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1. I N T R O D U C T I O N 

Our semilinear equation, the merits of which we shall have yet to defend, is a model 
for stochastic behaviour of a stock price X, say with X(0) = x > 0, that comes from 
a family called the stochastic volatility models that are generally described by 

dX(t) = b(t)X(t) dt + a(t)X(t) dW(t), (1.1) 

where W is a Wiener process, b and a processes for which the above stochastic differ
ential exists, Karatzas,Shreve [9] or Steele [16]. Our equation respects a reasonable 
expectation that the rate of return and volatility coefficients b and a should be fed 
at time t by the previous history of X. Another way how to model such a dynamics 
was introduced by Merton [10] in the form 

dX(t) = b(t, X(t)) dt + a(t)X(t) dW(t) 

da(t) = a(t, a(t)) dt + c(t, a(t)) dB(t), ^ ' ' 

where W and B are Wiener processes on a filtered probability space with a linear 
covariation (W, B)(t) = pt, hence in the form of a rather general two-dimensional 
SDE. Having an increasing (decreasing) function / G C2(M), we may prove that the 
one dimensional model 

dX(t) = b(t,X(t)) dt + f(X(t)) dW(t) 
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may be rewritten to an equation (1.2) with W = B. Cox [5], Beckers [1] choose 
f(x) = a • xs (a > 0,6 G [0,1)) to introduce so called the constant elasticity of 
variance diffusion models. Wiggins [17] followed by Scott [14], [15] proposed an in
teresting simplification of (1.2) in the form 

dX(t) = bX(t) dt + a(t)X(t) dW(t), da(t) = a(a(t)) dt + ca(t) dB(t) 

that definitely does not exhaust the collection of the models in between those given 
by (1.1) and (1.2) equations. 

One may ask what should be qualifications of a good model (1.1) for the stochastic 
dynamics of a stock price. We believe that the model should be stochastically 
invariant, i.e. that the probability distributions of its principal outputs (stock price 
process, option price, etc) have to be invariant of a special choice of the solution 
X, or the driving Wiener process W. The generality of (1.1) cannot allow for such 
a requirement. On the other hand, having made minor restrictions on b and a, 
a martingale method for the option pricing is available in the setting (1.1). Any 
modification of (1.1) should keep this ability. What we have been able to achieve in 
the framework of 

dX(t) = X(t)b(X, t) dt + X(t)a(X, t) dW(t), X(0) =x>0 (1.3) 

as a model for a (b, cr)-price X, say until the market expiration time T > 0. We 
restrict ourselves to those (b, a) for which at least one Wiener process (Jl, T, P, W) 
exists such that there is an X to satisfy (1.3) and C(X) = //&,<-- holds for all possible 
(b, cr)-prices X. To make Girsanov Theorem simply applicable, we also assume that 
b and a are bounded C(lR+)-progressive processes such that a > e > 0 and 6 = 0 
outside [0, T]. Corollary 3.3 offers a wide choice of pairs (b, a) to satisfy the require
ments. Note that any X is always a positive process and that we are able to remove 
the drift in (1.3) to restrict it to Engelbert-Schmidt equation 

dX(t) = X(t)a(X, t) dW(t), X(0) = x. (1.4) 

Corollary 3.2 says: If X is a continuous (properly measurable) process, then there are 
Px ~ P and a Wiener process Wx such that X is a (b, cr)-price w.r.t. (£), T, P, W) 
iff X is a (0,cr)-price w.r.t. (f},T,Px,Wx)> In particular, a pair (b,a) is a suitable 
one for our model iff the (0,cr) has the property. Moreover, C(X\Px) = /V for all 
(b, cr)-prices X. 

We have many good reasons, as we shall see later on, to learn about /i^ as much 
as possible: Assuming that a(X, t) = a(X(t)) is a diffusion coefficient, Theorems 4.2 
and 4.3 explain why any solution X to (1.4) is constructed in the following way: 

(a) Choose an arbitrary Wiener process (Q, T, P, B) and consider its exponential 
Y(t) = xexp{B(t)-t/2}. 

s V(t) 
(b)Putip(t)=mf{s>0:fa-2(Y(u))du>t} and W(t) = / a'1(Y(u))dB(u).. 

o o 
Then X = Y(<p) is a solution to (1.4) on (fl,T,P,W) and a (6,a)-stock price 

under the Q ~ P defined by Qx = P-
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The rest of Section 4 concerns the problem of finding one-dimensional distribu
tions C(X(t)) that in fact turns to be a problem of finding one-dimensional distri
butions C(Y(t),T(t) = f0 cr~2(Y(u)) du) (See Corollary 4.5, Remark 4.6 and Exam
ple 4.7). 

Observing the above construction of a (b, <r)-price Ar, finally described by (1.4), 
we find that the driving Wiener process W is not entirely responsible for X in the 
form X = f(W), as it is in general models (1.1) (even though there is another 
Wiener process B to drive X as its function). On the other hand, W = f(X) and 
we conclude that the only proper driver of our model is a stock price X itself (see 
Theorem 4.3 for a correct statement). 

This is also the reason why we had to reprove the corner stone statements by 
Karatzas and Shreve (summarized in [9, 5.8.B Section]) on the price of a financial 
claim or option and its valuation by an investment process. See, Theorems 5.4 and 
5.5. The proof heavily depends on the fact that any (b, cr)-price X is a Px-martingale 
(see Lemma 4.1) and that there is no other Q ~ P with the property (see Lemma 
6.7). It made it possible to reform the results on the PRP-property by M. Yor [18] 
(see also § 4, Chapt. V in [17]) into the form of Lemma 6.8 and repeat the reasoning 
presented in [9]. The price of arbitrary Fx-integrable option and its valuation are 
proved to be stochastic invariants. 

Some of more technical results to be applied in Sections 3,4 and 5 are referred to 
Section 6 whose results and proofs are of course entirely independent of the earlier 
text. Section 7 summarizes the unsolved problems we have met having prepared the 
text. 

Above, we have reviewed some of the stochastic volatility models that inspired 
our investigation. Its novelty can be seen, as we believe, in applying the time change 
procedure described by (a),(b) with the aim to recover as much information on 
the probability distribution of price process X as possible to facilitate, for exam
ple, the computations of expectations for option pricing. In this context see also 
Geman,Madan and Yor [7] and Borovkov,Novikov [3]. 

2. NOTATIONS AND CONVENTIONS 

If not said otherwise explicitly, we shall assume that 

all probability spaces (fi, F,P) are complete (2.1) 

all filtrations Ft = (ft,F, P, Ft) are complete and right continuous, (2.2) 

denoting Foo := cr(Ui^). 

Having a process X = (X(t),t > 0) on a probability space (2.1), we denote 
at(X) := a(X(s),s < t) and by (F*) the P-augmentation of the canonical filtration 
(at(X)). See Section 6 for the definition. Agree to denote and call 

Y = (Q, F, P, Ft, Y) martingale, local martingale and semimartingale (2.3) 
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if Y = (Y(t),t > 0) is an ^-niartingale, .TVlocal martingale and a continuous 
JrVsemimartingale, respectively, 

W = ( f t ,T,P,T t ,W) a Wiener process (2.4) 

if W = (W(t), t > 0) is an Tt-Wiener process. 

Our definitions are exactly those presented in [6, part III]. Having intention to 
observe continuous processes X mostly, recall that such X is measurable as 

X:( f i ,r7 0 0 (X)) ->(C(E + ) ,a 0 0 (X)) , X:(n,at(X))^(C(R+),at(X)), t > 0, 

where X is the canonical process on C(E + ) and <Joo(X) is exactly the Borel cr-algebra 
of the Polish space C(E + ) . Thus, any fc-dimensional continuous process X will be 
also understood as a n*=1C(E+)-random variable with the probability distribution 
denoted as C(X\P) = C(X). 

If /i is a completed Borel probability measure on C(E + ) , we denote by (Tt) the 
/i-augmentation of the canonical filtration (cr*(X)). 

