
K Y B E R N E T I K A — V O L U M E 4 0 ( 2004 ) , N U M B E R 1 , P A G E S 1 0 7 - 1 2 0 

A DISCUSSION ON AGGREGATION OPERATORS 

DANIEL GÓMEZ AND JAV1ER MONTERO 

It has been lately made very clear that aggregation processes can not be based upon 
a unique binary operator. Global aggregation operators have been therefore introduced as 
families of aggregation operators {T n } n , being each one of these Tn the n-ary operator 
actually amalgamating information whenever the number of items to be aggregated is 
n. Of course, some mathematical restrictions can be introduced, in order to assure an 
appropriate meaning, consistency and key mathematical capabilities. In this paper we 
shall discuss these standard conditions, pointing out their respective relevance. 
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1. INTRODUCTION 

In his seminal paper, Zadeh [44] proposed a basic logical structure generalizing clas­
sical binary logic allowing the continuous [0,1] range for the degrees of verification 
and degrees of membership, in such a way that being X the set of objects under 
consideration, a mapping 

/ M - * - > [ 0 , l ] 

was defined, ^A{X) meaning the degree to which each object x £ X verifies certain 
"fuzzy" property A. 

In particular, Zadeh [44] modeled the generalized conjunction of two fuzzy sets 
An B by means of the minimum operator, 

V>AHB{X) = mm[fiA{x),fiB{x)] V x G l 

being its membership function. Disjunction A\J B was generalized by means of the 
maximum operator 

HA\JB{X) = m&x[fj,A{x), V>B{X)] V x G l 

And negation Ac was generalized as 

fiAc{x) = 1 - HA {X) V x G l 
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Such a simple structure indeed contains classical binary structure as a particular 
case, producing it whenever the valuation range is restricted to {0,1} values. 

But the fuzzy framework is much more complex that the crisp framework, and 
soon quite a number of operators where proposed, as different alternatives to those 
initially proposed by Zadeh [44]. 

In fact, as it can be easily checked, if {0,1} are the only allowed degrees of 
verification, there are only two relevant binary operators 

O : { 0 , 1 } X { 0 , 1 } - > { 0 , 1 } 

being monotonous 

a\ < a 2 ,b i < b2 => o(ai,bi) < 0(^2,^2) 

and informative, i.e. non-constant, 

3(a i ,b i ) , (a 2 ,b 2 )/o(a i ,b i ) ^ o(a 2,6 2) 

Those two unique relevant binary operators are usually called 

• conjunction, if 

(o(a, b) = 0, otherwise); 

disjunction, if 

(o(a,6) = 1, otherwise). 

o(a,b) = 1 4=Ф a = b = 1 

o(a,ò) = 0 «=-> a = b = 0 

Since there is only one logical structure based upon the binary {0,1} valuation 
space, one may be tempted to assume that every aggregation procedure within this 
context should be based either upon the above (crisp) conjunction or the above 
(crisp) disjunction. But this is not the case: in crisp Reliability Theory (see, e.g., 
[7]), apart from the series systems and parallel systems (respectively associated to 
the minimum operator and the maximum operator), we find that perhaps the most 
important family of structure functions are the so-called "A;-out-n" systems, where 
the system functions if and only if there are at least k functioning components 
(see [7]). These "fc-out-n" structures are usually applied in politics, within voting 
procedures (see, e.g., [37]). And we frequently classify objects within a certain 
class whenever the considered object verifies most of the properties defining such a 
class (see, e.g., [2]). We should not be accepting so easily that the aggregation of 
crisp information should be based upon a successive application of the above binary 
(crisp) conjunction or (crisp) disjunction. 

In addition, once the space of degrees of verification is extended into the unit 
interval, of course we should be expecting that both conjunction and disjunction 
can be modeled in many different alternative ways. 

In particular, most of the present literature on Fuzzy Sets Theory stresses the 
role of triangular norms and triangular conorms (£-norms and £-conorms for short, 
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see [38]) as natural generalizations for conjunction and disjunction, respectively, in 
case the valuation space is the unit interval (see also Klement et al [20] and Calvo 
et al [9]). Hence, the classical structure of binary logic can be translated into the 
fuzzy context, once we choose a particular triple 

(T,S,n) 

being T a t-norm, S a t-conorm and n a negation function (see [40]) such that 

S(a,b) = n(T(n(a),n(b))) Va,b G [0,1] 

Again, negation was generalized into the [0, l]-valued context showing the poten­
tial existence of a rich family of solutions: the application 

n : { 0 , l } - > { 0 , l } 

such that n(0) = 1 and n(\) = 0 is the only one-to-one decreasing mapping for the 
binary {0,1} valuation space. But it is clear that Zadeh's initial proposal [44] is not 
the only possible decreasing and one-to-one mapping in case the valuation space is 
the unit interval, as shown in Trillas [40]. 

