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OPTIMUM CHEMICAL BALANCE WEIGHING 
DESIGNS FOR v + 1 OBJECTS1 

BRONISLAW CERANKA AND MALGORZATA GRACZYK 

The paper studies the estimation problem of individual weights of objects using a chem
ical balance weighing design under the restriction on the number times in which each object 
is weighed. Conditions under which the existence of an optimum chemical balance weighing 
design for p = v objects implies the existence of an optimum chemical balance weighing 
design for p = v 4- 1 objects are given. The existence of an optimum chemical balance 
weighing design for p = v + 1 objects implies the existence of an optimum chemical balance 
weighing design for each p < v -f 1. The new construction method for optimum chemical 
balance weighing design for p = v + 1 objects is given. It uses the incidence matrices of 
ternary balanced block designs for v treatments. 
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1. INTRODUCTION 

Let us consider the problem of determining the weights of p objects in n measurement 
operations (weighings). The manner of allocation of objects on the pans is described 
through columns of the n x p matrix X. Its elements are equal to —1,1 or 0 if 
the object is kept on the left pan, right pan or is not included in the particular 
measurement operation, respectively. For estimation of the unknown weights of 
objects we use the least squares method and we get 

w = ( X ' X ^ X ' y , (1.1) 

and the variance-covariance matrix of w is 

V a r t w ^ o - ^ X ' X ) - 1 (1.2) 

provided X 'X is nonsingular, where w and y are column vectors of the unknown 
weights of p objects and of the recorded results in n weighings, respectively. 

1 Presented at the Workshop "Perspectives in Modern Statistical Inference II" held in Brno on 
August 14-17, 2002. 
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Various aspects of chemical balance weighing designs (CBWD) have been studied 
by Raghavarao [9], Banerjee [1] and Shah and Sinha [11]. Hotelling [8] has shown 
that the minimum attainable variance for each of the estimated weights for a CBWD 
is a2 In and proved the theorem that each of the variance of the estimated weights 
attains the lower bound if and only if X 'X = n\v. This design is called the optimum 
chemical balance weighing design (OCBWD). In other words, the matrix X of the 
OCBWD has as elements —1 and 1, only. In this case several methods of construction 
OCBWD are available in the literature. Saha and Kageyama [10] have constructed 
OCBWD for p — v + 1 objects in n = 4(r — A) weighings from the incidence matrices 
of the balanced incomplete block designs for v treatments. In the same case, Ceranka 
and Katulska [5] have studied another method of construction. 

Swamy [12], Ceranka, Katulska and Mizera [7] and Ceranka and Katulska [6] have 
given some results of construction CBWD under the restriction on the number of 
objects placed on the either pan. 

In the present paper we study another method of construction of an OCBWD in 
the case when the design matrix X has elements —1,0 or 1. This method uses the 
incidence matrices of the ternary balanced block design (TBBD) for v treatments to 
form the design matrix of OCBWD for p — v + 1 objects. 

2. VARIANCE LIMIT OF ESTIMATED WEIGHTS 

Ceranka and Graczyk [4] showed that the minimum attainable variance for each of 
the estimated weights for a CBWD is cr2/m, i. e. Var(wj) > a2/m, j =- 1,2,... ,p, 
where m = max{mi ,m 2 , . . . , m p } , nij is the number of times in which the jth object 
is weighed (number of elements equal to —1 and 1 in jth column of matrix X). 

Definition 2.1. A nonsingular CBWD is called optimal for the estimated individ
ual weights if Var(u)j) — a2/m, j = 1, 2 , . . . ,p. 

Ceranka and Graczyk [4] proved the following theorem. 

T h e o r e m 2 .1 . A nonsingular CBWD is optimal if and only if 

X 'X = ml p . (2.1) 

In particular case, when m = n the theorem was given in Hotelling [8]. 