Few words about stochastic processes on (C(E + ) ,# (C(E + ) ) ) , say 5 = (S(t),t > 
0), follow. Note that S is a continuous process iff x »-» (S(x,t),t > 0) is a Borel 
transformation of C(E + ) and recall that if 5 is a continuous and cri(X)-adapted 
process, then it is a <r*(X)-progressive process, i.e. such that (x,s) H-» S(X,S) is 
a map measurable as 

(C(E+) x [0,t],at(X) ® B[0,t}) -> (E,£(E)) for arbitrary t > 0. 

The concept of crt(X)-progressivity or simply C(R+)-progressivity is important: 

If 5 is a C(E)-progressive process, then there exist Borel maps St : C([0, i\) -> E 
such that S(x, t) = St(x(s),s < t) holds for all x G C(E + ) and t > 0 (more generally, 
the statement is true for S rjj(X)-adapted). ,, 

If S is a locally bounded C(E+ )-progressive process, then x i-> (f0 S(x, u) du, t > 
0) defines a continuous o"t(X)-adapted process on C(E + ) hence a Borel transforma
tion of C(E + ) . 

If 5 is a locally bounded and nonnegative C(E+)-progressive process, then x H-> 
(x(f* S(x,u) du),t > 0) defines a Borel transformation of C(E + ) . 

If 5 is a C(E+)-progressive process and X a continuous process, then Y = S(X) 
defines a (jf(X)-progressive process. 

Consider C(E+)-progressive processes B and S, also x G E. Then 

X = (fi, T, P, Tt, W, X) is a weak solution to (2.5) 

the (B, 5)-stochastic differential equation 

dX(t) = B(X,t)dt-{-S(X,t)dW(t), X(0) = x (2.6) 
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if W = (Q,T,P,Tt,W) is a Wiener process and X = (Q,T,P,Tt,X) a continuous 
semimartingale with the stochastic differential dX(t) and the initial value X(0) given 
by (2.6). The (B, 5)-stochastic differential equation (2.6) is said to be unique in law 
if C(X1\P1) = C(X2\P2) for an arbitrary pair 

Xi = (n^T^P^F^W^Xi), i = 1,2 (2.7) 

of weak solutions to the equation (2.6). 

Stress that uniqueness in law does not say generally that X\ = X2 almost surely if 
XUX2 are weak solutions (2.7) where (SI1,Tl, Pl, T},Wl) = (n2,T2,P2,T?,W2). 
The equation (2.6) with B = 0, i.e. 

dX(t) = S(X, t) dW(t), X(0) = x (2.8) 

will be referred to as the Engelbert-Schmidt equation. Recall that if S(x,t) = 
S(x(t)) for (x,t) G C(R+) x R+ and S : R -r R is a Borel function, then (2.8) has 
a weak solution and is unique in law iff 

IxЄЖ, Í {x G R, S(x) = 0} = <x G R, / S~2(y) dy = -f-oo V 

holds. (See [8, 20.1, p. 371]). Having a filtration (Tt), we agree to call a r : ft -» 
[0, oo] an ^-Markov time if [r < t] G Tt for all t > 0 and to define 'the history' of 
(Tt) up to T as 

TT = {F e T^ : F H [r < t] G Tt, Vt > 0}. 

Having a continuous local martingale M = (Q, T, P, Tt,M), we denote its quadratic 
variation as (M). If M(0) = 0 and (M)(oo) = oo a.s., we define the DDS1-Wiener 
process B of M by 

B= (Q,T,P,T™,B = M(T)), T(t)=ini{s>0,(M)(s) >t}, t>0. (2.9) 

(See [11, Chapt. V.l] for details). If T* = T™, the local martingale M is called 
pure. (See [11, p. 204,205] for equivalent definitions.) 

3. (6,a)-STOCK PRICES AND GIRSANOV REDUCTION 

Fix T > 0 and x > 0, the expiration market time and the initial price of the stock, 
respectively. Denote 

B := {b a bounded C(R+)-progressive process with b(x,t) = 0, x G C(R + ) , t > T} 

S := {a a bounded C(R+)-progressive process, a > e > 0 for some e}, BS := B x S. 

XDDS stays for Dambis, Dubins-Schwarz (Wiener process). 
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Call (ft, a) G BS a stock market if the stochastic differential equation 

dX(t) = X(t)b(X, t) dt + X(t)<r(X91) dW(t), X(0) = x (3.1) 

has a weak solution and it is unique in law. The set of all stock markets will be 
denoted as BSM- If (b,cr) G BSM, then 6(x,£) and a(x,t) may be referred to as the 
rate of return and the volatility of the (ft, cr)-market, any weak solution X to the 
equation (3.1) (detailed by (2.5)) will be called a (ft, a)-stockprice. Our model entails 
that there is a Borel probability measure fii,i<T on C(R+) such that C(X\P) = /i6?(T 

holds for arbitrary (ft, <r)-stock price X. Abbreviate fia := /in,<-. Note that arbitrary 
(ft, cr)-stock price X is a positive process almost surely, since 

X(t) = xexp i N(t) - ~(N)(t) 1 , t > 0, almost surely, (3.2) 

where 

dN(t) = b(X,t)dt + a(XJt)dW(t), 1V(0) = 0 (3.3) 

and (N)(t) = fQ a2(X,u) du denotes the quadratic variation of the semimartingale 
N. 

Our definition of a (ft, cr)-stock market is designed to promote the Girsanov re
duction as simple as possible: 

Until further remark fix (ft,o~) G BS, put a = £, consider a Wiener process W 
given by (2.4) and a continuous ^-adapted process X. Then 

Wx = (tl,r,P,Ft,Px,Wx), (3.4) 

where 

dPx~DxdP, Dx:=exp\-f a(X,t)dW(t)-± f a2(X,t)dt\ (3.5) 

Wx(t) := / a(X,u)du + W(t), t>0 (3.6) 
Jo 

defines another Wiener process Wx- Indeed, EpDx — 1 by Novikov Theorem [6, 
2.4.7] as a is a bounded process. Hence, Px ~ P is a probability measure under 
which (Tt) is a complete and right-continuous filtration and finally Wx is a Wiener 
process by Girsanov Theorem [6, 2.4.8]. The Girsanov reduction W —> Wx provides 
a mighty tool for the financial mathematics. Choose ft = 0 in (3.1) to get the 
Engelbert-Schmidt stochastic differential equation 

dX(t) = X(t)a(X, t) dW(t), X(0) = x. (3.7) 
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Theorem 3.1. Consider (b, a) G BS, a Wiener process W in (2.4) and a continuous 
f*radapted process X. Then 

(i) (Vt,T,P,Tt,W,X) is a weak solution to (3.1) iff (Q,T}Px,TuWx,X) is 
a weak solution to (3.7). 

(ii) If X\ and X2 in (2.7) are weak solutions to (3.1), then 

C(X1\P
l) = C(X2\P

2) <=> C{X1\P)ll) = C{X2\PlJ. 

In particular, (3.1) has a weak solution (is unique in law) iff the equation (3.7) 
possesses the corresponding property. 

Proof . If (fi, T, P, Tt, VV, X) is a solution to (3.1), then X is a continuous (P,Tt)-
semimartingale with the stochastic differential (a := £) 

dX(t) = X(t)a(X, t)[a(X, t) dt + dW(t)} = X(t)a(X, t) dWx (t). 

It follows that X is a continuous (Px,^t)-local martingale with the stochastic dif
ferential dX(t) = X(t)a(X,t)dWx(t). Hence, (il,T,P,TuWx,X) is a solution to 
(3.7). Because the above reasoning may be easily reversed, the equivalence (i) is 
proved. 

