
K Y B E R N E T I K A — V O L U M E 39 ( 2 0 0 3 ) , N U M B E R 3, P A G E S 3 1 7 - 3 3 2 

SENSITIVITY ANALYSIS IN SINGULAR MIXED 
LINEAR MODELS WITH CONSTRAINTS1 
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The singular mixed linear model with constraints is investigated with respect to an 
influence of inaccurate variance components on a decrease of the confidence level. The 
algorithm for a determination of the boundary of the insensitivity region is given. It is a 
set of all shifts of variance components values which make the tolerated decrease of the 
confidence level only. The problem about geometrical characterization of the confidence 
domain is also presented. 
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1. INTRODUCTЮN 

Let the singular mixed linear model with constraints with inaccurate variance compo-
nents be under consideration. An attention is focused on a problem of the confidence 
region. 

Two special problems arise. The first one is how can the confidence domain 
be geometrically characterized. In regular linear models confidence regions, in the 
case of the normality, are ellipsoids either given by a positive definite matrix (in 
models without constraints), or by a positive semidefinite matrix (in models with 
constraints). However, in the case of the singularity of models, confidence regions 
can have another shape. It will be shown that this shape is a cylinder. 

The second problem is connected with inaccurate variance components. Shifts 
between true and approximate values of variance components can caused a decrease 
of the confidence level. The sensitivity analysis approach can be used in a deter-
mination of a set of admissible shifts of variance components. This set is called an 
insensitivity region, which is defined as a set of all shifts of variance components 
values which make the tolerated decrease of the confidence level only. 

In [2, 5, 6] this sensitivity problem has been studied in the case of the regularity 
of the model (the model with or without constraints). In the singular mixed model, 

1 Presented at the Workshop "Perspectives in Modern Statistical Inference II" held in Brno on 
August 14-17, 2002. 
The research was supported by the Council of Czech Government under Project J14/98.153100011. 
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analogous problems connected with the variance of the estimator have been studied 
in [3, 4]. 

The aim of the paper is to study geometrical characterization of the confidence 
domain and to find an algorithm for a determination of the boundary of the insen-
sitivity region for the confidence domain. 

2. NOTATIONS AND AUXILIARY STATEMENTS 

Let A be an m x n matrix. Let M(A) = {Au : u G W1} C ffim and Ker(A) = 
{u : u G E n , Au — 0} C E n denote the column space and the null space of the 
matrix A, respectively. Let W be an m x m symmetric positive semidefinite matrix 
such that yVf(A) C M(W). Then P j = A(A'WA)~A'W denotes a projector on 
M(A) in the W-seminorm. The symbol M ^ means I — P ^ \ If W = I (identity 
matrix), symbols P ^ and M ^ are used. The W-seminorm of x, x G E m , is given by 
11x11w = Vx'Wx. Symbols A~ and A+ mean the g-inverse and the Moore-Penrose 
inverse of the matrix A, respectively. 

Let N be an n x n symmetric positive semidefinite matrix. The symbol A~ ,N) 

denotes the minimum N-seminorm g-inverse of the matrix A, i. e., the matrix A~ ,N. 
satisfies equations 

AAm(N)A = A, N A m ^ j A = A [ A m ^ j ] N. 

One of representations of the matrix A~ ,N. is 

N ~ A ' ( A N - A ' ) " if M(A') C .M(N), 
Am(N) " | (N + A 'A)-A' [A(N + A ' A ) - A ' ] - otherwise. 

In more detail cf. [7]. 

3. UNIVERSAL MODEL WITH CONSTRAINTS 

The universal model with constraints is 

y ~ n (x/3,Etf), (3e{u: Bu + b = 0} = B, tfetf, (1) 

where Y is an n-dimensional random vector, X/3 is the mean value of Y and E^ 
its covariance matrix. X and B are given matrices with the dimension n x k and 
q x k, respectively, b is a known g-dimensional vector such that b G M(B), d_ is an 
open set in W. The covariance matrix is considered in the form £# = Y%=i $iVi, 
where V i , . . . , V p are given nxn symmetric matrices and i? = (i?i, . . . , dp)' G d_ is 
unknown, and it is supposed that £# is positive semidefinite for all i9 G ]?• 

A special case of the universal model is the mixed model. It is the model (1) if 
V i , . . . , V p are symmetric positive semidefinite and i?i , . . . ,t9p are positive. 

