T-EQUIVALENCES GENERATED BY SHAPE FUNCTION ON THE REAL LINE

Dug Hun Hong

This paper is devoted to give a new method of generating T-equivalence using shape function and finding the exact calculation formulas of T-equivalence induced by shape function on the real line. Some illustrative examples are given.
Keywords: fuzzy number, fuzzy relation, T-norm, T-equivalence, shape function AMS Subject Classification: 26A21, 03E02

1. INTRODUCTION

For the fuzzy set-theoretical modelling of verbal quantities and computing with these quantities, it appears useful to part the class of real numbers into fuzzy equivalence classes. Jacas and Recasens [8] considered the idea of generating fuzzy numbers as equivalence classes of a T-indistinguishability operator based on a scale function. The theoretical approach suggested in [10] and further developed in [11] indicates that partitions based on the concept of a shape function can be especially significant. De Baets et al [2] and Marková [12] characterized that the shapes by means of which T-equivalences can be generated, are based on the knowledge of idempotents of the T-addition of fuzzy numbers.

In this paper, we give a new method of generating T-equivalence using shape function and finding the exact calculation formulas of T-equivalence induced by shape function on the real line. Some illustrative examples are given.

2. PRELIMINARIES

Definition 1. (Jacas and Recasens [8]) A fuzzy number is a mapping $A: R \rightarrow$ $[0,1]$ such that there exists $a \in R$ with $A(a)=1$ and A is increasing on $(-\infty, a]$ and A is decreasing on $[a, \infty)$.

Definition 2. (De Baets and Mesiar [3]) Consider a t-norm T'. A binary fuzzy relation E on an universe X is called a T-equivalence on X if and only if it is reflexive, symmetric and T-transitive, i.e. if and only if for any (x, y, z) in X^{3} :
(i) $E(x, x)=1$;
(ii) $E(x, y)=E(y, x)$;
(iii) $T(E(x, y), E(y, z)) \leq E(x, z)$.

Definition 3. (Jacas and Recasens [8]) A scale is a continuous non-decreasing surjective monotonic mapping $S: R \rightarrow R$.

Definition 4. A shape is a non-increasing mapping $\phi: R^{+} \rightarrow[0,1]$ such that $\phi(0)=1$.

Definition 5. A mapping $d: X^{2} \rightarrow[0, \infty]$ is called a pseudo-metric on X if and only if for any (x, y, z) in X^{3}
(i) $d(x, x)=0$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, z) \leq d(x, y)+d(y, z)$.

It is called a metric if it moreover satisfies, for any $(x, y) \in X^{2}$
(iv) $d(x, y)=0 \Leftrightarrow x=y$.

Consider a scale s, then the mapping $d_{s}: R^{2} \rightarrow R^{+}$defined by

$$
d_{s}(x, y)=|s(x)-s(y)|
$$

is a pseudo-metric on R. Now consider a shape ϕ, then we construct the binary fuzzy relation $E_{s, \phi}$ as follows:

$$
E_{s, \phi}(x, y)=\phi(|s(x)-s(y)|)
$$

Definition 6. A generator (or source of vagueness) g is a scale such that $g(0)=0$.
A function $T:[0,1] \times[0,1] \rightarrow[0,1]$ is said to be a triangular norm $[9,14](t-$ norm for short) iff T is symmetric, associative, non-decreasing in each argument, and $T(x, 1)=x$ for all $x \in[0,1]$, and, in general, $T\left(x_{1}, \cdots, x_{n}\right)=T\left(T\left(\ldots T\left(T\left(x_{1}, x_{2}\right), x_{3}\right)\right.\right.$, $\left.\ldots, x_{n-1}\right), x_{n}$). Some well-known continuous t-norms are the minimum operator T_{M}, the algebraic product T_{P} and the Lukasiewicz t-norm T_{L} defined by $T_{L}(x, y)=$ $\max (x+y-1,0)$. The minimum operator T_{M} is the strongest (greatest) t-norm. The weakest (smallest) t-norm T_{W} is defined by

$$
T_{W}(x, y)= \begin{cases}\min (x, y) & \text { if } \max (x, y)=1 \\ 0, & \text { elsewhere }\end{cases}
$$