We shall prove (ii). Assume that C(Xi\Pl\= C(X2\P
2) and put 

Yi(t) := Xi(t) - [ Xi(u)b(Xuu)du= [ Xi(u)a(Xi,u)dWl(u), t = 1,2. 
Jo Jo 

Obviously, ^ ( X ^ y i l P 1 ) = C(X2,Y2\P
2), where C(X,Y\P) denotes the joint prob

ability distribution of processes X and Y under P on tf(C(R+)2) = B(C(R+)) 0 
/3(C(R+))). Recall that each Xi is an almost surely positive process, define a C(R+)-
progressive process 

c(x,t) := * , x(t) > 0, c(x,t) := 0, x(t) < 0 , x G C(R+), t > 0. (3.8) 

Note that triples (Xi,Ni = Yi,c) satisfy the requirements of Lemma 6.6 and there
fore 

C(XUW1\P1) = C(X2,W
2\P2) 

holds, where Wl = J c(Xi,t) dYi(t). It follows by Lemma 6.6 again, this time with 
triples (Xi,Ni = Wl,c = a), that 

c(xuJ a(Xx) dW\ f a(Xx) dt P1} = C (x2t J a(X2) dW2, J a(X2) dt PA 

is seen as a true statement. Hence, C(Xi,Dxi\pl) = C(X2,DX2\P
2) and therefore 

the right-hand side in (ii) is verified. 
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Assume that C(Xl\P]Ci) = C(X2\P\2). According to (i) 
Xi = (W^T^P^^TiW^Xi), i = 1,2 are solutions to (3.7) and therefore the 
triples (Xi, Ni = Xi, c), where c is the process defined by (3.8), meet the hypotheses 
of Lemma 6.6. If follows that C(Xl,W\i\P]Ci) = C(X2,W%2\P%2), hence, again by 
Lemma 6.6, C(Xl,D^\\P]Ci) = C(X2,Dx\\Px2) holds. Since dA = DJ^ dPl

X{, we 
verify the left-hand side of (ii). 

To see the remaining part as a correct statement, just note that if (ft, T, Q, Tt, B, X) 
is a weak solution to (3.7), then 

dP = DdQ, D:=explf a(x)dB--l a2(x)dt\, 

W(t) = B(t) - f a(u) du 
Jo 

define, by Girsanov Theorem, a Wiener process (ft, T, P, Tt, W) such that 

(Q,T,Q,Tt,B) = (n,T,Px,Tt,Wx) 

holds. • 

In the language of financial mathematics Theorem 3.1 reads 

Corol lary 3.2. If (b, a) G BS, then (b, a) is a stock market iff (0,cr) is a stock 
market. In symbols BSM := B X 5 M , where SM = {a £ S, (0,a) G BSM}-

If (b, a) G BSM, then (fi, T, P, Tt, W, X) is a (b, cr)-stock price if and only if 
(ft,T,Px,Tt, Wx,X) is a (0,a)-stock price. 

Our assumptions on the volatility parameter a G S may be for example as follows: 

a(x,t) = a(x(t)), xeC(R+), t>0, a : R -> R Borel (3.9) 

or 

a : C(R+) x R+ -> R locally Lipschitz, (3.10) 

which means that for some Kn < oo 

\a(x,t)-a(y,t)\ < Kn\\x - y\\t, |N | t , | | i / | | t < n, t < n, n G N 

holds, where \\x\\t := maxs<* \x(s)\ for x G C(R+). 

Corol lary 3.3. If a G 5, then either (3.9) or (3.10) implies that (0,a) G BSM and 
therefore (b,a) is a stock market for arbitrary b G B according to 3.2. 

P r o o f . Under (3.10) the equation (3.7) reads as (2.8) with S(x,t) = x(t)a(x,t). 
This process S is seen to be Cr(R+ )-progressive and locally Lipschitz such that 

\S(x,t)\ < C(l + \\x\\t), x G C(R+), t > 0, C < oo 
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holds. Combine Ito and Yamada-Watanabe Theorems [13, 12.2, p. 132 and 17.1, 
p. 150] to see that (2.8) has a weak solution and it is unique in law under (3.10). 
Assuming (3.9), we get that (3.7) as (2.8) with S(x,t) = S(x(t)) where S : x e 
R *-¥ xo(x) e R is a Borel function from E to E such that J^ + S~2(u) du = -hoo 
iff x = 0. Engelbert-Schmidt Theorem [8, 20.1, p. 371], we have already referred to, 
now proves that (2.8) has a weak solution and it is unique in law. • 

4. DDS-REDUCTION OF (0,cr)-STOCK PRICES 

As we shall see in the next section, we have many good reasons to be interested in 
the probability distribution of a (b, cr)-stock price X under the probability measure 
Px. 

Lemma 4.1. Consider (b,o) e BSM and a (b,cr)-price X given as (2.5). Then X 
is an Lp-martingale on (fl,T, Px) for arbitrary p > 1. 

P roo f . According to Corollary 3.2, ( f t ,T,Px,T t ,Wx,X) is a weak solution to 
(3.7). Denote dM(t) := o(X, t) dW(t), M(0) = 0 and compute 

X(ty = x* exp {pM(t) - ^(Af)(«)} exp [£-ZE(M)(t)} . 

Since (M)(t) = /0* o2(X,u) du < C2t for some C < oo, it follows by Novikov Theo
rem that X is a Px -martingale such that Epx\X(t)\p < oo holds for all t > 0 and 
p> 1. • 

Once again, according to Theorem 3.1, the distribution of a (b,o)-stock price X 
under Px is equivalently defined as the distribution \ia of an arbitrary weak solution 
X to the Engelbert-Schmidt equation (3.7). 

Fix o e SM and a weak solution X to (3.7) specified as in (2.5). Denote 

dM(t) := o(X, t) dW(t), M(0) = 0. (4.1) 

Hence, 

dX(t) = X(t)dM(t), X(t)=xexplM(t) - ^(M)(t)\ . (4.2) 

Since X is a positive continuous process, we get dM(£) = X(t)~l dX(t) and (4.2) 
implies that T^1 = T* holds for all t > 0 because a legal change of the underlying 
complete filtration does not change the stochastic integrals. On the other hand, 
o > e > 0 implies that dW(t) = o~l(X,t) dM(t), and finally 

j:W g TM = TX^ t > Q ( 4 3 ) 
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Stress that weak solutions X to (3.7) cannot be generally constructed to achieve the 
equality T™ = T* in (4.3), or in other words, to generate them as X = f(W) for 
a suitably measurable / : C(R+) -> C(R+). (See Lemma 6.4.) 

To understand the problem properly, assume for the rest of this section that2 

a G S is constructed via (3.9) (=» a G SM by Corollary 3.3) (4.4) 

and recall a possible construction of a weak solution X to the equation (3.7): 
Consider a Wiener process B on a probability space (ri,JF, P) , in detail, B = 
(fl, JF, P, Tf, P ) , and its exponential F defined by 

y( t ) = xexp{B(t) - t /2} , or equivalent^ by dY(t) = Y(t) dB(t), Y(0) = x. 
(4.5) 

Define a continuous Tf = ^y-adapted, strictly increasing process ip with <p(0) = 0, 
ip(oo) = co and Tf = ^y-Markov times <p(t) by 

¥>(*) :=inf j в > 0 , I ö-2(Y(u))du>t\, í >0. (4.6) 

Recall A.5 (i) Proposition [11, p. 173] to prove that 

f<p(t) 
X(t) := Y(ip(t)), W(t) := / a~l(Y(u)) dB(u), t > 0 (4.7) 

Jo 

define continuous j7-*^-local martingales on (Jl,^7, P ) , where 

^?(t) == ( ^ € ^ : F f l [ # < s] G T8 \/s > 0}, t > 0, (4.8) 

is "the history" of B up to ^ - M a r k o v time ip(t). It follows by 1.5.(i) in [11], again, 
that 

pp(t) 
(W)(t) = / a~2(Y(u)) du = t holds for all t > 0 almost surely 

Jo 

and W = (fi, T, P, TBuyW) is a Wiener process by Levy characterization theorem. 

Denoting dN = d~l(Y) dP , N(0) = 0, we have W = iV(<p) and 

/.<^(t) rt 

X(t) = x+ Y(u)a(Y(u)) dN(u) = x+ X(u)a(X(u)) dW(u), t > 0 
Jo Jo 

by Proposition 1.5 (ii) in [11] again. Thus, we have proved 

2I.e., a is of the form cr(x, t) = a(x(t)), where a : R —• [e, oo) is a Borel function and e > 0. 