In the next sections we shall discuss in details main assumptions of those models 
based upon a unique binary operator, pointing out that consistent approaches to 
aggregation procedures need to be developed. 

2. STANDARD ASSUMPTIONS ON FUZZY CONNECTIVES 

As pointed out above, the standard fuzzy connectives are modeled as £-norms for 
conjunction and £-conorms for disjunction. These two families of binary connectives 
are conceived (see [38]) as mappings 

0 : [O , l ]x [O , l ] -> [O , l ] 

Standard assumptions are the following properties (see also [20]): 

1. Commutativity: 0(a,6) = 0(6, a), Va,6 € [0,1]. 

2. Monotonicity: ai < a2,bi < 62 =* 0(a i ,6 i ) < 0(a2,b2)-

3. Associativity: &((D(a,b),c)) = ©(a,0(6,c)), Va,6,cG [0,1]. 

The following two extreme boundary conditions use to be also assumed, by defi­
nition (see, e.g., [15]): 

4a. 0(1,1) = 1. 

4/3. 0(0,0) = 0. 

Moreover, many results are obtained imposing some in principle desirable comple­
mentary properties (for more possible assumptions, see [20]): 
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5. Continuity: given a sequence {(an,bn)}n
<L1, with a n ,b n G [0,1], Vn, such that 

limn_>00(an,bn) = (a, 6), then 

lim 0 (a n ,b n ) = ©(a, b). 
n—>oo 

6. Idempotency: 0 (a ,a ) = a, Va G [0,1]. 

The particular conjunction or disjunction role is then given by one of the following 
additional exclusive boundary condition: 

7t. For t-norms: O(a,0) = 0(0 ,a) = 0 , V a G [0,1]. 

7c For t-conorms: ©(a, 1) = 0(1,a) = 1,Va G [0,1]. 

Let us make some critical comments on each one of the above properties. 

2.1 . Commuta t iv i ty 

Commutativity refers to irrelevancy of data ordering in the aggregation process, in 
such a way that aggregation will be invariant respecto to permutation (see [22]). It 
is indeed a quite standard mathematical property, but it implies a severe restriction, 
in some cases against real description of the problem. 

In fact, in many real applications the decision maker wants to keep track on how 
data were obtained, at least to be able to locate them in time, place and other 
circumstances. It should not have the same meaning a high temperature observed 
yesterday than a high temperature measured one or ten years ago. The opinion of 
a specialist today may deserve different weight than the opinion the same specialist 
gave yesterday (and of course we should take into account who each one of those 
consulted specialists is). 

Assuming that aggregation does not depend on ordering implies that result is 
not being affected neither by the time data are being produced or by the time data 
arrive to decision maker, and it is also suggesting that result may not depend on 
key circumstances surrounding data that most probably should have been included 
as data themselves. Data are not just numbers. 

Commutativity can be properly assumed only when our experiment has been 
designed in order to fulfill commutativity (randomness, for example, can be more 
or less guaranteed by means of an appropriate simulation procedure based upon 
pseudo-random numbers). But most often data are not being produced in a con­
trolled laboratory, and ordering can not be considered as irrelevant (as many other 
circumstances surrounding data). 

2.2. Monotonicity 

Monotonicity looks in principle like an obvious property (if every degree of truth 
increases, the global degree of truth should increase, or at least never decrease). But 
this property deserves much more attention. 

In fact, it is well known in Reliability Theory (see [7]) that monotonicity does 
not necessarily holds when dealing with physical systems subject to failure. It is 
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indeed a standard assumption even in a non binary context (see, e.g., [8] and [36]), 
but monotonicity should not be accepted without realizing that some interesting 
systems are put away. 