The equivalent expression of the universal model (1) is 

Y 

в ГЧ °. ° 
ß Є E f e, ø Є _. 
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L e m m a 3.1. In the universal model (1) a function ft//3, (3 G z3, h G Rk, is unbias-
edly estimable if and only if h G _/V_(X',B'). 

P r o o f . Cf. [1], p. 136. D 

L e m m a 3.2. Within the universal model (1) the #-LBLUE (i?-locally best linear 
unbiased estimator) of a function h'fl, (3 G B, h G M(X,,B,)J is 

where 

Here 

tíß(ů) = tíV [ _b), 

L — [Lj, L 2 ] , 

L'x = ( M B < W ^ M B < ) + X ' ( E ^ + X M B < X ' ) + , 

L 2 = [I - ( M B < W , , M B < - ) + X ' ( S . + X M B < X ' ) + X ] B'(BB')~. 

W * = M B ' X ' ( E , j + X M B < X ' ) + X M B < + B'B, 

[ M B < W ^ M B < ] + = W + - W + B ' ( B W + B ' ) - B W + . 

P r o o f . The vector function ( B J /3, (3 G B, represents the class of all unbiasedly 

estimable functions. The tf-LBLUE of ( * )/3, (3 G B, is 

X 
B ß(ů) 

X 
B 

(X',B')" 
E«, 0 
0, 0 

У 
- ò 

Since 

(x',вł)- 9, 0 \ 

. o 7 

, n / d S , + X X ' , X B ' \ / X 
(X',B' BX', BB' в 

W Y ' тv. ( Eø + XX', X B ' X L _ Ł , B M в x , в в , 

and (cf. [1], p.44б) 

(2) 

/ E .5+XX', XB' \ _ / Qu, Q12 \ 

l, BX', BB' ) ~ v QÍ2, Q22;' 
Q H = ( E „ + X M B < X ' ) - , 

Q'12 = - ( B B ' ) - B X ' ( E , , + X M B < X ' ) - , 

Q22 = (BB ' ) " + (BB')"BX'(E„ + X M B < X ' ) - X B ' ( B B ' ) - , 
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we have 

and 

Thus 

(X',B')( , 9
B X / ) ' B B , J =[Ki,K2], 

Kx = MB-X'(E t f + XM B ,X') + , 
K 2 = B'(BB')- - M B ,X'(S t f + XMB 'X')+XB'(BB')-

, , {Z# + XX', XB'Y f X \ (X,B)^ BX, B B , J ^ R j 

= P B , + M B , X' (£,, + XMB , X')+XM f í , . 

Xß(ti) = X[P B ,+Mß,X ' (S , ,+XM ß ,X ' ) + XM ß , ] + 

x [Mß,X'(S^ + XM ß ,X ' ) + У - B'(BB')-ò 

+ Mв-XҶEø + XMß ,X')+XB'(BB')-ò] , 

B/3(tf) = -ь. 

Further 

[P B , +MB,X'(£tf + XMB ,X')+XMB ,] + 

= P B , + [MB,X'(£,j + XMB ,X')+XMB ,] + 

= P B , + (MB,W,,MB,)+. 

Since (MB,W,jMB,)+MB, = (MB,W.,MB,)+, it holds 

X/3(#) = X (MB, W t fMB , )+ MB,X'(E,5 + XMB ,X')+Y 
-XB'(BB')-6 
+X (MB, W,jMB,)+ MB,X'(S.5 + XMB ,X')+XB'(BB')-6 

= X[Li,L2](_^), 

where 

Li = (MB,W^MB,)+X'(E1, + XMB ,X')+ , 
L2 = [I - (MB, W,,MB,)+X'(£., + XMB ,X')+X] B'(BB')-. 