We will call t-norm T is Archimedean if and only if T is continuous and $T(x, x)<$ x for all $x \in(0,1)$. Every Archimedean t-norm T is representable by a continuous and decreasing function $f:[0,1] \rightarrow[0, \infty]$ with $f(1)=0$ and

$$
T\left(x_{1}, \cdots, x_{n}\right)=f^{[-1]}\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right)
$$

for all $x_{i} \in[0,1], 1 \leq i \leq n$, where $f^{[-1]}$ is the pseudo-inverse of f, defined by

$$
f^{[-1]}(y)= \begin{cases}f^{-1}(y) & \text { if } y \in[0, f(0)] \\ 0 & \text { if } y \in[f(0), \infty]\end{cases}
$$

The function f is the additive generator of T. If $T=T_{P}$, then $f(x)=\log x^{-1}$ and if $T=T_{L}$, then $f(x)=1-x$.

For arbitrary fuzzy numbers $A_{i}, i=1, \cdots, n, n \in N$, on the real line, their T-sum is defined by means of the extension principle as follows:

$$
A_{1} \oplus_{T} \cdots \oplus_{T} A_{n}(z)=\sup _{x_{1}+\cdots+x_{n}=z} T\left(A_{1}\left(x_{1}\right), \ldots, A_{n}\left(x_{n}\right)\right), z \in R
$$

Definition 7. Let J be a finite or countable set. Let $\left\{T_{i} \mid i \in J\right\}$ be a collection of t-norms and $\left\{\left(a_{i}, b_{i}\right) \mid i \in J\right\}$ a collection of disjoint intervals in $[0,1]$. We call ordinal sum of t-norms $\left\{T_{i} \mid i \in J\right\}$ to the following t-norm :

$$
T(x, y)=\left\{\begin{array}{lc}
a_{i}+\left(b_{i}-a_{i}\right) T_{i}\left(\frac{x-a_{i}}{b_{i}-a_{i}}, \frac{y-a_{i}}{b_{i}-a_{i}}\right) & \text { whenever }(x, y) \in\left(a_{i}, b_{i}\right)^{2} \\
\min (x, y) & =\left(a_{i}, b_{i}\right) \times\left(a_{i}, b_{i}\right)
\end{array}\right.
$$

which is denoted by $T=\left(\left\langle a_{i}, b_{i}, T_{i}\right\rangle \mid i \in J\right)$, and only if all T_{i} are generated, then equivalently it can be used $T=\left(\left\langle a_{i}, b_{i}, f_{i}\right\rangle \mid i \in J\right)$ where f_{i} is the additive generator of T_{i}.

The following theorem gives a general classification of continuous t-norms [9].
Theorem 1. (Ling [9]) Let T be a continuous t-norm. Then T is Archimedean or T-min or T is an ordinal sum of Archimedean t-norms.

3. T-EQUIVALENCE GENERATED BY SHAPES

Consider a generator g and a shape ϕ, and the fuzzy relation $E_{g, \phi}$, which is always reflexive and symmetric. Let T be a t-norm and $\phi_{n}=\phi \oplus_{T} \cdots \oplus_{T} \phi$ (n-fold T sum of ϕ). Then $\phi_{n}(x) \leq \phi_{n+1}(x)$ for any $x \in R$ and for $n \dot{\in} N$, the natural numbers. Hence the limit always exists. Let $\lim _{n \rightarrow \infty} \phi_{n} \equiv \phi^{*}$. We also note that if we define $|\phi|: R \rightarrow[0,1]$ such that $|\phi|(z)=\phi(|z|)$ and $|\phi|_{n}=|\phi| \oplus_{T} \cdots \oplus_{T}|\phi|$, then $\lim _{n \rightarrow \infty}|\phi|_{n} \equiv|\phi|^{*}=\left|\phi^{*}\right|$.