In particular, we must point out that some good solutions to certain problems 
can be obtained by introducing a big number of items with (not too extreme) bad 
behaviour. For example, some firms get their independence assuming many small 
dependencies which compensate between them (instead of rejecting dependencies 
which in turn will isolate the firm and provoke bankruptcy). Some economic the­
ories seem to suggest that justice can be reached allowing individuals to behave 
as small egoists. It is also well known that the success of some species is par­
tially explained in their inefficient random reproduction process, which guarantees 
a heterogeneous population (an optimal population is not reached by aggregation of 
optimal individuals). 

Equilibrium, in general, is more stable if it is based upon a big number of small 
forces. Good things can be obtained from bad things, under the right restrictions. 
This is an interesting paradox that may deserve more attention from aggregation re­
searchers, but it requires to explore aggregation rules not imposing any monotonicity 
condition. 

2.3. Associativity 

As pointed out in [20], the very first definition of triangular norm, as proposed by 
Menger [29], did not require any associativity condition. 

The problem is that, in order to be useful in practice, we need to be able to 
extend binary connectives to operations with an arbitrary number of arguments. 
Associativity takes care of this issue, allowing to extend each t-norm in a unique 
way, just by induction [20], no matter if the sequential calculus is made from left to 
right or from right to left. 

Associativity can be therefore viewed as a necessary restriction, but only once we 
accept that our aggregation process should be based upon a unique binary operator. 
Such assumption is not obvious even in the crisp case, as pointed out above, but it 
is difficult to accept in a more general context. Of course aggregation should take 
into account which pieces of information have being actually aggregated (see, e.g., 
[33, 34], where the size was introduced in order to avoid Fung and Fu restrictive result 
[17]). If assuming that all our aggregation processes should be based upon binary 
operations is not the only option (see [39] for an interesting alternative approach 
in decision making avoiding comparison by pairs of alternatives), we should not be 
accepting that aggregation operators can not evolve in time or that they simply 
remain constant along the complete aggregation process (see also [19]). 

Moreover, if we assume that aggregation rules should be able to aggregate homo­
geneous information, no matter how many chunks of information we are faced to, 
we still need to address two key issues: 

1. Operationally (decision maker should be able to implement implied compu­
tations, or at least able to find out some good approximate solution). 
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2. Consistency (underlying arguments supporting each aggregation should remain 
constant, so we can properly talk about an aggregation rule). 

Operationality can be assured allowing a successive reckoning of binary operators. 
Consistency can be assured, for example, imposing recursiveness, as introduced in 
[13] (see also [4]). We shall review this approach below, but of course there are 
alternative approaches. 

2.4. Extreme boundary conditions 

Again, analogous arguments to those conditions above relative to monotonicity may 
apply here: behavior in extreme situations, when all elements show the best behavior 
or the worst behavior may be considered natural except in some paradoxical context 
(it may even happen that the concepts of best and worst have to be revised in order 
to meet these two extreme boundary conditions). 

2.5. Continuity 

Quite often, continuity is considered a strong mathematical condition, and in fact 
quite a number of key results can be obtained assuming weaker forms of continuity 
(see, e.g., [20]). 

But from a practical point of view we should stress the weakness of the above 
standard continuity. If the valuation space is in fact the whole unit interval, and 
in order to deal with a robust estimation associated procedure, we need a stronger 
restriction. We do desire that our binary connective is smooth, but it can be derivable 
and still show too high slopes, in such a way that a small input measurement error 
can still produce an too big change in the output. This situation is not avoided 
even assuming that our function is infinitely derivable. In practice wTe should be 
imposing certain smoothness restriction (the first derivative must not be to high, 
in absolute value), and such a smoothness restriction most probably will depend on 
our precision measurement level. 

A possible proposal could take into account the concept introduced in [41], which 
focuses the attention on those curves that can be drawn by means of a ball, being 
its diameter to be fixed by the decision maker, but at this stage it seems hard to 
implement due to some analytical difficulties. 

2.6. Idempotency 

Idempotency is certainly violated in some contexts, due to some kind attraction be­
havior: a high degree, if repeated, may suggest in many contexts a higher aggregated 
degree, and a low degree, if repeated, may suggest a very low aggregated degree. 

Anyway, if idempotency is accepted, it is being suggested that one certain value 
plays the same role as many equal values, which can not be accepted in many contexts 
(at least the confidence in such a value, as an estimated value, should be different). 
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2.7. Exclusive boundary conditions 

Each one of these two conditions are introduced in order to give the aggregation 
a particular meaning. But again we should not be accepting there are only two 
possible roles for binary aggregation, as in the crisp context. 