Analogously 

B0(tf) = B[L'a,L2]( \ ) = - b . 

Lemma 3.3. Let h G M(X.',E'). Then in the universal model (1) it holds 

Var.5 [/?J3(0)] = ti [(MB> W t 5MB0+ " M B ' ] h. 

Proof. The proof can be found in [1], p. 158. 

(3) 



Sensitivity Analysis in Singular Mixed Linear Models with Constraints 321 

4. CONFIDENCE REGION 

In what follows let the observation vector Y be normally distributed. According to 
Lemma 3.1 

h G M(X',B') & ti(3 is unbiasedly estimable. 

Any vector h €Rk can be considered in the form h = h\ +h2, where hi G yVf(X', B') 

and h2 G [M(X', B')]1- = {Ker(X) n Ker(B)}. If ti(3 is not unbiasedly estimable, 

i. e., h = h2, then we put Var-? fi/2/3(i9) \ = co. If h'/3 is unbiasedly estimable, three 

following cases come into consideration 

1. he M(B') => Var* [h' /W] = 0, 

Var.? i'(3(ůj\ = 0, 2. he M(X') A he M(B') 

3. he M(X') A h i M(B') =-> 

Vartf [iV/3(tf)] = »V [(MB. W^M B -) + - MB<] /». 

Summarizing this, the space .M(X',B') can be divided into three disjoint subspaces 
.M(Xi), M(X'2) and M ( B i ) such that 

M(X',B') = M ( X i , X 2 , B i ) = . M ( X i , B ' ) , 
M(X'2) = .M(X')D.M(B'). 

Hence, from the variance of the estimator viewpoint the whole parametric space E* 
is divided into three subspaces 

Rk =M(X[) V M ( B ' ) V { K e r ( X ) n K e r ( B ) } , 

where the symbol V is defined as follows 

N.(Xi)vM(B') V {Ker(X)C\Ker(B)} 
= {p + q + r: pe M(X[), q e M(B'), r e {Ker(X) n Ker(B)}}. 

Consequently, the (1 — a)-confidence interval for the function h'fl, (3 e B, 

£i-a(h'0) = | « : u e R 1 , |u - h'0(-d)\ < u ( l - | ) JVai«\ti 0(0)] I , 

where the symbol u ( l - f ) denotes ( l - f )-quantile of N(0,1) distribution, is rep
resented by a point if h e M(B') and by the whole real line I 1 if h e {Ker(X)n 
Ker(B)}. 

It remains to analyse the space M(X[). In the following, the universal model (1) 
will be considered in the partitioned form (after the suitable reindexing) 

Xi \ / S^ fn, £0,12. 0 
X2 1 /3, I -Ctf.21, -£#,22, 0 
B i / \ 0, 0, 0 

ni + n2 + qi = n + q, ni < n, qi < q. 

~'ni+П2+q\ (4) 
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L e m m a 4.1 . The dimension of the space M(X[) is equal to r f X M ^ ) . Here the 
symbol r ( X M ^ ) means the rank of the matrix XM/^ . 

P r o o f . The proof follows from the following relations 

r ( B ) = * - ( X M B » ) + r ( B ) , 

.M(X',B') = A^(Xi,X^,Bi), M(X[), M(X'2), M(B\) disjoint, 

Ker(B) = M(MB>) 

(cf. [7], p. 137). • 

Lemma 4 .2 . Within the universal model (1) it holds 

~X 
r Varл ß(*) = r ( M B . X ' [ S Í + X M в . X ' 1 - E , ) 

P r o o f . With respect to Lemma 3.2 it holds 

Varø B 

where 

ß(ů) 

Ľ 

B 

(X',B')" 

X Ч'( ^ ' ? )L(X',B'), 
0, 0 

£,?, 0 
0, 0 

(cf. (2)). It implies 

r I Vartf 
X 
B ß(*) 

