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APPROXIMATIONS FOR THE MAXIMUM
OF STOCHASTIC PROCESSES WITH DRIFT!

IsTVAN BERKES? AND LAJos HORVATH®

If a stochastic process can be approximated with a Wiener process with positive drift,
then its maximum also can be approximated with a Wiener process with positive drift.
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1. INTRODUCTION AND RESULTS

Let X3, Xa2,... be a sequence of independent, identically distributed random vari-
ables with
EX, =p>0and 0 < varX, = ¢ < c0. (1.1)
The motivation of our note is the following central limit theorem due to Teicher [6].
Let
5@() = E Xi
1<i<j
and
0<a<l (1.2)

Theorem 1.1. If (1.1) and (1.2) hold, then

;{ max ) —;ml_"‘} 2, N(0,1),

a-nl/2—a 1<j<n ja

where N (0,1) denotes a standard normal random variable.
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Since . s
{—(—"—) - unl_"} 2, N(0,1),

onl/2—a ne

Theorem 1.1 strongly suggests that
e SO 5O _ sy

1<j<n j© ne

i.e. S(j)/j reaches its largest value on [1,n] nearly at j = n. Indeed, Chow and
Hsiung [1] proved the following result:

Theorem 1.2. If (1.1) and {1.2) hold, then

max & _ S =o(n'/?"%) as. (1.3)
1<j<n J% no

For generalizations of (1.3) we refer to Chow, Hsiung and Yu [2].

We show that (1.3) holds not only for partial sums of independent identically
distributed random variables, but for any process if they can be approximated with
a Wiener process with drift. Let I'(¢) be a stochastic process on D[1, c0).

Theorem 1.3. We assume that there exist a Wiener process {W(t),1 <t < oo}
and constants 7 > 0, v > 0 such that

D(t) — (TW(t) + 7t) = o(t'/") a.s. (t = o0) (1.4)
with some v > 2. If (1.2) holds, then
I IIT) _

=o(T*"~*) as. (T = ) (1.5)
1<t<T t° T
and
F(t) TW(T) + 7T 1/v—a
sup —> — ——~——— =o(T ) as. (T - o). (1.6)
1<t<T T~

Theorem 1.3 implies immediately an improvement of the rate in (1.3) under
stronger moment conditions on X;.

Theorem 1.4. If (1.1), (1.2) hold and
E|X;1]|” < oo with some v > 2, (1.7)

then

| lsjasxn % - % =o(n'/*"%) as. (n = o). (1.8)
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Theorems 1.3 and 1.4 will be proven in the next section. The following two
corollaries are immediate consequences of (1.6) and the properties of the Wiener
process. Let [-] denote the integer'part function.

Corollary 1.1. We assume that the conditions of Theorem 1.3 are satisfied.
(i) f 0 < < 1/2, then

t
ne—1/2 { sup ia) — y([nu] + l)l—a} 'D[_&;] TWCE'UI) )
1<t<[nu]+1 t u

(1.9)
(i) f1/2 < @ < 1, then
no—1/2 sup oet) _ ¥([nu] + 1)1 il TW(w) .
1<t<[nul+1 t* u® (1.10)
(i) Forany 0 < ¢; < ¢2 < 00
no1/2 sup o) _ v([nu] + 1)* Plevsgal W (u) .
1<t<[nu]+1 ¢ u® (1.11)

Corollary 1.2. If the conditions of Theorem 1.3 are satisfied, then

lim su L L)
TP (2T loglog T)'/2? |1<i<T t*

=T a.s.

_ ’)’Tl_a

2. PROOFS

The first two lemmas show that I'(¢)/t* and (W (t) +~t)/t* will reach their largest
value on [1,7] on the second half of this interval.

Lemma 2.1. If (1.2) holds and y > 0, then there is a random variable T; such
that

t) + 7t t
b W)+t _ sup TW(t) +

if T>T;. 2.1
1<t<T t* T/2<t<T t B a= @1)

Proof. By the law of iterated logarithm for W we have

1 TW(t) + ~t
Ti-«a 1<t<T to

—y as. (T - ) (2.2)

and

TW(t) + 7t (1)1‘“
— = a.s. (T = 00), 2.3
Tie S0P i 5) 7 ( ) (2.3)

implying the statement of Lemma 2.1. 0
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Lemma 2.2. If the conditions of Theorem 1.3 are satisfied, then there is a random
variable T, such that

I'(t) ()

sup —— = sup ——, if t>Ts.
1<e<T 1 T/2<t<T ¢

Proof. The approximation in (1.4) implies that

wup 100 = (W () + 1)

= O(max(1,T/*=%)) as.
1<t<T te

and therefore (2.2) and (2.3) yield

1 I'(t)
Ti=a é‘ng e 7 as. (t — o0) (2.4)
and
1 r(t) (1)1—"
sup — — | = a.s. (T — o0). (2.5
e S e (3) 7 e @) (2)
Lemma 2.2 follows from (2.4) and (2.5). O

Let Fo(t) be the uniform distribution function on [0,1]. For any 0 < a < 1, F,(t)
denotes the uniform distribution function on [1,1/a].