Alternative boundary conditions may lead to different aggregation operators, as 
binary weighted means or Yager's binary OWA operators [42] (see also [43]). 

3. GLOBAL AGGREGATION OPERATORS 

As already pointed out, fuzzy aggregation operators can not be restricted to con­
junction and disjunction. Weighted means, for example, are neither £-norms or 
l-conorms, and do play a key role in aggregation processes. A key effort in this 
direction is the work of Yager [42] on OWA operators and Yager-Rybalov on the 
more general uninorms [43] (see also [14]). Nevertheless, as pointed out in [11] (see 
also [12, 13]), each OWA operator can deal only with an exact number of items, and 
we usually do not know such a number in advance. This problem can be solved by 
means of a sequential one-by-one aggregation taking into account only one binary 
operator, but it is clear this assumption becomes extremely restrictive in practice, 
so an OWA rule can be recursively defined. 

We do need to consider global aggregation operators as a consistent family of n-ary 
operators, so we can always evaluate aggregation, no matter the number of items 
to be aggregated: a procedure for each case has to be defined (see [21, 26, 28, 31] 
but also [16]). A key issue, already stressed in [9] is how such a consistency can be 
assured (if understood just as a family of operators, with no additional restriction, 
operators in charge of the aggregation of different number of items within a given 
global aggregation operator can be not related at all). 

The approach of Cutello and Montero [11], initially conceived only for OWA 
operators, was then brought into a more general framework, leading to the concept 
of recursive rule (see [12, 13]). The recursive model seems to offer nice properties: 
for example, taking into account classical results [1], the solution of a key generalized 
associativity equation (in the sense of Mak [24]) will lead to a quasi-additive recursive 
aggregation, as shown in Amo et al [4]. Such a recursive assumption implies a strong 
consistency on the family of all n-ary operators. In this way, recursiveness can be 
viewed as a natural way of assuring that our family of n-ary operators is a proper 
rule: as pointed out in [35], not every family of n-ary operators should be considered 
a proper rule. 

Needless to say, recursiveness is not the only way of obtaining proper aggregation 
rules and some alternative approaches can be tried. 

4. RECURSIVE RULES 

The key idea of recursiveness is that an aggregation rule, in order to be operational, 
should be based upon an iterative application of binary operators, taking advantage 
of previous aggregations. Data are therefore being assumed to be aggregated one by 
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one, and eacli particular arrangement of data will tell us the sequence of items to be 
aggregated. Hence, see [13], we first re-arrange data. 

Definition 1. Let us denote 

7Tn(ai,a2,... , a n ) = (aWn(1),a7rn(2),... ,a7Fn(n)). 

An ordering rule 7r is a consistent family of permutations {7rn}n>i such that for 
any possible finite collections of numbers, each extra item an+i is allocated keeping 
previous relative positions of items, i. e., 

7Tn+i(ai,a2,... ,an,an_|_i) 

= ( a 7 T n ( l ) , • ' ' - a 7 T n ( j - l ) , a7Tn + 1 ( j ) , <**„ (j) ' ' • J a 7T n (n ) ) 

for some j G { 1 , . . . ,n + 1}. 

In other words, once relative position of two elements is being fixed by means of 
a permutation 7rn, no permutation 7rm,ra > n, will change it. 

The following definition was then proposed in [13]. 

Definition 2. A left-recursive connective rule is a family of connective operators 

{tfn:[0,l]n-->[0.1]}n>, 

such that there exists a sequence of binary operators 

{Ln : [0, l ] 2 -> [0, l ] } n > 1 

verifying 

</>2(ai,a2) = L2(a^(i),a7r(2)) 

and 

0 n ( a i , . . . , a n ) = ^ n ( 0 7 i - l ( a 7 r ( l ) J " - ?
a 7 r ( n - l ) ) )

a 7 r ( n ) ) 

for all n > 2 and some ordering rule n. 

Notice that in no way we are imposing a unique binary operator for the whole 
iterative process. This was in fact the main criticism argued in [33] against the 
restrictive result obtained by Fung-Fu {17]. 