The dX(t)=Xb(X) dt+Xa(X) dW Equation and Financial Mathematics I 6 6 3 

Theorem 4.2. Let B = ($7, T, P, Tf,B) be a Wiener process (perhaps the canon
ical one on C(R+)). Define Y,ip,T^(t) and W by (4.5), (4.6), (4.8) and (4.7), respec
tively. Then 

X=(n,F,P,F*it),W,X = Y(v>)) (4.9) 

is a weak solution to (3.7). In particular, /v = C(Y((p)). 

Remark that C(Y) = [i\ and that Theorem 4.2 suggests a weak solution to (3.7) 
that lives on T^y where B is a Wiener process but not the driver of the equation 
(3.7). The next theorem states that there are no other solutions to (3.7) than those 
given by (4.9). 

Theorem 4 .3. Consider a weak solution X to (3.7) specified by (2.5). Denote by 
B the DDS-Wiener process of M = /X~ l dX = Ja(X) dW ((M)(oo) = oo), define 
Y,ip and T^,t) by (4.5), (4.6) and (4.8), respectively. Then Y(ip) = X almost surely 
and M is a pure martingale, that means3: 

^ = ^ = ^ = FL o r equivalents Tt
x = T*{t) for t > 0. (4.10) 

P roof . Specify B and r as in (2.9) and apply [11, 1.5, p. 173] to prove that 
Z := X(T) is a continuous T*,tylocal martingale on (fl,T,P) such that 

rr(t) ft ft 
Z(t) = x+ X(u) dM(u) = x+ X(T(U)) dAf (T)(U) = x + / Z(u) dB(u) 

Jo ^0 Jo 
(4.11) 

holds almost surely for all t > 0. Hence, Z solves the equation dZ = ZdB with 
Z(Q) = x and therefore X(T) = Y almost surely. By [11, 1.4, p. 172] we compute 
that outside a P-null set and for t > 0 

r(t) rt 
t = (M)(T(t))= / d2(X(u))du= / d2(Y(u))dT(u) 

Jo Jo 

and therefore T(t) = /0* d~2(Y(u)) du holds. It follows that <p = r " 1 = (M),X(T) = 
Y, X = Y((p) are equalities valid almost surely, hence T™ = T^ = T^ = T^ by (i) 
in Lemma 6.4. • 

Summary 4 .4 . We state (keeping assumption (4.4) about a): 

(a) Any (0,<r)-stock price X can be reduced to a (0, l)-stock price Y = X(T), 
where T(S) := inf{t > 0, j j a2(X(u)) du > s}. 

(b) Any (0, l)-stock price Y can be extended to a (0,o")-stock price X = Y((p), 
where ip(t) := inf{5 > 0 : /Q

s a~2(Y(u)) du > t}. 

3See Exercise 4.14.4° in [11, p. 205]. 
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Both the reduction and extension does not change the underlying probability 
space (ft, T, P) and employ filtrations (T*) and (T?) such that T* = T^. 

To establish the probability distribution C(X) of a (0, cr)-stock price X as C(Y(ip))} 

where Y is a (0, l)-stock price and <p is defined in (b), or even one dimesional dis
tributions C(X(t)) = C(Y((p(t))), may impose serious problems. 

For the rest of present section fix Y, the exponential (4.5) of a Wiener process 
B, i.e. a (0, l)-stock price process. Denote 

Gt :=C(Y(t),T(t)), where r(t) := / a~2(Y(u))du, t>0 (4.12) 
Jo 

and consider / G C2(R) such that random variables 

f \f'(Y(u))Y(u)\2du, f\f"(Y(u))\Y2(u)du, f"(Y(t))Y2(t) (4.13) 
JO Jo 

are integrable for alH > 0. Having such an / , we define 

mt,u(f) -= f f"(y)y2Gu(dy,dT), t,u>0. 
JRx[0.t] 

Corollary 4.5. Assume (4.4) about a and let X be a (0,cr)-stock price. Then 

Ef(X(t)) = f(x) + \l°° mttU(f) du,t>0 (4.14) 

for all / G C2(R) such that (4.13) holds. 

Proof. According to Theorem 4.2, we may choose without loss of generality 
X = Y((p) where (p(t) = inf{s > 0 : T(S) > t}. Ito formula yields 

f(Y(t)) = f(x) + J* f'(Y(u)) dY(u) + I J* f"(Y(u)) d(Y)(u) 

= fix) + J f'(Y(u))Y(u) dB(u) + \ j f"(Y(u))Y2(u) du. 

It follows by (4.13) that the middle integral is an Tf -martingale and, obviously, 
tp(t) is a bounded Tf -Markov time (a < C => ip(t) < tC2). Hence, the Stopping 
Theorem implies that 

Ef(X(t)) = EY(V(t)) = f(x) + -Ej f"(Y(u))Y2(u)du 

= /(*) + -J E[f"(Y(u))Y2(u)I[0,t](r(u))} du 

is true for all t > 0. This is easily seen to be the equality stated by (4.14). D 
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Remark 4.6. If X is a (O,cr)-stock price, assuming (4.4) about 0 < 0 < C < oo, 
then 

(a) to establish a one-dimensional distribution C(X(t)), we need only to know 
two-dimensional distribution Gu = C(Y(U),T(U)) for 0 < u < C2t. 

(b) If T(U) has an absolutely continuous distribution with a density g(u,s) for 
each u > 0, then we may rewrite (4.14) to 

Ef(X(t)) = f(x) + \ l ° ° f E[f"(Y(u))Y\u)\T(u) = s}g(u, s) ds du 

= /(*) + \ f / ° ° E[f"(Y(u))Y2(u)\T(u) = s]g(uts)dud8. 

Hence, almost everywhere on M+ 

1 f°° 
;Ef(X(t)) = -J E [f"(Y(u))Y2(u)\T(u) = i] g(u, t) du (4.15) jd_ 

d ť 

holds for arbitrary / G C2(R) that satisfies (4.13). Choosing f(y) = yp for p > 1, we 
may apply Lemma 4.1 with X = Y to verify (4.13) and turn (4.15) into the equality 

dí 
EX(tү = PІP

2

 l ) Г E [Y(uf\т(u) = ř] g(u, t) du 

that is true again outside a A-null set in R+. Hence, there is a chance, at least 
theoretical, to recover the Laplace transform of C(X(t)).. Choosing f(y) = elXy, 
where A G E, we write (4.15) as 

J \2 poo -

±Eei\x(t) = _ ± - / E \eiXY^Y2(u)\T(u) = t g(u,t) du (4.16) 
dt 2 Jo L -

= y / 0 ^ 2 - 5 [ e < A y ( u ) k ( t i ) = t]fl(«,t)du (4.16) 

to receive another link between C(X(t)) and C(Y(u)Ys in terms of characteristic 
functions. Our chances to establish C(X(t)) are perhaps limited to simple choices 
of the volatility a as in the following 

Example 4.7. Consider a volatility a(x,t) = a(x(t)), where 

a(y) := a2I(-OQ,x](y) + *iJ( a f 0 0)(y)- y G R (4.17) 

and cri,rj2 > 0. Having an intention to model a stock market that is very sensitive 
to a decrease of the stock price we could perhaps choose a (b, a) market (4.17) with 
o"2 » a\. Compute 

r(t) = f a~2(Y(u)) du = (af2 - <T2-
2)A [8 < t,B(s) - | > o] + a~2t. (4.18) 
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To simplify our formulas, choose a\ = \,o\ — \ to get 

T(t) = \f(W)+t, where (4.19) 

W(t) = B(t)-±, A+fo) = A [ 5 < t , i / ( 5 ) > 0 ] , < > 0 , y G C ( E + ) . (4.20) 

Thus, G* := C(Y(t),T(t)) = £(xewW,A+(PV) + t) is the probability distribution 
asked for by the formulas (4.14) or (4.15). The distribution Gt can be easily recovered 
from Ht = C(W(t),Xt(W)). Assuming that TV is a Wiener process, then Ht is 
an absolutely continuous distribution with the density ht(y, A) = t~zl2h\(y/\fi, \/t), 
where 

1 y 2 

* l ("'A) = /A 2J[a'a-a)"]3/- d ° lf ^ < °' ° < ' < X (4-21) 

аnd 

1 y 2 

I Me ^1-*) 

M I / , A ) = / iггЋ—етda i f
 У>0> ° < Л < L (4-

ji-A 2тr[a(l - a)үlz 

22) 

(See [2, pp. 97-100]) and we may apply Girsanov Theorem to establish Ht if W is 
a shifted Wiener process defined by (4.20). By dQt = exp{^B(t) —1/8} dP we define 
a probability measure such that W is a Wiener process on [0,t] under Qt. Check 
that dP = e~^w^~s dQt and compute 

Ht(a,b) = P[W(t) < a,\f(W) < b] = e " * / e " 2 ^ ^ dQ* (4.23) 
J[W(*)<a,A+(W)<6] 

= e"B f / e - ^ ( y j A ) d y d A (4.24) 
./-oo .10 

holds for t > 0, a G K and 6 > 0. 

