ratio-scale measurements allowing the implementation of the 
fuzzy majority concept. 

In [7] we obtained the transformation function between multiplicative and fuzzy 
preference relations, which is given in the following result: 

Proposition A. (See [7].) Suppose that we have a set of alternatives, X = 
{a?i,... , . r n } , and associated with it a multiplicative reciprocal preference relation 
A = (dij), with dij G [1/9,9] and ay • a^ = l , V i , j . Then the corresponding fuzzy 
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reciprocal preference relation, P = (Py), associated to A, with pij G [0,1] and 
Pij +Pji = l,Vz, j , is given as follows: 

Pij = / ( a y ) = - (1 + log9 a{j). 

The above transformation function is bijective and. therefore, allows us to trans
pose concepts that have been defined for fuzzy preference relations to multiplicative 
preference relations. In this way, for example, if we want to aggregate a set of val
ues {o i , . . . , a n } given on the basis of a positive ratio-scale we can use the OWA 
operator on the set of values {pA , . . . ,pn} obtained using the above transformation 
function / , i.e., pi = f(ai) = ^(1 -F log9 «j). Thus, we obtain: 

v - 4>(pi,-- 5Pn) = YlWi "JMo 
i=\ 

being G a permutation of { 1 , . . . ,n} such that p„(i) is the ith highest value in the 
set {pi , . . . , p n } . Because / is an increasing function, then aa(i) is the zth highest 
value in the set {a\,... , a n } , and therefore 

n 1 1 ( n \ 
P = Y^Wi' 2 ( 1 + I ° S 9 a ^ ( i ) ) = o M + X ^ " 1 0 6 9 ^ ^ ) ) 

i=\ \ i=\ J 

= ^i+iog9f[K(ori) 

This last expression justifies the definition of the OWG operator as an aggregation 

operator of information given on a ratio-scale: 

Definition A.7. (See [8].) An OWG operator of dimension n is a function <pG : 
R^ —> 1R_I_, to which a set of weights or weighting vector is associated, W = (w\,... , iun) 
such that Wi G [0,1] and T>iWi = 1, and it is defined to aggregate a list of values 
{a i , . . . , a n } according to the following expression, 

n 

(f)G(au... ,an) = Y[ {aa(i))Wl 

i = i 

where G is a permutation of { 1 , . . . ,n} such that aa(i) > a ^ + i ) , Vi = 1 , . . . ,n — 1, 
that is aa(i) is the zth highest value in the set {a\,... , a n } . 

As the OWG operator is based on the OWA operator, it is clear that the weighting 
vector W can be obtained by the same method used in the case of the OWA operator, 
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i. e., the vector may be obtained using a fuzzy quantifier, Q, representing the concept 
of fuzzy majority. When a fuzzy quantifier Q is used to compute the weights of the 
OWG operator (j)G, then, it is symbolized by </>Q. In [8, 17], a, fuzzy majority guided 
choice scheme based on the quantifier guided OWG operator was presented . 
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