> r 

= r 

> r 

/•Y' TÍ ' \ ( --^ + X X ' , X B ' 
( X , B ) ^ B X # ) B B , 

/-Y' T*'\ ( ^ + XX' , X B ' 
( X , B ) I B X , B B , 

X \ , ( Etf, 0 
B T 0, 0 

X \ , / S,,, 0 

в Ҷ o, 0 
Etf, 0 
0, 0 

x \ ,( E.,, o 
B r 0, 0 

Thus 

r ( Var,j X 

в 
ß(ů) 

= r 
X B ' 
B B ' ( X ' B ) V BX', 

and the proof is finished by using the relation (3) 

--.,, 0 
0, 0 
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Corollary 4.3. 

r (Vartf [ x ^ 9 ( 0 ) ] ) = r ( M F X ' [ E t f + X M ^ X f S ^ ) . 

P r o o f . The statement is an obvious consequence of Lemma 4.2 since 

( * ) = ( X2 j , Var,, [x2/3(tf)] = 0, Var,, [ B I / 3 ( 0 ) = 0. П 

The vector function Xi/3 represents the class of all unbiasedly estimable functions 
h'/3 in the subspace M(X[). The (1 — a)-confidence region for the function Xi/3, 
(3 e B, is given by the expression 

£i-a(Xi/3) - L : uGJVl(Xi), X ' ( 0 , l - a ) > ( x 1 ^ W - u ) / 

x (Xi [(Mfl 'W*MB i )+ - MB /] X i ) " (Xi£(tf) - u ) } , 

where 

s = r (MB'X'PO + XMB'X']-^) 

and Xs(0? 1 — a) means the (1 — a)-quantile of chi-square distribution with s degrees 
of freedom. 

From Lemma 4.1 and Corollary 4.3 it follows k > dimjVl(X1) > s and the 
rank 5 depends on £# . Hence, a confidence region for the function Xi/3 is an s-
dimensional domain in the space JV^X^). It cannot be characterized as an regular 
ellipsoid. There exist directions fi G M(X[), i = 1 , . . . ,dimM(X[) - s, such 
that a confidence interval for the function f'fl is degenerated into a point and it 

holds Var# /'i/3(i9) = 0, i = 1 , . . . ,dimM(X[) - 5. These vectors f{ generate the 

subspace Af C M(X[) and M(X[) = N ' © T. In the subspace J\f the estimator of 
PJV/3, where PJV is the Euclidean projector matrix on the subspace JV, is the vector 
PM/3 with the property P {P/v/3 = PN/3J = 1, i.e., Var^ Cfj^fi) = 0. Here a 
vector PJv/3 represents all unbiasedly estimable linear functions of the parameter /3 
in the subspace M. In the subspace T the confidence region of P/J-/3 is a regular 
s-dimensional ellipsoid. 

Summarizing all results from this section, the confidence region for the function 

f B J/3 is a cylinder Z 0 {Ker(X) n Ker(B)} with a basis Z in the subspace 
M(Xf, B'). The basis is an ellipsoid in the subspace T with the center given by the 
vector 

P ^ 3 + P^ /3 = -B'(BB')'b + P ^ . 

Sometimes, it is necessary to determine confidence intervals for several functions 
of the parameter /3 simultaneously. The following theorem, due to Scheffe is useful 
in such cases. 
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Lemma 4.4 (Scheffe theorem) Let V be any nxn symmetric positive semidefinite 
matrix, k > 0 and x e M(V). Then 

VyeRn: \yfx\ < ky/y'Vy & x'V'x < k2. 

P r o o f. It is an obvious generalization of the statement for a symmetric positive 
definite matrix V which can be found in [8], p. 69. • 

Theorem 4.5. Consider a subclass /C of estimable functions of /3 characterized by 
a k x I matrix K with the properties 

tipeic & heM(K)cM(X',B'). 

Then for all h e M(K) confidence intervals of functions fa//3, (3 e B, are given by 

l-a = p{\/ti(3e)C: 

\h'P - fc7§(0)| < ^/xj(0,1 - a)yjti [(MB>WOMB>)+ - MB,] ft}, 

where degrees of freedom are 

f = r { K ' ( M ^ W l 9 M s O + X ' [ S ^ + X M B ' X ' J + E * } . 