3. OPTIMUM CHEMICAL BALANCE WEIGHING DESIGNS 
FOR p + 1 OBJECTS 

Let Xi be the ni x p matrix of CBWD for p = v objects, i = 1,2. Based on that 
matrices we want to construct the design matrix X of CBWD for p — v + 1 objects. 
Let assume that this matrix is given in the form 
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where l n i is the ni x 1 column vector of the units and 0n2 is the n2 x 1 column 
vector of zeros. In this design we have p = v + 1 objects and n = ni + n2 weighing 
operations. 

Theorem 3.1 . If X^ is the matrix of the n^xp OCBWD for p = v objects, i = 1,2, 
then the n x p matrix X given in the form (3.1) is the matrix of the OCBWD for 
p = v + 1 objects and n = ni + n2 measurement operations if and only if 

X ' i l n i = O p . (3.2) 

P r o o f . The proof is straightforward when using Theorem 2.1. • 

Let notice that the existence of the OCBWD for p = v + 1 objects implies the 
existence of the OCBWD for each p < v + 1 objects. 

In the present paper we study some methods of construction the design matrix X 
of the OCBWD for p = v + 1 objects using the matrices Xi and X2 of the OCBWD 
for p = v objects. It is based on the incidence matrices of the TBBD for p = v 
treatments. 

4. TERNARY BALANCED BLOCK DESIGNS 

Let TBBD be a design consisting of b blocks, each of size k, chosen from a set of size 
v in such a way that each of v elements occurs r times altogether and 0, 1 or 2 times 
in each block and each of the distinct pairs of elements occurs A times. Any TBBD 
is regular, that is, each element occurs singly in p\ blocks and is repeated p2 blocks, 
where p\ and p2 are constant for the design. Accordingly we write the parameters 
of the TBBD in the form v,6,r, k, A,pi,p2. Let N be the incidence matrix of the 
TBBD. It is easy to verify that 

vr = bk, 

r = pi +2p 2 , 

X(v - 1) = Pl(k - 1) + 2p2(k - 2) = r(k - 1) - 2p2, 

N N ' = (pi + 4p2 - A)IV + AMJ, = (r + 2p2 - A)IV + AMJ,. 

5. CONSTRUCTION OF THE DESIGN MATRIX 

Let Nf be the incidence matrix of the TBBD with the parameters v, bi, r;, k{, Xi, 
Pii, P2i, i = I? 2- Now we define the matrix X of the CBWD as 

x = Nì -lblľv lbl 

Щ - lb2ľv 0Ò2 
(5.1) 

In this design we have p = v + 1 and ni = bi,n2 = 62. Thus, each of v first 
column of X will contain P21 + P22 elements equal to 1, bi + b2 — pn — p\2 — P21 — P22 



336 B. CERANKA AND M. GRACZYK 

elements equal to —1 and p\\ + p\2 elements equal to 0. The last column of X will 
contain bi elements equal to 1 and b2 elements equal to 0. Clearly, such a design 
implies that the zth object is weighed b\ + b2 — p\\ — p\2 times, i = 1,2,. . . , v, and 
the (v + l ) th object is weighed bi times in the n = b\ + b2 weighing operations. 

Prom Theorems 2.1 and 3.1 we have 

T h e o r e m 5.1. A nonsingular CBWD with the matrix X given in the form (5.1) 
is optimal if and only if 

and 

b\ = ru 

b2 = Pii + P12 

X\-b\+b2- 2r2 + A2 = 0. 

(5.2) 

(5.3) 

(5.4) 

P r o o f . The proof is straightforward when using Theorems 2.1 and 3.1. D 

If the CBWD given by the matrix X in the form (5.1) is optimal then 

2 

Var(wj) = —, j = l,2,...,v + l. 

Now we consider the matrices Xi and X 2 of OCBWD for p = v objects 

X 1 = 

N Ì - І 6 . 1 Î , 
NÌ ІftiH, 

and 

X2 = N 2 - I 6 2 Г ; . 

Then the design matrix X of CBWD in the form 

N ì - l 6 l l i l6l 
U . l^-NÌ l6l 

N 2 - I 6 2 I ; oÒ2 

(5.5) 

permits for estimation p = v + 1 objects using n = 2b\ + 62 weighing operations. 
Thus, each of v first column of X will contain b\ — p\\ + P22 elements equal to 
1, &i + 62 — P11 — P12 — P22 elements equal to —1 and 2p\\ + p\2 elements equal to 0 
and the last column of X will contain 2bi elements equal to 1 and b2 elements equal 
to 0. 