Theorem 2. For a continuous t-norm T, a generator g and a shape ϕ, the fuzzy relation $E_{f, \phi^{*}}$ is a T-equivalence on R.

Proof. We only need to show that for any $a, b, y \in R$

$$
T\left(E_{g, \phi^{*}}(a, y), E_{g, \phi^{*}}(y, b)\right) \leq E_{g, \phi^{*}}(a, b)
$$

or equivalently

$$
\begin{equation*}
T\left(|\phi|^{*}(g(y)-g(a)),|\phi|^{*}(g(b)-g(y))\right) \leq|\phi|^{*}(g(b)-g(a)) \tag{1}
\end{equation*}
$$

By the continuity of the t-norm T, we have

$$
\begin{array}{r}
T\left(|\phi|^{*}(g(y)-g(a)),|\phi|^{*}(g(b)-g(y))\right) \\
=\lim _{n \rightarrow \infty} T\left(|\phi|_{n}(g(y)-g(a)),|\phi|_{n}(g(b)-g(y))\right.
\end{array}
$$

and

$$
\begin{aligned}
T & \left(|\phi|_{n}(g(y)-g(a)),|\phi|_{n}(g(b)-g(y))\right. \\
& =T\left(\sup _{\substack{ \\
x_{1}+\cdots+x_{n}=g(y)-g(a)}} T\left(|\phi|\left(x_{1}\right), \cdots,|\phi|\left(x_{n}\right)\right),\right. \\
& \left.=\sup _{\substack{x_{n+1}+\cdots+x_{2 n}=g(b)-g(y)}} T\left(|\phi|\left(x_{n+1}\right), \cdots,|\phi|\left(x_{2 n}\right)\right)\right) \\
& \sup _{\substack{x_{1}+\cdots+x_{n}=g(y)-g(a) \\
x_{n}+1+\cdots+x_{2 n}=g(b)-g(y)}} T\left(T\left(|\phi|\left(x_{1}\right), \cdots,|\phi|\left(x_{n}\right)\right), T\left(|\phi|\left(x_{n+1}\right), \cdots,|\phi|\left(x_{2 n}\right)\right)\right) \\
& =\sup _{\substack{x_{1}+\cdots+x_{2 n}=g(b)-g(a)}} T\left(|\phi|\left(x_{1}\right), \cdots,|\phi|\left(x_{2 n}\right)\right) \\
& |\phi|_{2 n}(g(b)-g(a))
\end{aligned}
$$

where the second equality comes from the continuity of T and the inequality comes from non-decreasing property of T, hence equation (1) is proved since $\lim _{n \rightarrow \infty}|\phi|_{2 n}(g(b)-$ $g(a))=|\phi|^{*}(g(b)-g(a))$.

The following theorem is due to B. De Baets et al [2]. Here, we give a new proof using the idea of Theorem 2.

Theorem 3. (De Baets et al [2]) Consider a t-norm T, a generator g and a shape ϕ. Let $H=\left\{|g(u)-g(v)| \mid(u, v) \in R^{2}\right\}$. If for any $x \in H, \phi \oplus_{T} \phi(x)=\phi(x)$, then the fuzzy relation $E_{g, \phi}$ is a T-equivalence on R.

Proof. Define ϕ_{0} as follows:

$$
\phi_{0}(x)= \begin{cases}\phi(x) & \text { if } x \in H \\ \inf \{\phi(w) \mid w<x, w \in H\} & \text { if } x \notin H\end{cases}
$$

Then ϕ_{0} is a shape with $E_{g, \phi}(x, y)=E_{g, \phi_{0}}(x, y)$ for $(x, y) \in R^{2}$. We can also show that for any $x \in R, \phi_{0} \oplus_{T} \phi_{0}(x)=\phi_{0}(x)$. It is because $\phi_{0} \oplus_{T} \phi_{0}(x) \geq \phi_{0}(x)$ is always true and for $x \notin H, w \in H$ and $w<x$,

$$
\begin{aligned}
\phi_{0} \oplus_{T} \phi_{0}(x) & \leq \phi_{0} \oplus \phi_{0}(w) \\
& =\phi(w)
\end{aligned}
$$

and hence

$$
\begin{aligned}
\phi_{0} \oplus_{T} \phi_{0}(x) & \leq \inf \{\phi(w) \mid w<x, w \in H\} \\
& =\phi_{0}(x)
\end{aligned}
$$