P r o o f . Let h e K, i.e., 3f eRl : h = Kf. Thus 

\ti(5 - h!p(fl)\ = | / ' (K'/3 - K^W) | . 

Since ^^ 
P { (K'/3 - K'/3(tf)) e M (var*[K'0(0)]) } = 1, 

according to Lemma 4.4 it holds 

V/ € Kf : | / ' (K'/3 - K'0(ů)) | < ky/f'Van,\K'/3(ů)]f & 

(K'/3 - K W ) ) ' ( V a r ^ K 7 ^ ) ] ) ' (K'/3 - K W ) ) < A;2. 

Hence 

where 

h'(3 - h'0(ů)\ < y/x}(0,1 - a)yjtí [(MB» W.,MB0+ - MB'] fc} 

/ = r{Varl)[K^3(i9)]}. 
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Further, since M(K) C yVf(X',B'), there exist matrices Ui, U2 such that K = 
X'Ui + B'U2. Now, using Lemma 3.2 we obtain 

r [Vai4\KrJ3{0)]} 

= ,{ (U' 1 ,U^)(^)L'(^ J ) } 

= r j(U;.U£) ( * ) [ ( M B ' W ^ M B O + X ^ S ^ + X M B ' X O + S ^ O ] ! 

= r {UiX(MB'W.,MB')+X'(E., + XM f l.X')+E t f} 

= r { K ' ( M B ' W < , M B O + X ' ( E . , + XMB 'X')+S^} , 

since 

M B ' ( M B ' W 1 ? M B ' ) + = ( M B - W ^ M B ' ) 4 " , K ' M B ' = UiXMB». • 

5. INSENSITIVITY REGION 

In this section, let the mixed linear model with constraints (1) be under considera
tion, i. e., Vj, i = 1,. . . ,p, are symmetric positive semidefinite and i?{ are positive. 
Authors have not been able to solve the problem in the model with variance com
ponents, i.e., in the case that Vj, i = 1,... ,p, is symmetric only and i?j can be 
negative. The problem is to derive g-inverse of matrices depending on parameters 
#1 , . . . ,dp. In mixed linear model it is valid the relationship (6) from the proof of 
Lemma 5.1, i.e., 

M [m | > V i ) = M{Vi) c M (-5W)' 
what is not true in the case of models with variance components. 

Let the observation vector Y be normally distributed. Let i9* be true value of 
the parameter i9. The small change of #* into i9* + A causes a change of the i9*-
LBLUE h'Piti*) of the function ti(3, (3 G B. Analogously, this change influences the 
confidence level of the confidence region, the risk of the test, etc In the following, 
the problem with the confidence level will be studied. Here an analogous procedure 
is used as in the regular mixed model with constraints (cf. [5]). 

According to the previous section, it is sufficient to study the problem of the 
sensitivity for functions Xi/3, /3 G B, only. 

Denote by 77(1?* + A) the random variable 

rl(tf * + A) 

= (xi£(tf* + A) - Xi/3)' (Xi [ ( M B ' W ^ + A M B ' ) 4 " - MB/] Xi)~ 

x (Xi£(tf * + A) - Xx/3) . 
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Then 77(1?*) ~ XÍ(0), s = r ( M B / X ' [ E Í . + XM f í 'X ' ] "£ , , . ) and the random variable 

P dr,(ů)\ 
Í = £ Д < 

i = l 
ӘI?І 0=0* 

describes the change of 77(1?*) caused by the shift A of the parameter 1? around 
#*. Omitting the second and higher derivatives in the Taylor series, the variable 
77(1?* + A) can be linearly approximated by 

77(79* + A) * 77(1?*) + £. 

L e m m a 5.1. Let the mixed model (1) be under consideration. Then the mean 
value of £ is 

v 
£[£] = - £ A i T r ( U V ) , 

i= l 

where Tr (UVj) means the trace of the matrix UVi and 

U = (S t f . + X M B . X ' ) + X [MB . W , , . M B . ] + X ; 

x [Xi ( [ M B ' W „ . M B ' ] + - M B . ) Xi] + 

x X i [ M B . W t } . M f l ' ]
+ X ' ( E t 5 . + X M B . X ' ) + . 