It is obvious that for this design condition (3.2) holds and we have: 
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Theorem 5.2. A nonsingular CBWD with the matrix X given in the form (5.5) 
is optimal if and only if 

b2 = 2pn + p12 (5.6) 

and 
2(6i - 2n + Ai) + (b2 - 2r2 + A2) = 0. (5.7) 

P r o o f . The proof is straightforward when using Theorems 2.1 and 3.1. • -

If the CBWD given by the matrix X of the form (5.5) is optimal then 

2 

Var(wj) = — , j = l -2- . . . -v + l. 

Finally, one can easily show that if X is the matrix of the OCBWD then X* = 
DXE is also optimal for D = d iag (± l , . . . , ±1) of order nxn and E = d iag(± l , . . . , ±1) 
of order p x p. 

6. THE TERNARY BALANCED BLOCK DESIGNS LEADING 
TO OPTIMAL DESIGNS 

We have seen in Theorems 5.1 and 5.2 that if parameters of two TBBD satisfy the 
conditions (5.2), (5.3), (5.4) and (5.6), (5.7) then a CBWD with the design matrices 
X given by (5.1) and (5.5) are optimal. Under these conditions we have formulated 
a theorem following the papers of Billington and Robinson [3] and Billington [2]. 

Theorem 6 .1 . The existence of two TBBD with the parameters 

(i) v = 5, 6i = 4(5+4), n = 4(5+4),*i = 5, Ai = 2(25+7),pn = 4(5+2),p21 = 4 
and v = 5,b2 = 5(5 + 4), r2 = 3(5 + 4), k2 = 3, A2 = 5 + 6, p12 = 5 + 12, p22 = 5, 
5 = 1,2,. . . , 

(ii) v = 5, bi = 4(5+2), n = 4(5+2), h = 5, Ai = 45+7, Pll = 4(5+1),p21 = 2 
and v = 5, b2 = 5(s + 2), r2 = 3(s + 2), k2 = 3, A2 = 5 + 3,p12 = 5 + 6, 
p22 = 5, 5 = 1,2,. . . , 

(iii) v = 6,bx = 3(5 + 5), n =3(5 + 5), h = 6 , Ai = 3 5 + 13, pn = 3 5 + 5, p21 = 5 
and v = 6, b2 = 2(s + 5), r2 = 5 + 5, k2 = 3, A2 = 2, p12 = 5 - 5, p22 = 5,5 = 
1,2,3,4, 

(iv) v = 7,bx= 27, n = 27, kx = 7, Ai = 25, pn = 15,p21 = 6 and v = 7, b2 = 21, 
r2 = 12, k2 = 4, A2 = 5, p12 = 6, p22 = 3, 

(v) v = 9,bx = 3 ( 5 + 4), n =3 (5 + 4),*i = 9 , Ai = 3 5 + ll , /9n = 3 5 + 4, p21 = 4 
andv = 9,&2 = 3(5 + 4), r2 = 2(5 + 4),k2 = 6, A2 = 5 + 5, p12 = 8 , p 2 2 = s,s = 
1,2,. . . , 
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(vi) v = 11, bi = 16, rx = 16, ki = 11, Ai = 15, pn = 6, p 2 i = 5 and v — 11, b2 = 
11, r2 = 7, k2 = 7, A2 = 4, p i 2 = 5, p22 = 1, 

(vii) i; = 15,bi = 5(s + 4 ) , n = 5(s + 4),fci = 15, Ai = 5* + 19 ,p u = 5s + 6, P21 = 7 
and v = 15, b2 = 3(s + 4), r2 = 2(5 + 4), k2 = 10, A2v = 5 + 5, p12 = 6 - 2 5 , 
p22 = 25 + 1,5 = 1,2 

implies the existence of the OCBWD with the design matrix X given by (5.1). 