5. INVESTMENTS, OPTION PRICING AND DISCOUNTED STOCK PRICE 

Fix coefficients (b,o) G BSM, & (b, a)-stock price X detailed by (2.5) and denote 
by II(cr) the set of all .T7/^-progressive processes p such that 

JQ p2(x,u) du < oo, t > 0 /v-almost surely (5.1) 

p(x,t) =0pa<g) A-almost everywhere on C(R+) x (T, oo) (5.2) 

hold. Consider a (P, ^ x)-semimartingale C defined by 

dC(t) = p(X, t) dX(t) = p(X, t)X(t)o(X, t) dWx (t), C(0) = c > 0 (5.3) 

with a p G Il(cr) and agree to call it an X-investment process with the initial en
dowment c while p will be referred to as its portfolio. Note that for a p G Il(cr) 
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the process p(X) is ^^-progressive by (i) in 6.5 and that, according to (5.1), the 
integral fp(X)dX is defined correctly because Xb(X) and Xo(X) are processes 
with locally bounded trajectories. Also note that (5.2) says that outside a P-null 
set the trajectories of C are constant on [T, oo). Remark finally that (5.3) defines 
a self-financing investment strategy C, since its infinitesimal profits dC(t) are born 
entirely by the infinitesimal changes dX(t) and by the "number of shares" of the 
stock p(X, t) owned by the investor at time t. 

Simple characterization of X-investments is provided by 

Lemma 5.1. A process C = (C(t),t > 0) is an K-investment process iff it is 
a continuous (Px ,^ x ) - loca l martingale such that 

C(0) = c > 0 P-almost surely, C(t AT) = C(t), t > 0 P-almost surely. (5.4) 

P roof . Assume that C is a continuous (Px,^x)- local martingale such that (5.4) 
holds. Recall Corollary 3.2 to prove that (fi, J 7 , P x , ? * , Wx,X) is a weak solution 
to (3.7) and that this equation is unique in law. Because X is a true Px-martingale 
by Lemma 4.1, we may apply Lemma 6.8 to verify that 

C(t)=c+ / H(u)dX(u), t>0 Px-almost surely, (5.5) 
Jo 

where H is an ^"^-progressive process such that 

H(0) G K, / H2(u)X2(u)a2(X, u) du < oo, t> 0,Px-almost surely. (5.6) 
Jo 

Because X is a continuous and positive process, it follows by (5.6) that also 

H(0) GR, / H2(u) du < oo, t > 0, Px-almost surely (5.7) 
Jo 

holds. Hence, Lemma 6.5 (ii) applies to construct an ./^-progressive process p such 
that 

H = p(X) Px ® A -almost everywhere o n f i x R + . (5.8) 

Now, (5.8) and (5.7) obviously imply (5.1). It is a consequence of (5.8) that outside 
a P-null set and for all * > 0 

/ (H(u) -p(X,u))2d(X)(u) = 0, hence / H(u)dX(u) = / p(X,u)dX(u) 
Jo Jo Jo 

holds. This and (5.5) imply (5.3) and we need only to verify (5.2): 
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Since, according to (5.4), the trajectories of C are constant on [T, oo) with Px-
probability one, we conclude that outside a P-null set and for all t >T 

f H dX = 0 and therefore f H2 d(X) = 0 
JT JT 

are true equalities. Since d(X) ~ A with Px-probability one, we prove that H = 0 
P 0 A-almost everywhere on ft x (F, oo], which jointly with (5.8) verifies (5.2). D 

The correspondence between an X-investment process C and its portfolio control 
p is bijective given a fixed (6, a)-price X. The probability distribution C(C) does 
not depend on the choice of (b, cr)-price X given a fixed portfolio p. More precisely: 

T h e o r e m 5.2. (i) Let X be a (b, cr)-price given as in (2.5), C\ and C2 X-investment 
processes controlled by portfolios p\ and p 2 , respectively, such that Ci(0) = C2(0). 
Then 

C\ = C2 P-almost surely iff p\ = p2 P ® A-almost everywhere on ft x R + . (5.9) 

(ii) Let p be a portfolio in II(cr), X\ and X2 (6, cr)-prices given as in (2.7), C\ 
and C2 X\ and X2-investments processes controlled by p, respectively, such that 
C\(0) = C2(0) holds. Then 

C(CuX\\Pl)=C(C2,X2\P2), C(C\,X1\Pk1) = C(C2,X2\P1
X2) (5.10) 

hold. 

P r o o f . As for (i), note that C\ = C2 P-almost surely iff C\ = C2 P^-almost 
surely and iff 

/ (p\(X) -p2(X))2 d(X) = 0, t > 0, Px-almost surely. (5.11) 
Jo 

As in the proof of Lemma 5.1, (5.11) is exactly as to say that p\ = p2 holds Px ® A-
almost everywhere on ft x R+. The equivalence (5.9) is verified since P 0 A and 
Px 0 A are equivalent measures. To prove the first statement in (5.10) apply 6.6 
with Xi,Ni = Xi,c = p and /x = /x6)(7 = C(Xt) and note that c = p satisfies the 
requirements of 6.6 since F*h" = jrj>~ u The latter equality in (5.10) follows by the 
former one as (ft*, T\ Pl

x., J*m Wx., Xi), i = 1,2 are (0, a) stock prices by Corollary 
3.2. D 

E x a m p l e 5.3. Consider a (0,l)-price X = ( ft, .7*,P,^ x , lV,X), note that X(t) = 
exp{W(t) - t/2} and that p* = jrW L e t p i a n d p2 b e ^i .progressive processes 
defined for positive x G C(IR+) a s 

. , i 
Pl{X,t> = ^ y [ 0 , T l ( i ) ' P2(x,t) = sign ln(x(t)) + *- Pi(x,t) 
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and observe that both p\ and p2 are in 11(1). If C\ and C2 are K-investments 
controlled by p\ and p2, respectively and Ci(0) = C2(0) = 0, then dC\(t) = dW(t) 
and dC2(t) = sign.W(t) dW(t) and therefore C(C\) = C(C2) = C(W) while p\ = p2 

(j,\®\ almost everywhere is obviously a very false statement. Thus, (ii) in Theorem 
5.2 cannot be simply reversed. Remark that we admit negative values of a controlling 
portfolio to include such interesting investment operations as short sales of the stock. 
On the other hand, to admit investment processes taking possibly negative values 
necessarily means to include arbitrage investments C with C(0) = 0 and C(T) > 0 
(see 3.3.1 Example in [6]), hence operations that should be prohibited in a reasonable 
and safe market. 