Lemma 2.3. Let 0 <o <1andY),Y,,... beindependent, identically distributed
random variables with distribution function F (¢). Then

1 1
28X = D Yi=— > Y

1<i<y 1<i<n

Proof. It is enough to show that

1 (a7
1+ = Y; < Y; forall 1<j<oo. 2.6
(1+3) Tws ¥ j (26)

1<i<; 1<i<j+1

Since ¥; > 0, (2.6) holds if « = 0. If 0 < & < 1, we observe that 1 <Y; < 1/a and
(1 + 1) —1< 2
J J

{(1+1.) —I}ZY,SQ. Y; <1< Vi,
7 1isi T asigg

completing the proof of (2.6). ]

Hence
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Lemma 2.4. If (1.2) holds and 7 > 0, v > 0, then

sup W)+t TW(T) +9T ~0 (logT) s,
1<t<T to To To

Proof. Let u. = ps(a) and o4 = 0.(a) be the mean and standard deviation of
a random variable with distribution function F,(t). Next we define

c= (&L>2, (2.7)

Y O«
Obviously,
W(es) + Tes
TW(t) +~t p
sup ——m = sup e I—
1<t<T e 1/c<s<T/c (cs)>
(2.8)
Wi(s) + Yeirzg
=rc/?2~>  gup —t,
1/e<s<T/c S
where
Wi(s) = ¢ /?W(cs), 0< s < (2.9)
is a Wiener process. By (2.7) and (2.8) we have
t * «t
W)+t _ Telrma qyp LT A Wit) + . (2.10)
1<t<T te Ox 1/c<t<T/c 1

Using the K-M-T approximation (cf. Komlés, Major and Tusnéddy [3, 4] and Major
[5]) we can define Y}*, Y}, ..., a sequence of independent, identically distributed
random variables with distribution function F,(t) such that

> Y = (0uWi(t) + pat) = O(logt) as. (t— o0). (2.11)
1<i<t

By Lemmas 2.1, 2.2 and (2.10) there is random variable Ty such that

«WVi(t «1 «WVi(t «L
sup 2 1(2+u - ap Z 1(2+u
1/c<t<T/c t T/(2¢)<t<T/c t
and 1 1
wp LY vie wp Ly
1/e<t<T/c t* | S72, T/(2¢)<t<T/c t 1<i<t

if T' > Tp. Hence (2.11) yields, as T' — oo,

sup M —  sup .}_ Z Y=0(T"%logT) aus.

1/c<t<T/c t 1/e<t<T/e ¥ | 32 ' (2.12)
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Putting together Lemma 2.3 and (2.11) we conclude

5= 5

ta
1/e<t<T/e* i<t 1<i<T/c

- (Z) " foms () 40T} sor-riosn) as. @1

(T — o0). Next we use (2.7), (2.9) and (2.10) to obtain
T\ “ -
OO
c c c

= (2) " ferewiy .2

(2.14)
1 ac1y2 Px _1/2
= Fca / Ox {W(T) + J—*C / T
1 a—1/29%
= — — T .
Tat . {TW(T) +~T}
Lemma 2.4 now follows from (2.8) and (2.12) — (2.14). ]

Proof of Theorem 1.3. Using (1.4) and Lemmas 2.1 and 2.2 we get that

I'(t Wit t
sup @ _ sup W)+t _ o(T*=2) as.
1<t<T 1% 1<i<T te
Hence Theorem 1.3 follows from Lemma 2.4. ]

Proof of Theorem 1.4. By the K-M-T approximation there is a Wiener
process {W(t),0 <t < oo} such that

S(t) — (eW(t) + ut) = o(t'/*) as. (t — o).
Hence (1.4) holds and the result follows from Theorem 1.3. O

Proof of Corollary 1.1. Assume that 0 < o < 1/2. By Theorem 1.3 there
is a Wiener process {W(t),0 <t < oo} such that

w1 gy | sup DO _ Wl +1) + (i + 1)

= o(n!/*71/?) as.
0<u<1 |1<t<[nuj+1 % ([nu] + 1) ( )

n

Hence (1.9) is proven if

a—1/2 W([nu] +1) Dlo.J] W(u)

" ([nu] + 1)e u®

. (2.15)
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Obviously,
wp W@+l )
0<u<e ([TLU] + l)a 0<u<[ne]+1 u®

and by the scale transformation of W we have

wp WD W W)l
0<u<[ne]+1 u® 0<u<([ne]+1 (u/n)a 0<u<([ne]+1) /n u®

ncx—l/z

By the law of the iterated logarithm for W at 0 we have

limlimsupP{ sup M>6}=0 for all 4 > 0.

€20 nyo0 0<u<([nel+1)/n U (2.16)

The scale transformation of W and the almost sure continuity of W(u)/u® on
[e1,¢2], 0 < e1 < ¢ yield

ne—1/2 W ([nu] +1) Dlerga] W(v)
(] + D= us
Clearly, (2.15) follows from (2.16) and (2.17).

Assume that 1/2 < a < 1. Using again Theorem 1.3 there is a Wiener process
{W(t),0 <t < oo} such that

(2.17)

=172 gup sup @) _ 7W(nul +1) +y(nu] +1)| _ o(1) as.

n
1<u<oo |1<t<[nul+1 ¥ ([nu] + 1)

Hence (1.10) is proven if we show that

no-1/2 W ([nu] +1) Dlt,c0] W (u)

. 2.18
([nu] + 1)« u® (2.18)
For any T' > 0 we have that
wp DL W)
T<u<oo ([nu] + 1)a [nT)<u<co W
and by the scale transformation of W we have
N ) R (]
[(T]<u<oo U [nT]/nSu<eo U
The law of the iterated logarithm for W at oo yields that
sup W) = 0 as. (T — ). (2.19)
T<u<oco U%
Now (2.18) follows from (2.17) and (2.19).
Theorem 1.3 and (2.17) imply immediately (1.11). O
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