We now note that $\phi_{0}=\phi_{0}^{*}$ and can prove that $E_{g, \phi_{0}}$ is a T-equivalence on R according to the exactly same method as Theorem 1 without the assumption of continuity of T using $\phi_{0} \oplus_{T} \phi_{0}=\phi_{0}$. This completes the proof.

Recently, many authors $[5,6,7,13]$ studied facts about T-sums of shape function and their limits.

Theorem 4. (Hong and Hwang [6], Hong and Ro [7], Mesiar [11]) Consider a continuous Archimedean t-norm T with additive generator f and a shape ϕ. If $f \circ \phi$ is convex, then

$$
\phi_{n}(x)=f^{[-1]}\left(n f \circ \phi\left(\frac{x}{n}\right)\right)
$$

Theorem 5. (Hong and Hwang [5]) Consider a continuous Archimedean t-norm T with additive generator f and a shape ϕ. If $f \circ \phi$ is convex, then $\phi^{*}(0)=1$ and for $x>0$,

$$
\lim _{n \rightarrow \infty} \phi_{n}(x)=\phi^{*}(x)=f^{[-1]}\left(x f_{-}^{\prime}(1) \phi_{+}^{\prime}(0)\right)
$$

Definition 8. Consider $(a, b) \in R, a \neq b$, then $\phi_{(a, b)}$ is the linear transformation defined by

$$
\phi_{(a, b)}(x)=\frac{x-a}{b-a}
$$

Note that the inverse mapping $\phi_{(a, b)}^{-1}$ of $\phi_{(a, b)}$ is given by $\phi_{(a, b)}^{-1}(x)=a+(b-a) x$.
Definition 9. Consider a fuzzy quantity A and $(a, b) \in[0,1]^{2}, a<b$.
(i) The fuzzy quantity $A^{[a, b]}$ is defined as $A^{[a, b]}=\operatorname{tr} \circ \phi_{(a, b)} \circ A$, i.e. $A^{[a, b]}(x)=$ $\operatorname{tr}((A(x)-a) /(b-a))$, where $\operatorname{tr}: R \rightarrow[0,1]$ is defined by

$$
\operatorname{tr}(x)= \begin{cases}0, & \text { if } x<0 \\ x, & \text { if } 0 \leq x \leq 1 \\ 1, & \text { if } x>1\end{cases}
$$

(ii) The fuzzy quantity $A_{[a, b]}$ is defined by

$$
A_{[a, b]}(x)= \begin{cases}\phi_{(a, b)}^{-1}(A(x)), & \text { if } A(x)>0 \\ 0, & \text { elsewhere }\end{cases}
$$

We need the following result to generalize Theorem 5 to arbitrary continuous t-norm.

Theorem 6. (De Baets and Marková [1]) Consider an ordinal sum of continuous t-norm $T=\left(\left\langle a_{i}, b_{i}, f_{i}\right\rangle \mid i \in I\right)$ written in such a way that $\bigcup_{\lambda \in I}\left[a_{i}, b_{i}\right]=[0,1]$ and a shape ϕ. If $f_{i} \circ \phi^{\left[a_{i}, b_{i}\right]}$ is convex for all $i \in I$, then

$$
\phi_{n}(x)=\sup _{i \in I}\left\{\left(\phi_{n}^{T_{i},\left[a_{i}, b_{i}\right]}\right)_{\left[a_{i}, b_{i}\right]}(x)\right\}
$$

where $\phi_{n}^{T_{i},\left[a_{i}, b_{i}\right]}(x)=f_{i}^{[-1]}\left(n f_{i} \circ \phi^{\left[a_{i}, b_{i}\right]}\left(\frac{x}{n}\right)\right)$.
Theorem 5 can be easily generalized to arbitrary ordinal sums of continuous t norm T.