Denote by A(X) the set of all X-investment process C that are nonnegative 
almost surely (admissible investments) and consider a financial claim w to be earned 
at time t = T such that 

w > 0 almost surely, and w is a cr£(X)-measurable random variable. (5.12) 

Naturally, we are interested in X-investments C for which C(T) = w holds almost 
surely and their initial endowements are as small as possible. Denote 

A(X,w) := {C G A(X) : C(T) = w almost surely} 

and modify the celebrated Karatzas-Merton-Shreve Theorem (see [9, 5.8.A section] 
or [6, 3.2.10]) to our case: 

Theorem 5.4. If w in (5.12) is a Px-integrable random variable, then 

qx := EPxw = min[C(0) : C G A(X,w)}. (5.13) 

There exists an almost surely unique Cx G A(X,w) with Cx(0) = qx and it is 
characterized inside of A(X, w) by either of the following requirements: 

(i) Cx is an (J7^, Px)-ma,rtmgale. 

(ii) Cx < C almost surely for arbitrary C G A(X,w). 

Remark that Cx is the only true martingale in A(X, w), the other members of 
the set are nonegative true local martingales, in particular supermartingales. 

P roo f . Put G(t) = EPx[w\at(X)] for * > 0 to define (T? ,PX) martingale4 with 
the properties 

G(0) = qx, G(T) = w, G(t) > 0, G(t) = G(t A T) almost surely, t > 0. (5.14) 

Since X = (fi, J 7 , P x , F * , Wx,X) is a weak solution to (3.7) which is an equation 
that is unique in law, since X is a P-martingale, Lemma 6.8 applies to prove that 
C can be modified to a continuous (J7*,Px)-ma,itmgale Cx- It follows from (5.14) 
by Lemma 5.1 that Cx G A(X,w) is an X-investment with Cx(0) = qx to be 

*{?*) is the.augmentation of the (at(X)). 
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true almost surely. If C is another process in A(X,w), then it is an (J7*,PX)-
supermartingale and therefore 

C(t) > EPx [C(T)\F*] = EPx [w\T*] = Cx(t) almost surely, t < T. (5.15) 

It follows that 

C >CX almost surely, C G A(X,w). (5.16) 

Hence (5.13) is proved. 
If C G A(X, w) is a process such that C(0) = qx holds almost surely, then, 

according to (5.16), C — Cx 1s an almost surely nonnegative Px-supermatingale 
with (C — Cx)(0) = 0 almost surely and therefore C = Cx almost surely. 

If C G A(X, w) is a P^-martingale, then C - Cx > 0 almost surely is also a Px-
martingale with (C - Cx)(T) = 0 almost surely, hence C = Cx almost surely again 
and the proof is completed. • 

The latter result encourages the following definition: 

A C(M+)-progressive process g will be called a (b,a)-option if 

g > 0 and q9iT := / g(x,T)pa(dx) < oo. (5.17) 

We have on mind functionals as 

g(x, t) = (x(t) - K)+, g(x, t) = Q j X(u) du - K\ , g(x, 0) = 0 

that generate, for example, the European call option and the Asian call option, 
respectively. Note that considering the financial claims 

wx := g(X,T), X a (b, cr)-stock price, 

it follows by Corollary 3.2 that C(X\Px) = /V for arbitrary (b, cr)-stock price X and 
therefore 

Яg , T := Jg(x,T)pa(dx) = EPxg(X,T) = min[C(0) : C G A(X,g(X,T))] (5.18) 

holds for all (b, cr)-prices X. 

Thus, having a (b, cr)-option g, we define the price of g (at time T) as q9jT and 
note that the price does not depend on the rate of return b. Another invariants in 
a given (b, cr)-stock market enter our theory as follows: If X is a (b, cr)-stock price, 
Theorem 5.4 says that there is an almost surely unique X-investment process Cx 
such that 

Cx(0) = q9iT, C > 0 , C(T)=g(X,T) hold almost surely. (5.19) 

We call a p G TL(a) a hedging portfolio against a (b, c/)-option g if 

Cx(t) = q9,T + / p(X,u) dX(u), t > 0 almost surely (5.20) 
Jo 

is true for all (b, cr)-prices X. 
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Theorem 5.5. Let g be a (b, <r)-option. Then there is a hedging portfolio p against 
the g. If Xi and X2 are (b, cr)-prices given as in (2.7), then 

C(CXl\P
l) = C(CX2\P

2) and C(CXl \PXl) = C(CX2\P
2
X2). (5.21) 

Note that Example 5.3, to contrast Theorem 5.2 (i), shows that there exist more 
than one hedging portfolio p against g. 

P r o o f . Assume that CXl is a process controlled as 

CxAt) = qg,T + [ p(Xuu)dXl(u), t > 0, 
Jo 

where p G n(cr). Define an X2-investment process C2 by 

C2(t) := q9tT + [ p(X2,u)dX2(u) 
Jo 

and apply Theorem 5.2 (5.10) to prove that C(CXl,Xi\Pl
Xi) = £ ( C 2 , X 2 | P | 2 ) , hence 

C(CXl,Xug(XuT)) = C(C2,X2,g(X2,T)). It follows that 

C2 > 0, C2(0) = qgtT, C2(T) = g(X2,T) -almost surely 

and therefore, by Theorem 5.4, C2 equals to Cx2 outside a P-^ -null set. We have 
proved that the p is a hedging portfolio against g and the second equality in (5.21), 
since C(C2\P%2) = C(CXl \PXl). The first equality in (5.21) follows by Theorem 5.2 
(ii) because both CXl and CX2 are controlled by the same portfolio p G II(cr). • 

Remark 5.6. Up to now, we have considered only an investor who is interested 
only in a stock-market and ignores the parallel financial market driven by an interest 
rate r(x,t), i.e. by a C(E+)-progressive process r G B. A self-financing investment 
process is in this case defined by 

R(X,t)C(t) = c+ [ p(X,u)X(u)(b(X,u) - r(X,u)) du 
Jo 

+ / p(X, u)X(u)a(X, u) dW(u), 
Jo 

where (6, a) G BSM, X is a (&, cr)-price, p a portfolio in n(cr),c > 0 and 

R(x,t) :=e-f£r(z,u)du^ £ > 0 , x G C ( R + ) 

defines the discount factor born by the interest rate r. (See [6, 3.1.5]). The same 
reasoning, as we have performed in this section, applies that having a financial claim 
w in (5.12), we define its price qx (see [6, 3.2.10]) by 

qx '.= EQX[R(X,T)W], 
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where 

^-Ч-jf* 5^™-^* 1^) '*} dP. 

Further assume that r is a deterministic process in B, denote by Y = RX the 
discounted price X and compute that 

dY(t) = Y(t)(b(X, t) - r(X, t)) dt + Y(t)a(X, t) dW(t) 

= Y(t)(b(Y, t) - r(Y, t)) dt + Y(t)a(Y, t) dW(t), 

where p(x,t) := p(R~lx,t). It is obvious that (b - r,a) G BSM (provided that r is 
a deterministic process) and that Y is a (b - r,<r)-stock price. Thus, Qx = IV and 
we compute that 

x = e - f r ( " ) % w , Y = RX. 

If 

then 

w = {X(T) - K)+ = e£
r(u)du (Y(T) - Ke-tfr{u)du)+ , 

qx=efo
Tr(u)du f (y(T)-Ke-forrMduY ^(dy). 

JC(R+) V ' 

We do not know yet whether the above duality between (r, b, a)-stock/financial mar
kets and (b, a)-stock markets can be extended to a more general interest rates r(x, t). 

6. TECHNICALITIES 

Recall and introduce our notations and definitions. If X is a process on (ft, T, P), 
we write MP = {N e T, P(F) = 0} and 

at(X) = a(X(s), s < t), a^X) = a(X(s), s < oo), 

G? := a(at(X)uMP), Tt
x := G?+ '•= nh>0G?+h-

Calling (at(X)), (Gx) and (T*) the canonical filtration of X, the P-completion of 
(at(X)) and the P-augmentation of (at(X)), respectively. If X is the canonical pro
cess on C(E + ) and /x a Borel probability measure on C(M+), we write (Gt) and (Tt) 
for the /i-completion and //-augmentation of <7*(X) in (C(R+),BU,/J), respectively if 
Bu = B(C(R+))U denotes the //-completion of B(C(R+)). We need to have cleared 
the relation between the filtrations (Gx) and (Tx). The following is obvious: 
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Lemma 6.1. Let X be a process on (fi, ^ P ) with X(0) G E. Then 

W 0 £ = ^ S J where J7^ := (j(Uf>oTt) if ( ^ ) is a filtration, though the inclusion 
-16 Q ^o+ m a y be proper even for a continuous X. 