The variance of £ is 

Var.,.[£] = A ' A A , 

where 

A = 2 S l / + 4 C t , , T , (5) 

{ S c / } . . = T r ( U V i U V j ) , i , j = l , . . . , p , 

{Cu,T}iti = TrfUViTV,-), 
T = - (S^,. + X M B . X ' ) + X [ M B . W t f . M B . ] + X' 

x ( 5 V + X M B . X ' ) + + ( £ „ . + X M B . X ' ) + . 

Further, the explicit expression of the term ^ , ' , i = 1 , . . . ,p, is 

^ p - = - 2 ( x ^ ( t 9 * ) - X i i 9 ) ' [ x 1 ( [ M B ' W t , . M B ' ] + - M B ' ) x i ] + 

x X i [ M f f W ^ M s ^ X' (£, , . + X M B < X ' ) + V{ 

x( .>V +X.MB'X')+v1(ti*) 

- (xrf (1?*) - Xj/3) ' [Xx ( [ M B . W , . M B . ] + - M B . ) Xi] + 

xXi [ M B . W r M B . ] + X' ( 5 V + X M B . X ' ) + Vt 

x (S, , . + X M B . X ' ) + X [ M B , W t f . M B , ] + Xi 

x [X t ( [ M B . W , . M B . ] + - M B - ) X i ] + (x7J3(0*) - Xx/3) , 
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where 
v1(<d*) = Y1-Xl(3(ti*). 

Proof. The explicit expression of a ^ , ) can be derived by using the relation 

M ( ^ > ) c A , ,A W , * < ^ > = - A * W ^ A + W . (.) 

which can be easily proved. Then 

a X g ^ * } = - x i [MB- W „ . M B , ] + X' (E„. + XMB ,X')+ V4 

x(E„. +XMB,X')+-Ui(i9*), 

^ ^ = -M B .X ' (E„. + XMB ,X')+ Vi 

x(E„. +XM B .X ' ) + XM B , , 

9 [Xi ([MB .W„.MB ,]+ - Mfl.) Xi] 

Mi 

= Xi [MB. W„.MB . ]+ X' (E„. + XMB ,X')+ Vi 

x (E„. + XMB.X')+X[MB.W15»MB.]+X' l. 

In the next step we use the notation 

Fi = [Xi ([MB.W„.MB.]+ - MB.) Xi] + Xi [MB.W„.MB,]+ 

xX' (E„. + XMB,X')+ Vi (E„. + XMB,X')+ , 

Di = [xx ([MB,W^.MB,]+ - Mfl.) X'x]
 + Xi [MB,W^.MB.]+ 

xX' (E„. + XMB.X')+ Vi (E„. + XMB,X')+ 

xX[MB-W^.Mfl-]+Xi [Xi ([MB,W„.MB,]+ -M B , ) Xi] + 

C(tf*) = Xi/3(tf*) - XiA 
and 

Then 

C(jT) ~ Hni [o,Xi ([MB,W,,.MB,]+ - MB,) Xi] , 

vi(ti*) ~ Nni [o,E.,.,n -Xi ([MB.W„.MB.]+-MB,)xi] , 

where E.y.,11 is the submatrix from (4) and C, *>i are stochastically independent. 

The random variable dv£ff. ) can be rewritten in the form 

^ P - = -2C'(0*)Fit;i(0*) - C'(̂ *)DiC(̂ *)-
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Now the proof can be finished by using the following relations 

E [C'(r)GiC(^)] = Trp .Var,, . [C(0*)]), 
E[C'(v-)Fiv1(0')]=O 

and 

Var,,. [C'(tf')DiC(**)l = 2Tr(DiVar<,. [C(iT)]D<Var.,. [C(0*)]), 

£ [ V i ( r ) F ; C ( ^ K ' ( ^ ) F i « i ( ^ ) l 
= Tr (F^Var*. [C(iT)] FiVar,,. [w^-5*)]), 

E [«;(tf*)F;<(0*K'(OD.c(<nl = o. D 

Let £ be a chosen probability expressing the maximum tolerable decrease of the 
confidence level caused by the fact that the true value i9* of the parameter i9 is 
unknown. The notation 

a = [Tr(UV1),...,Tr(UVp)]' (7) 

will be used. 