Theorem 7. Consider an ordinal sums of continuous t-norm $T=\left(\left\langle a_{i}, b_{i}, f_{i}\right\rangle \mid i \in I\right)$ written in such a way that $\bigcup_{\lambda \in I}\left[a_{i}, b_{i}\right]=[0,1]$ and a shape ϕ. If $f_{i} \circ \phi^{\left[a_{i}, b_{i}\right]}$ is convex for all $i \in I$, then

$$
\begin{aligned}
\phi^{*}(x) & =\lim _{n \rightarrow \infty} \phi_{n}(x) \\
& =\sup _{i \in I}\left\{\left(\phi^{T_{i},\left[a_{i}, b_{i}\right]}\right)_{\left[a_{i}, b_{i}\right]}(x)\right\},
\end{aligned}
$$

where $\phi^{T_{i},\left[a_{i}, b_{i}\right]}(x)=\lim _{n \rightarrow \infty} \phi_{n}^{T_{i},\left[a_{i}, b_{i}\right]}(x)=f_{i}^{[-1]}\left(x\left(f_{i}\right)_{-}^{\prime}(1)\left(\phi^{\left[a_{i}, b_{i}\right]}\right)_{+}^{\prime}(0)\right)$.

4. EXAMPLES

Example 1. Consider the product t-norm T_{P} with additive generator $f(x)=$ $\log x^{-1}$, and a generator g and a shape function ϕ defined by $\phi(x)=\max \{1-x, 0\}$. Then, by Theorem 5 (or see [5]), $\phi^{*}(x)=e^{-x}$, and hence $E_{g, \phi^{*}}(x, y)=e^{-|g(x)-g(y)|}$ is a T-equivalence on R.

Example 2. Consider the Lukasiewicz t-norm T_{L} with additive generator $f(x)=$ $1-x$, and generator g and a shape function ϕ defined by $\phi(x)=\max \{1-x, 0\}$. Then, by Theorem 5 (or see [5]), $\phi^{*}(x)=\phi(x)$, and hence $E_{g, \phi^{*}}(x, y)=\max \{1-$ $|g(x)-g(y)|, 0\}$ is a T-equivalence on R.

Example 3. Consider the ordinal sums $T=\left(\left\langle 0, \frac{1}{3}, \log x^{-1}\right\rangle,\left\langle\frac{1}{3}, 1,1-x\right\rangle\right)$, a generator g and a shape function ϕ defined by $\phi(x)=\max \{1-x, 0\}$. Then, by Theorem $7, \phi^{*}(x)=\max \left\{1-x, \frac{1}{3}\right\}$, and hence $E_{g, \phi^{*}}(x, y)=\max \left\{1-|g(x)-g(y)|, \frac{1}{3}\right\}$ is a T-equivalence on R.

Example 4. Consider the ordinal sums $T=\left(\left\langle 0, \frac{1}{3}, 1-x\right\rangle,\left\langle\frac{1}{3}, 1, \log x^{-1}\right\rangle\right)$, a generator g and a shape function ϕ defined by $\phi(x)=\max \{1-x, 0\}$. Then, by Theorem $7, \phi^{*}(x)=\frac{1}{3}+\frac{2}{3} e^{-\frac{3}{2} x}$ since $f^{T_{P},\left[\frac{1}{3}, 1\right]}(x)=e^{-\frac{3}{2} x}$ and $f^{T_{L},\left[0, \frac{1}{3}\right]}(x)=1$. Hence $E_{g, \phi^{*}}(x, y)=\frac{1}{3}+\frac{2}{3} e^{-\frac{3}{2}|g(x)-g(y)|}$ is a T-equivalence on R.