(ii) If Y is a left continuous process, Y(0) G E, then y is an ^ - a d a p t e d process 
iff it is J^-adapted. 

(iii) If G is an ^^-progressive process with G(0) G IK such that 

L 
t 

\G(u)\ du < oo almost surely, t > 0, (6.1) 

then there is a £*-progressive process P such that F = G A® P-almost everywhere. 
To prove (iii), combine (ii) and the following standard procedure. 

(iv) If (fi, J7, P, J^) is a complete filtration and G an ./^-progressive process such 
that (6.1) holds, then Fn(t) := G(0) + n / ( ( _ n + G(u) du defines a sequence of con
tinuous JFr&dapted processes such that G = lim Fn A ® P-almost everywhere. 

n—>oo 

More difficult is 

Lemma 6.2. Let X be a process on (fi, J7, P) with X(0) G E such that any £*-
martingale has a continuous modification. Then arbitrary ^ x- local martingale G 
with G(0) G E has a continuous (/^-adapted modification. 

Proof . Assume without loss of generality that G is an T*-martingale. Since 
(J7*) is a right-continuous and complete filtration, it follows by Doob Regularization 
Theorem ([12, 67.7, p. 173]) that G has a modification with RCLL-trajectories (right-
continuous with finite left limits). Assume without loss of generality that the G itself 
is a process with RCLL, hence locally bounded trajectories. It follows by (iii) in 6.1 
that G = F A ® P-almost everywhere, F being an £*-progressive process. In 
particular, 

F(t) = G(t) P-almost surely for t G D and D = E+. (6.2) 

Fix 0 < T G D and put F'(t) = EG? F(T) for t > 0 and note that F' is a Qf-
martingale such that (6.2) yields 

F'(t) = EgXG(T) = EQX ETXG(T) = EQXG(t) = EgXF(t) = F(t) (6.3) 

P-almost surely for t < T and t G D. Our hypothesis on (Q?) says that F' has 
a continuous ^ - a d a p t e d modification F" such that, according to (6.3), 

F"(t) = F'(t) = F(t) = G(t) P-almost surely, t<T,teD 

holds. Hence P-almost surely 

F"(t) = lim F"(tn) = lim G(tn) = G(t) if tn < T, tn£D, tnit 
n->oo n-»oo 
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and therefore F" is a continuous (/^-adapted modification of G on [0,T). Letting 
T t oo, we conclude the proof. D 

In what follows, we shall need the following slight improvement of Lemma 1.25 
in [8, p. 13]. (The a-algebra £ * is not exactly the standard P-completion of the 
a-algebra <Too(X)): 

Lemma 6.3. If X is a process on (Q^T^P) and S Polish space, then 

H : (ft,£<£) -> (S,B(S)) is a measurable map 

if and only if there is a measurable map H1 : (Vt^a^X)) -> (S,B(S)) such that 
H = H' P-almost surely. 

Just observe that 

$o\ = iF Q n> F&B e MP for some B G <Joo(X)} (6.4) 

and repeat the proof of 12.25 in [8] via 5 = [0,1] and the Borel isomorphism theorem 
([4, 8.3.6]). 

Lemma 6.4. Let X and Y be continuous processes on an (fi, T, P) with X(0), Y(0) 6 
E. Denote by /x the completed Borel probability C(X). Then 

(i) ?L Q ?£> iff Y = g(X) P-almost surely, g : C(R+) -> C(R+) Borel. 
(ii) If g : C(R+) -> C(R+) is a Borel transformation such that Y = g(X) holds 

P-almost surely, then g is a continuous ^-adapted process provided that Y is 
an .^-adapted process. 

Proof . Since (7* = J7* and Q^ = T^ by (i) in Lemma 6.1, Lemma 6.3 applies 
to prove (4=) in (i) directly. If J7^ C J7*, then, again by Lemma 6.1 (i) and Lemma 
6.3, there is 

Y1 : (n-crootY)) -> (C(R+),.6(C(R+))) such that Y'= Y 

holds almost surely. Lemma 1.13 in [8, p. 7] exhibits a Borel g : C(1R+) -> C(K+) 
such that Y' = 5(X) everywhere on fi. 

If y is an J7/*-adapted process, it follows by (ii) in 6.1 that 

pt o Y : (fi, Q?) -> (C[0, *], Z?(C[0, *])) for any t > 0, 

where pt : C(R+) -> C[Q,t] denotes the projection. Fix t > 0 and apply our 
Lemma 6.3 and Lemma 1.13 in [8] again (this time for Polish space S = C[Q,i\) 
to exhibit a Borel transformation gt of C[0,t] such that pt o Y = gt(pt o X) holds 
almost surely. If Y = g(X) almost surely and g : C(R+) -> C(R+) is a Borel map, 
we conclude that (pt o g)(X) = (gt opt)(X) outside a P-null set and pt o g = gt opt 

outside a /x-null set. Since 

(C(B+),tTt(X)) 4 (C[0>t]>B(C[0,.])) 4 (C[0.t],iB(C[0>«]))> 
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we prove that 

Ptog : (C(R+),g?) -» (C[0,t],B(C[0,t])) 

by Lemma 6.3. This is exactly as to say that g is a Q± and therefore ^ ' -adapted 
process. • 

Lemma 6.5. Let X be a continuous process on (fi, T, P) with -K(O) £ E and Li 
the completed probability distribution C(X). 

(i) If g is an T% -progressive process, then g(X) is an ^^-progressive process. 

(ii) If G is an T*-progressive process with G(0) G E such that (6.1) holds, then 
there is an ^-progressive process g such that G = g(X) A® P-almost everywhere. 

For (i) we do not assume that X(0) G E. 

Proof , (i) Fix t > 0 and note that X : (i},at(X)) -> (C(E + ) ,^ (X)) implies 
that X : (n,G?) -r ( C ( E + ) , £ 0 and finally that X : (ft,Tt

x) -> ( C ( R + ) , i n 
putting T(u>,s) = (X(u),s), the latter measurability proves that 

T : (ft x [O , t ] , ^0B[O, t ] ) -> (C(E+) x [ 0 , * ] , ^ ® B[0,t]), 

while the ^"f-progressivity of g yields 

g : (C(E+) x [0, t],T£ ® B[0,*]) -> (E,Z3(E)). 

Thus, 

</(X) = fl(T) : (n x [ 0 , * ] , ^ ® BpM]) -> (E,£(E)) 

holds for all £ and g(X) is an ^"^-progressive process. 

(ii) According to (iv) in Lemma 6.1 G = limn_>00 Fn A ® P-almost everywhere, 
where Fn 's are continuous T*-adapted processes with Fn(0) G E. Apply both (i) 
and (ii) in Lemma 6.4 to exhibit continuous ^ - a d a p t e d processes gn such that Fn = 
gn(X) holds A ® P-almost everywhere for arbitrary n G N. Putting g := rimn->oo<7n 
if the lim is finite and g := 0 if not, we define an ^-progressive process such that 
G = g(X) A ® P-almost everywhere. D 

Lemma 6.6. For i = 1,2 consider a continuous semimartingale 

Ni = (Sli,F,Pi,Ti
t,Ni), dNi = dBi + dMi with d||Pi| | + d(M) « A 

P^-almost surely and a continuous ./^-adapted process Xi such that 

C(NuX1\P
l) = C(N2,X2\P

2). (6.5) 

Let fi be the completed distribution C(Xi\Pl) = C(X2\P
2). Then 

c(xuJc{X1)dN1 P*\=c(x2,Jc{X2)dN2 P2) (6.6) 
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for any ^-progressive process c such that 

/ \c(Xi)\ + \c(Xi)\2(d\\Bi\\ + d ( M » < oo P'-almost surely, t > 0, t = 1,2 (6.7) 
•Io 

hold. By 11Pi11 we mean the variation of Bi. 
Note that c(Xi) is an T*{-progressive, hence ^/-progressive process by (i) in 6.5 

and that (6.7) guarantees that the stochastic integral J c(Xi) dNi in (6.6) is denned 
correctly. 