Right recursiveness can be analogously defined, and then we can talk about a 
recursive rule when both left and right representations hold for the same ordering 
rule (a standard recursive rule will appear if it is based upon the identity ordering 
rule). 
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Then it follows (see [3]) that a connective rule {0n}n>i is recursive if and only 
if a set of general associativity equations (in the sense of Mak [24]) hold for each n, 
once the ordering rule ir has been already applied: 

0 n ( a i , . . . , a n ) 

— JRn(a7r(1),^n_i(a7r(2),.. . ,an(n))) 

= L n (0 n _ i (a^ ( 1 ) , . . . ,a7r(n_1)),a jr(n)) 

must hold for all n. Assuming certain regularity conditions in a recursive rule (mainly 
strict monotonicity), it was then shown by Amo et al [4] that there exist 

1. a continuous and strictly monotonic function 

p : [0 , l ] ->[0 ,oo) 

2. a family of continuous and strictly monotonic functions 

{ J n : [ 0 , l ] - > [ 0 , o o ) } n > 1 

3. and a sequence of positive real numbers 

{cn}n>l 

in such a way that 

(n—2 n 

3=2 k=l 
p 

for all ( a i , . . . , a n ) G [0, l ] n , and n > 2, being Ylj=2 CJ = 1 whenever t < 2. 
A key difficulty in order to apply the above result is to check those regularity 

restrictions assumed in [4]. But still taking advantage of AczePs work [1] we can 
offer alternative similar results. The next theorem follows from Aczel [1], page 315. 

Theorem 1. Let 

{0n:[O,l]n->[O,l]}n>i 

be a recursive aggregation rule. If Ln and Rn are invertible functions in both vari­
ables, for all n > 1, then there exist: 

1. p : [0,1] —> _R+, continuous and strictly monotonic function, 

2. {Sn : [0,1] -> R+ }n>i? family of continuous and strictly monotonic functions, 
and 

3. {cn}n>i> sequence of positive real numbers, 
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in such a way that 

(n-2 n 

IT C3^Zck\~lp{ak) 
j=2 k=\ 

for all (a\,...,an) G [0, l ] n and for all n > 2, where Ylj=z2
 cj ls taken as 1 whenever 

£<2. 
P r o o f . From the definition of {<t>n}n>i, the following generalized associativity 

equation holds: 

Ln(Rn-i(u,v),w) = Rn(u,Ln_\(v,w)). 

Therefore, having (x\ ... ,xn) G [0, l ] n , and taking u = x\,v = 0n_2(^2, • • • ,#n- i ) 
and w = xn, the above equation is assured. Hence, we know from [1], that the 
solution of the above general associativity equation is basically additive, in the sense 
that there exist an,9n,ln,pn, qn,rn continuous and strictly monotonic functions over 
the compact interval [0,1], verifying that 

Rn-\(u,v) = a~1(pn(u) + qn(v)) 

Ln-i(v,w) = e~l(qn(v) +rn(w)) 

Rn(u, b) = ln(pn(u) + 6n(b)) 

Ln(a, w) = ln(an(a) + rn(w)). 

Since / is a strict monotonic function and Ln is invertible in both variables, we 
shall then prove that / is an invertible function: in fact, fixed z G [0,1], there 
exists (x,y) G [0, l ] 2 such that Ln(x,y) = z. Then from the above equation we get 
KPn(x) + 0n(y)) — z, and / is invertible. If we now denote Sn = l~x, we have the 
following equations: 

i?n_i(u,L0 = (Tn
l (pn(u) + qn(v)) 

Ln-i(v,w) =0~l(qn(v) +rn(w)) 

Rn(u,b)=S-1(pn(u)+en(b)) 

Ln(a,w) =5-1(an(a)+rn(w).) 

And from this stage the proof is analogous to that one of Theorem 3.1 in [4]. • 

Additional results can be tried taking into account other interesting results con­
tained in Aczel [1]. Analogously to [4], we should be able to produce alternative 
characterizations of idempotent additive rules, homogeneous additive rules and geo­
metric rules, now for invertible operators instead of regular operators (see [4]). But 
it is important to notice that all those results are showing that as soon as we de­
cide the very first aggregation for the first couple of items, we are restricting our 
possibilities for the whole family of n-ary aggregations. Every decision we take will 
take away some degree of freedom, and the aggregation rule may eventually be fully 
characterized. This is a key consequence of the recursive approach, and we claim 
this is consistent with intuition. 
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5. SOME ALTERNATIVE APPROACHES 

Some quite similar approaches can be found in the literature, and they become an 
alternative to recursiveness as far as some consistency restriction is being implied. In 
our opinion, an aggregation rule should never be understood just as a family of n-ary 
operators: all those aggregation operators must be deeply related, following some 
building procedure all throughout the aggregation process. There must be some 
unifying idea behind, and not only a mathematical expression with no particular 
meaning for users. 