P r o o f . It is easy to prove that the parameters of TBBD satisfy the conditions 
(5.2), (5.3) and (5.4). . • 

T h e o r e m 6.2. The existence of two TBBD with the parameters 

(i) y = 5, 61 = 5(s + 1), n = 4(5 + 1), fci = 4, Ai = 35 + 2, pn = 45, 
P21 = 2 and v = 5,b2 = 10(5 + 1), r2 = 6(5 + 1), k2 = 3, A2 = 2(s + 2), 
p12 = 2(5 + 5), p22 = 2(5 - 1), 5 = 2 , 3 , . . . , 

(ii) v = 5, 61 = 2(5 + 4), n = 2(5 + 4), fci = 5, Ai = 25 + 7, p u = 2(s+2) ,p 2 1 = 2 
and?; = 5, b2 = 5(s+4) , r 2 = 3(5+4), k2 = 3, A2 = 5 + 6, pi2 = 5+-12,p22 = s, 
5 = 1,2,..., 

(hi) v = 9, bi = 3(5 + 4), n = 2(5 + 4), ki = 6, Ai = 5 + 5, pn = 8, p2L = s, -5 = 
1,2,... and v = 9, b2 = u + 17, r2 = u + 17, k2 = 9, A2 = u + 15, /ri_2 = tt + 1, 
P22 = 8, it = 1,2,... 

implies the existence of the OCBWD with the design matrix X given by (5.5). 

P r o o f . It is easy to prove that the parameters of TBBD satisfy the coaditions 
(5.6) and (5.7). • 

7. THE EXAMPLE 

Let use consider the experiment in that we determine unknown measurerrxent of p = 
6 objects using n = 27 weighing operations under the assumption that each object 
is weighed at least m = 12 times. To construct the design matrix X of t he OCBWD 
we use two incidence matrices of TBBD with parameters v = 5, &i = 12, ri = 
12, h = 5 , Ai = 11, p u = 8 , P21 = 2 

N , = 

1 2 0 0 2 1 ] L 1 ] L 1 1 1 
2 1 2 0 0 1 ] L 1 ] L 1 1 1 
0 2 1 2 0 1 ] L 1 ] L 1 1 1 
0 0 2 1 2 1 ] L 1 ] L 1 1 1 
2 0 0 2 1 1 ] L 1 ] L 1 1 1 



Optimum Chemical Balance Weighing Designs for V + 1 Objects 339 

v = 5, ò2 = 15, r 2 = 9, fc2 = 3, Л 2 = 4, p 1 2 = 7, p 2 2 

N
2
 = 

1 1 0 0 1 1 0 0 1 1 2 0 0 0 1 
1 1 1 1 0 0 1 1 0 0 1 2 0 0 0 
0 0 1 1 1 1 0 0 1 1 0 1 2 0 0 
1 1 0 0 1 1 1 1 0 0 0 0 1 2 0 
0 0 1 1 0 0 1 1 1 1 0 0 0 1 2 

T h e n we built the design matr ix X of the OCBWD in the form (5.1) and we have 

X 
X 

(1) 

(2) 
and 

X'( i) = 

X ' ( 2 ) = 

0 1 - 1 - 1 1 0 0 0 0 0 0 0 ' 
1 0 1 - 1 - 1 0 0 0 0 0 0 0 

-1 1 0 1 - 1 0 0 0 0 0 0 0 
-1 - 1 1 0 1 0 0 0 0 0 0 0 

1 - 1 - 1 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 _ 

0 0 - 1 - 1 0 0 - 1 - 1 0 0 1 - 1 - 1 - 1 0 
0 0 0 0 - 1 - 1 0 0 - 1 - 1 0 1 - 1 - 1 - 1 
1 - 1 0 0 0 0 - 1 - 1 0 0 - 1 0 1 - 1 - 1 
0 0 - 1 - 1 0 0 0 0 - 1 - 1 - 1 - 1 0 1 - 1 
1 - 1 0 0 - 1 - 1 0 0 0 0 - 1 - 1 - 1 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Received September 30, 2002.) 
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