P r o o f . By C denote the set of all J^-progressive processes c with the property 
(6.7) and by Co the set of all c G C such that (6.6) is true. Observe that Co is a set 
that is closed inv C with respect to the convergence on C defined by 

cn -» c = cn —r c almost everywhere, \cn\ < d G C. (6.8) 

Indeed, if (6.8) is assumed for a sequence cn G Co and c £ C, then d||.Bj|| <$: A, 
d(M) <$C A almost surely implies that outside a P2-null set 

cn(Xi) -> c(Xi) d\\Bi\\ + d(M)-almost everywhere on E + , i = 1,2 

and therefore, by the Dominated Convergence Theorem, 

/ ' 
Jo 

| c n ( X i ) - c ( A ' i ) | d | | B i | | - > 0 , / \cn{Xi) - c(Xi)\2 d(Mi)-4 0, í > 0 , z = l,2 
Jo 

is also true outside a Pz-null set. Hence, according to 2.1.12 in [6, part III] 

max 
s<t 

I cn(Xi)dNi- [ c(Xi)dNi 
Jo Jo 

-> 0 in P^-probability, t > 0, z = 1,2, 

which is as to say that Jcn(Xi)dNl -> Jc(Xi)dNl in P'-probability as C(R+)-
random variables. Since 

c(xuJ Cn(X{) dJVi P1^ = C (x2, J cn(X2) d/V2 P
2 V ne N, 

we conclude that c G Co. 
Now, if c is a continuous .Ff-adapted process, then it belongs to C and it belongs 

to Co because for arbitrary t > 0 

7 1 - 1 

in P l-probability for i = 1,2. If c is a bounded ^-progressive process, then it is in 
C and it is in Co because Lemma 6.1 (iv) provides a sequence cn of continuous T^-
adapted processes that converge to c in sense of (6.8). Since bounded T%-adapted 
processes are easily seen to be a dense set in C w.r.t. the convergence (6.8), the 
proof is complete. D 
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Lemma 6.7. Let X in (2.5) be a weak solution to the Engelbert-Schmidt equation 
(2.8) that is unique in law and Q a probability measure on (Joo(Ar). Then Q = P on 
aoo(X) provided that X is an (í7,cгoo(Ar),Q,б7í(X))-local martingale and Q ~ P on 
(Joo(X). 

Proof . X is also (ӣђaoo(X)ђQђÇ?)-\ocзl martingale with 

(X)(t)= / S2(Xђu)duђ t>0ђ (Ҙ-almost surely. 
Jo 

Hence, C(X\Q) is a solution to the local martingale problem for (S 2,0). By Stroock-
Varadhan Theorem (18.7 in [8, p. 341]), we get that there is a weak solution Xf = 
( f ľ , Я , P ' , Г t ђ W ' ђ X f ) to (2.8) such that C(X'\Pf) = C(X\Q). It follows that 
C(X\P) = C(X\Q)ђ hence Q = P on aoo(X). D 

Lemma 6.8. Let X in (2.5) be a weak solution to the equation (2.8) that is 
unique in law. Assume, moreover, that X is a (true) P-martingale. Then arbitrary 
(Pђ J

7* )-\ocal martingale G with G(0) = y Є E is stochastic integral 

G(t) = y + H(u) dX(u)ђ P-almost surely, ŕ > 0, (6.9) 
Jo 

where 

H is an ЈF^-progressive process, and #(0) Є Қ / H2(u)S2(Xђu) du < oo (6.10) 
Jo 

holds P-almost surely for all £ > 0. 
In particular, any (P, ^ x ) - local martingale has a continuous modification. 

Note that the stochastic integral in (6.9) is well defined, since X is a continuous 
(P, ^7v)-martingale and 

/ H2(u)d(X)(u) = í H2(u)S2(Xђu)du< 
JO .10 

0 0 

holds P-almost surely for alH > 0. 

P r o o f . Denote by MM(X) the set of all probability measures Q defined on 
aoo(X) such that X is an (Cl, aoo(X), Q)-ma,rtingdAe and apply Lemma 6.7 to verify 
that 

P|croo(-Y) is an extremal point of the convex set MM(X). (6.11) 

According to Yor Theorem (in the form of 2.5.7 in [6, part III]) (6.11) implies that 
any (P, ^ x)-martingale has a continuous modification. Thus, Lemma 6.2 applies 
to prove that G can be modified to a continuous (P, £t

x)-local martingale denoted 
again by G. According to Yor Theorem again, (this time in the form of 2.5.12 in [6, 
part III]) applying (6.11) once more, there exists a process H with the properties 
(6.10) such that (6.9) holds. • 
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7. PROBLEMS 

Some of the problems listed bellow will be treated in Part II of the present paper 
also published in this issue. 

(A) In connection with Corollary 3.3, one should find some other volatilities a 
(outside of the Lipschitz and diffusion case (3.9) and (3.10), respectively) such that 
the Engelbert-Schmidt equation (3.7) has a weak solution and it is unique in law. 

(B) Theorems 4.2 and 4.3 exhibit (0, cr)-price X as a transformed exponential of 
the Wiener process if a is a diffusion volatility. In case that X is a homogenous 
Markov process one should try to establish its Kolmogorov equation, perhaps by 
Volkonski method (See, 111.21 in [12]). 

(C) Corollary 4.5 says how to compute Ef(X(t)) if X is (0, cr)-price, a a diffusion 
volatility and / G C2. This, unfortunately, does not cover even the standard cases in 
the financial mathematics. The continuation of the present paper will offer a method 
of computing E(X(t) — K)+ for some simple volatilities a as in Example 4.7. 

(D) If cr is a two valued volatility as in Example 4.7, we are able to establish 
one dimensional distributions C(X(t)) in a complicated but an explicite form and 
therefore also E(X(t) — K)+. Multivariate volatilities, not symmetric about the 
initial price X would, of course, provide a more realistic model for a (0, <r)-stock 
price. 

(E) Another method how to compute the quantities as E(X(T) — K)+ is that 
one very succesful in the standard Black-Scholes model with a constant a : Consider 
a continuous volatility coefficient a(x,t) : E x E+ -» E constructed by means of 
a function F(x,t) G C21(R x E+) 

BF 1 B2 F 
— (x,t) = ~-x2a2(x,t) — (x,t), F(x,T) = (x - K)+ 

for (x,t) G E+ x [0,T) such that the corresponding Engelbert-Schmidt equation 
(3.7) has a weak solution X and it is unique in law. If 

max\F(x,t)\ < c(l + \x\p) for some p > 1, 

then, by Ito formula, (F(X(t)),t > 0) is an ./^-martingale and therefore E(X(T) -
K)+ = F(x,0) if X(0) = x. See 3.3.9 in [6], or more generally, the PDE stochastic 
representation theory presented, for example in [9, 6.7 section] or in [16, Chapter 
15]. 

(F) What are the properties of [iG = C(X), where X is a (0,cr)-price with 
a diffusion coefficient a, what properties of a would imply that //<- ~ /ii or that 
C(X(t)) ~ C(Y(t)), where Y is the exponential of a Wiener process? This seems to 
be important when trying to apply the formulas as those given by Remark 4.6. 

(G) What happens in Example 4.7, putting a\ = 1 and letting a<i = n -> co, 
denoting the corresponding two-valued volatility by an and by Xn the (0, crn)-stock 
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price. We believe that 

Xn -» Z in distribution in C(M+) where Z(t) = xexp{\W(t) - i /2 |} . 

(H) Remark 5.6 suggests the following problem: Which C(R+)-progressive pro
cesses r(x,t) are such that the map x G C(R+) »-> Ii(x)x G C(R+) is /v-almost 
surely invertible if a G 5 M and R(x, t) = exp{— fQ r(x, u) du). 
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