Example 5. Consider the ordinal sums $T=\left(\left\langle 0, \frac{1}{3}, \log x^{-1}\right\rangle,\left\langle\frac{1}{3}, 1,1-x\right\rangle\right)$, a generator g and a shape function ϕ defined by

$$
\phi(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{3}(1-x) & \text { if } 0<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Then, by Theorem 7,

$$
\phi^{*}(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{3} e^{-x} & \text { otherwise }\end{cases}
$$

since

$$
f^{T_{L},\left[\frac{1}{3}, 1\right]}(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

and $f^{T_{P},\left[0, \frac{1}{3}\right]}(x)=e^{-x}$. Hence

$$
E_{g, \phi^{*}}(x, y)= \begin{cases}1 & \text { if } x=y \\ \frac{1}{3} e^{-|g(x)-g(y)|} & \text { otherwise }\end{cases}
$$

is a T-equivalence on R.
Example 6. Consider the ordinal sums $T=\left(\left\langle 0, \frac{1}{3}, 1-x\right\rangle,\left\langle\frac{1}{3}, 1, \log x^{-1}\right\rangle\right)$, a generator g and a shape function ϕ defined by

$$
\phi(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{3}(1-x) & \text { if } 0<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Then, by Theorem 7,

$$
\phi^{*}(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{3}(1-x) & \text { if }|x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

since

$$
f^{T_{P},\left[\frac{1}{3}, 1\right]}(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

and $f^{T_{L},\left[0, \frac{1}{3}\right]}(x)=1-x$. Hence

$$
\phi_{g, \phi^{*}}(x, y)= \begin{cases}1 & \text { if } g(x)=g(y) \\ \frac{1}{3}(1-|g(x)-g(y)|) & \text { if }|g(x)-g(y)| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

is a T-equivalence on R.

ACKNOWLEDGEMENTS

This work was supported by grant R01-2000-000-00011-0 from the Korea Science \& Engineering Foundation.
(Received September 3, 2002.)

REFERENCES

[1] B. De Baets and A. Marková: Analytical for the addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203-213.
[2] B. De Baets, M. Mareš, and R. Mesiar: T-partition of the real line generated by impotent shapes. Fuzzy Sets and Systems 91 (1997), 177-184.
[3] B. De Baets and R. Mesiar: Pseudo-metrics and T-equivalence. J. Fuzzy Math. 5 (1997), 471-481.
[4] M. A. Harrison: Introduction to Switching and Automata Theory. McGraw-Hill, New York 1965.
[5] D. H. Hong and S.Y. Hwang: On the convergence of T-sum of L-R. fuzzy numbers. Fuzzy Sets and Systems 63 (1994), 175-180.
[6] D. H. Hong and C. Hwang: A T-sum bound of L-R fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 239-252.
[7] D. H. Hong and P. Ro: The law of large numbers for fuzzy numbers with bounded supports. Fuzzy Sets and Systems 116 (2000), 269-274.
[8] J. Jacas and J. Recasens: Fuzzy numbers and equality relations. In: Proc. 2nd IEEE International Conference on Fuzzy Systems, San Francisco 1993, pp. 1298-1301.
[9] C. Ling: Representation of associative function. Publ. Math. Debrecen 12 (1965), 189-212.
[10] M. Mareš and R. Mesiar: Composition of shape generators. Acta Mathematica et Informatica Universitatis Ostravienses 4 (1996), 37-46.
[11] M. Mareš and R. Mesiar: Fuzzy quantities and their aggregation, in aggregation operations. In: New Trends and Applications. Physica-Verlag, Heidelberg 2002, pp. 291-352.
[12] A. Marková-Stupňanová: Idempotents of T-addition of fuzzy numbers. Tatra Mt. Math. Publ. 12 (1997), 67-72.
[13] R. Mesiar: A note to T-sum of L-R fuzzy numbers. Fuzzy Sets and Systems 87 (1996), 259-261.
[14] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York 1983.

Dr. Dug Hun Hong, School of Mechanical and Automotive Engineering, Catholic University of Daegu, Kyungbuk 712-702. South Korea.
e-mail: dhhong@cuth.cataegu.ac.kr