Definition 5.2. Let 

IC£ = {A: AeW, A< + tf?>0. i = l,...,p, $(A) < 6e} , 

where 

*(A) = - A'a + t\Z~A1A~A, 
S£ = x

2s(0,l-a)-x2
s(0,l-a-e). 

The set K£ is called the insensitivity region for the confidence domain. 

Theorem 5.3. Let A and a be given by (5) and (7). The boundary of the insen
sitivity region for the (1 — a)-confidence domain of the function Xi/3, (3 G B, is the 
set 

X£ = | A : AGR p , A-i + iJJ >0 , i = l , . . . , p , 

(A - u o / ^ A - aa')(A - tz0) = ^ _ ; , A _ Q j , 

where e, t are chosen positive numbers and 

U o = ^ - a ' A - a A _ a ' 
<5e = x

2s(OA-a)-x2s(0,l-a-e), 
s = r (M B 'X ' (E d .+XMB'X' ) + S .5 . ) . 

Proof. The statement can be proved in the following steps 
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1. matrices SrJ and CU,T from Lemma 5.1 are positive semidefinite, 

2. a G M(Su) C M ( A ) , 

3. solving the equation $ (A) = S£. 

(in more detail cf. [2, 5]). • 

6. NUMERICAL DEMONSTRATION 

Example 6 .1 . The problem is to determine two straight lines p\ and P2 in a plane. 
Straight line p_ has to intersect the point [2,T] and analogously P2 has to intersect 
the point [2,T + 1], where T is unknown. Moreover, p\ intersects the point [0,0]. 
We have only one measurement for each straight line at our disposal; y\ = 2.00 at 
the point x = 1 with the accuracy (standard deviation) o\ = 0.01 for the straight 
line p\ and 7/2 = 1-50 at the point x = 3 with the accuracy 02 = 0.02 for the pi. 
Both measurements are linearly dependent (correlation coefficient p = 1). 

Let us denote 

Pi : V = fox, 

P2 : y = fo + fox, 

i.e., the vector of unknown parameters is/3 = (fo,fo,fo)'- Constraints on the model 
are 

2/3i = T, 

& + 2/?3 = r + i, 

hence 

2 / ? i - & - 2 0 - + 1 = 0, (8) 

i. e., B = (2, - 1 , - 2 ) and 6 = 1 . 
Let us put the true value t?£ equal to the certificate value of, i = 1,2. The 

acceptability of this equality we verify by using sensitivity region. Then 

0J = 0.0001, 05 = 0.0004, 

- ( 0.0001, 0.0002 \ 
** ~ ^ 0.0002, 0.0004 ) ' 

f 0.5, 1.0 \ _ / 0.125, 0.250 \ 
1 ~ ^ 1.0, 2.0 ) ' 2 ~ 1^0.250, 0.500 f 

Stochastic model describing the process of measurement is given by 

( y ) ~N2[X/3 ,5V] , 0€ {u: u e l 3 , Bu + b = 0}=B, 

( 1, 0, 0 
X ~ V 0 , 1, 3 
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Then 

/ l , 0 \ / 0 
M(X') = 0, 1 , Ker(X) = 3 

V 0, 3 J \ -1 
/ 2 \ / 4, 5 

M (B' ) = - 1 , Ker(B) = - 2 , 2 
V - 2 / V 5, 4 

Since .M(X',B') = E3 , all functions ti/3, h G E3 , are unbiasedly estimable 
and thus the vector (3 is also unbiasedly estimable. The #*-LBLUE of the whole 
parameter 0 is /3(tf*) = (2.00,12.00,-3.50)'(cf. Lemma 3.2). The (l-a)-confidence 
region of (3 is given as 

£!-*(&) = {/3: (3 e Ker(B) + (30, 

[/3 - 3(1?*)]' [Var*. (3(19*))]" [/3 - 3(i?*)] < X?(l - a )} , 

where /30 is a vector satisfying the relation (8), e.g. /30 = (0.5,6.0, —2.0)', and 

s = r (Var,?. (£ (0* ) ) ) = r (M B -X ' [5V + X M B ' X ' ] - E . , . ) = 1. 