For example, in Mas el al [26] a general associativity equation plays also a key 
role, but their modularity condition appears as a particular case: 

F(x,G(y,z)) = G(F(x,y),z) 

where F and G are assumed uninorms and/or t-operators (see also [27]). From our 
point of view, neither commutativity or associativity should be assumed as granted. 
Commutativity is kind of contradictory with the fact that data have been previously 
ordered. And associativity has no support when the binary operator will not be 
applied into a sequential aggregation F(x,F(y,z)) or F(F(x,y),z). 

Deeply related to recursiveness seems to be the property of being decomposable 
(see [10, 16, 25]), which assumes that each item of any given subfamily of items 
can be substituted by the aggregated value of such a subfamily of items. Indeed, 
recursiveness assumes that calculus is sequentially decomposable, but recursiveness 
is not assuming such a particular extra behavior. Moreover, it is not clear the need 
of an arbitrary decomposition, if we have assumed that operationality is in some 
way related to a potential sequential decomposable calculus. 

Finally, the compensatory condition given in Mesiar [30] (see also [21]) seems 
also deeply related to recursiveness (see the seminal paper of Zimmermann-Zysno 
[45]). In fact, a link between each n-ary operator and the next (n + l)-ary op­
erator is being introduced. The existence of an iterative calculus is therefore be­
ing assumed, but the basic definition does not properly link consecutive operators 
(Kolesarova-Komornikova [23] obtain important results but restricted to triangu­
lar norm-based iterative compensatory operators). A similar iterative approach is 
suggested in Mayor-Calvo [28] with their self identity condition, but again this condi­
tion should not be considered a proper link between consecutive operators (moreover, 
they assume that every operator is idempotent, by definition). 

6. FINAL COMMENTS 

In order to be considered a proper rule, all n-ary operators defining a global aggre­
gation rule should be deeply related, and one should not expect too much freedom 
once first aggregations have been fixed. Our intuition supports the fact that each 
operator we include as part of our rule implies direct restrictions on concomitant 
operators, and most probably on the whole rule. Although analogous results can 
be obtained imposing some ad hoc cross-continuity condition, recursiveness appears 
to introduce such a desired link between operators within a rule, and this is being 
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done from a particular computational argument. Of course we realize some quite 
standard rules are not recursive rules (the median rule is an important example, see 
[16], but notice its associated reckoning difficulties). Hence, a more general approach 
should be searched, still keeping some underlying operational principle: 

• allowing a more arbitrary structure of data, as in some classification problems; 
for example, data in [5, 6] are organized within a surface (see [28]); 

• not imposing recursiveness but the ability of taking advantage of some previous 
calculus that can be kept in memory (see, for example, [32]); 

• introducing some computational complexity restrictions, based upon the par­
ticular calculus capacity of user (notice for example that our previous re­
arrangement of data has 0(n2) computational complexity). 

Indeed, recursiveness as introduced by Cutello and Montero [13] is not the only 
alternative in order to assure consistency of aggregation rules: alternative opera­
tional arguments, including those coming from computational complexity (see [18]), 
may produce alternative models, perhaps not based upon a successive binary reck­
oning. But notice that recursiveness builds up the aggregation model from below, 
developing the model addressing in first place an operationality restriction, instead 
of searching for some other global condition that may turn too artificial in practice, 
leading to non operational solutions, and therefore useless for the decision maker. 
The above results seem to show that key aggregation rules can be fully justified from 
a recursive approach. 

A key argument supporting recursiveness is the iterative calculus. Items are ag­
gregated one by one (implying a linear order on the sequence data to be aggregated), 
and therefore any finite family of items can be obtained by means of binary oper­
ators. But imposing that each one of these sequential aggregations will be based 
upon the previous aggregation links all n-ary aggregation operators in a very par­
ticular way. Consistency is therefore a consequence of the way operationality has 
been understood (the existence of a recursive calculus). And it is the above gen­
eralized associativity equation the core of this consistency. A different structure of 
data, a different notion of being operational, or just the different available calculus 
capabilities of each decision maker, will produce alternative models that deserve to 
be analyzed. 
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