(cf. Corollary 4.3). 

The covariance matrix Var^. (/3(,d*)j is 

/ 0.0001, 0.0002, 0 
Var,?. (3(i?*)) = ( M B - W ^ . M ^ ) 4 " - M B - = 0.0002, 0.0004, 0 

0, 0, 0 

Since its spectral decomposition is given by 

/ 0.4472 \ 
Var,,. (3(i?*)) = 0.0005 0.8944 (0.4472,0.8944,0), 

the subspace Ker(B) can be expressed, in our case, in a more suitable form as 

/ 0.4472, -0.5963 
Ker(B) = 0.8944, 0.2981 

\ 0, 0.7454 

Thus 0.95-confidence region of (3 is the set characterized by the abscissa [—0.0438,0.0438 
(0.0438 = V0.0005x'f(0.95), Xi(0-95) = 3.84), which center is shifted to the point 
3(tf*) = (2.00,12.00, -3.50) ' and its direction is given by the vector (0.4472,0.8944,0)' 
(cf. Figure 1). 
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Fig. 1. 0.95-confidence region £0.95(/3) in the linear manifold B. 

Now, let us consider the problem of the sensitivity. Let the tolerable decrease of 
the 0.95-confidence level be 10%, i.e., e = 0.1. Let t = 4. The center of the insensi-
tivity region /Co.i for the confidence domain £0.95 (/3) is w0 = (-0.3328-10-3, —0.0832-
10~3)'. Eigenvalues and eigenvectors of the matrix t2A — aa' are 

A2 

Ai = 0, ví 

2.6603 • 107, 

= (0.2425,-0.9701)', 

V2 = (-0.9701, -0.2425)'. 

Hence, the insensitivity region is the band in the direction Vi and its width 7 is 
equal to 

7 = -1 
áfí2 

( ř 2 - a ' A - a ) A 2 

= 0.9702-10 - 3. 

Moreover, tolerable shifts ( J i ? ! , ^ ) ' m u s t satisfy Jtfi > -0.0001 and 5d2 > -0.0004. 
Thus, the insensitivity region is not the whole band but the triangle P1P2-P3 only 
(see Figure 2). Here Pi = (-0.0001,-0.0004)', P2 = (0.0011,-0.0004)' and P 3 = 
(-0-0001,0.0042)'. 

From the practical viewpoint it is more important to determine tolerable shifts 
5a = \fSfl of the parameter a around its true value a*. Evidently, the shift 5a 
is tolerable iff the shift 5*0 is tolerable. The tolerable shifts 6a are given by the 
equation 

8ai = y/dfVoTi-al, i = l,2. 

The region Q1Q2Q3 of all tolerable shifts (5ai,5a2)' is shown in Figure 2. Here 
Oi = (-0.01,-0.02)', Q2 = (0.0246,-0.02)' and Q 3 = (-0.01,0.0478)'. 

The maximum tolerable shift 5a\ is 0.0246 if the measurement Y2 is exact. Anal
ogously, the maximum tolerable shift 5a2 is 0.0478 if the measurement Y\ is exact. 
In both cases, standard deviation ai can increase approximately by 240 %. Tolerable 
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Fig. 2. Insensitivity regions /Co.i- Left: tolerable shifts Stf around $*, 

right: tolerable shifts 8a around a*. 

shifts 8a are large enough therefore we can put the true values a* equal to the cer

tificate values. Further, both measurements are equally important from the aspect 

of the accuracy of the estimator /3. 

(Received November 29, 2002.) 
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