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In this article, we compare different types of representations for series with coefficients 
in complete idempotent semirings. Each of these representations was introduced to solve 
a particular problem. We show how they are or are not included one in the other and we 
present a common generalization of them. 
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1. INTRODUCTION 

The aim of this article is to compare different types of representations for series 
on certain idempotent semirings (certain of them are available also without such 
hypotheses, for example, it is possible to define rational series with coefficients in a 
non-complete semiring). 

After recalling the basic definitions in Section 2, we introduce in Section 3 the 
classical notions of recognizable and rational series [2]. In Section 4 we develop the 
notion of pseudo-recognizable series, introduced in [7] to solve certain inequations 
on series. Then we present the non linear representations which appear in a pa
per of J.-E. Pin and J. Sakarovitch [9] to solve the following classical problem of 
formal language theory: let L i , . . . , Ln be n languages recognized by the monoids 
M i , . . . Mn respectively; given an operation <p, how to build a monoid M, function 
of M i , . . . M n , which recognizes the language (L i , . . . ,Ln)(p? Finally, in the last 
section, we build a common generalization of multi-representations and non linear 
representations. 

For each type of representation introduced, we show that, in the particular case 
of a finite semiring of coefficients, the corresponding notion of regularity is in fact 
the simple rationality. 
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2. BASES 

In this section, we explore the basic properties of idempotent semirings and series. 
If X is a set, we denote by V(X) the power set of X and by Vf(X) the set of 

finite subsets of X. The set of rational languages over an alphabet S is denoted by 
Rat(S). 

If w is a word and a a letter, we denote by |KJ| the length of w and by \w\a the 
number of occurrences of letter am w. 

2.1. Idempotent semirings 

2.1.1. Definition and basic properties. 

A semiring is a quintuple (5, +, *, 0,1) with the following properties (see [5]): 

- (<S, +, 0) is a commutative monoid, 

- (5, *, 1) is a monoid; as usual we denote by ab the product a*b for all a, b G 5 , 

- 0 is absorbing: aO = 0a = 0 for all a G 5 , 

- multiplication is distributive with respect to addition, i. e. a(b + c) = ab + ac 
and (b + c)a = ba + ca, for all a,b,c G S. 

A semiring is commutative if multiplication is commutative and is idempotent if 
addition is idempotent. In this paper, we always treat with idempotent semirings. 
We often write (5, +, *) or simply S for the semiring (5, +, *, 0,1). 

Examples 1. 

- The boolean semiring B = {0,1} is a finite commutative idempotent semiring. 

- The tropical semiring Nmm = (N U {+oo},min,+, +oo,0) is an infinite com
mutative idempotent semiring. Several exotic semirings of this type can be 
defined, like Zmin = (Z U {+co}, min, +, +oo, 0). 

- The set of (recognizable) languages over a fixed alphabet, with union for ad
dition and concatenation for multiplication, is an idempotent semiring (with 
identity elements: for addition the empty set and for multiplication the single
ton {1} containing the empty word). It is infinite if the alphabet is non-empty 
and non commutative if the alphabet contains at least two letters. 

- The power set V(M) of a monoid M, provided with union and multiplication, 
is an idempotent semiring. It is commutative if M is commutative. If P and 
Q are subsets of M, their product is the subset PQ = {pq \p G P and q G Q} 
of M. 

Throughout this paper, S denotes an idempotent semiring and S a finite alphabet. 
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We consider the natural order over S given by: a < b if and only if there exists 
c G S such that b = a + c. It is well known and easy to see that a < b if and only if 
b — a + b. It follows in particular that the least element of S is 0. 

Note that for the tropical semiring, the natural order is exactly the inverse of the 
usual order on N; in N: 2 < 3, but in Nmin: 3 < 2. 

Multiplication is compatible with the order. 

2.1.2. Supremum and infimum 

If T C S is non empty, the sum of its elements is its supremum. By analogy, if 
T is any subset of <S, we denote by ^2xerx the supremum of T, if it exists. This 
notation is justified since, in particular, the supremum of T U T is the sum of the 
suprema of T and T . If T C <S is non empty and has an infimum, we denote it by 
f)tert, or afl b if T = {a,b}. 

Examples 2. 

- The infimum of two (rational) languages is their intersection (note that inter
section on languages preserve rationality). 

- If S = N m m , the infimum of two elements is their maximum in the usual order. 

Recall that an ordered set is complete if each of its subsets has a supremum. A 
semiring S is complete if it is complete as an ordered set and satisfies the following 
distributivity conditions: 

for all T C 5, 8 G 5 : ( ] £ * ) s = J^ ( t s ) and s ( ^ * ) = J2^st>>-
\ter J ter \ter / ter 

Examples 3. 

- If H is an alphabet, (P(H*),U, •) is a complete semiring. 

- The tropical semiring is complete. 

If we now assume that S is a complete idempotent semiring, then every T C S 
has an infimum: the sum of all x such that x < t for each t eT. It follows directly 
that the operation of infimum is idempotent and compatible with the order. 

Proposition 1. In a complete idempotent semiring S, the following distributivity 
property holds. Let Y be a subset of S and let x G S. Then: 

x \f]y)<f] (xy) and I f | y \ x < f | (yx). 
\yeY J yeY \yeY J yeY 
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Prom now on, we assume that <S is complete and moreover that the operations 
+ and fl supply <S with a structure of a distributive lattice, i. e. + distributes over 
H and fl over +. This property is used in Section 4 to define pseudo-recognizable 
series. 

Example 4. 

If S is the set of (recognizable) languages on S, union and intersection dis
tribute one with respect to the other. 

If <S = Nmin, minimum and maximum distribute one with respect to the other. 

We define a new operation which is not classical in series theory, but corresponds 
to the notion of residuation [3]. If a and y are elements of a semiring <S, the cut a\y 
of y by a is the element 

a\y = sup{x | ax < y}. 

This element is well-defined since the semiring is idempotent and complete. 
If a, re and y are elements of <S, then ax < y if and only if x < a\y. As a direct 

consequence, for each x E S, l\x = x. 
If the semiring of coefficients is the tropical semiring, the cut is the quasi-

difference [4]: a\x = maxz(0z,# — a) (here the difference is the classical differ
ence on Z). 

Product has precedence with respect to cut, and cut with respect to sum and 
infimum: a\xy = a\(xy), a\x + y = (a\x) + y and a\x C\y = (a\x) fl y. 

2.2. Formal series 

We consider the set <S((£)) of formal series on S, with coefficients in <S. A typical 
element of <S((E)) is written A = ~ZweT,*^w)wy w ^ (^w) € «->• 

The constant coefficient of A is (-4,1); A is proper if its constant coefficient is 
zero. We identify an element a of <S with the constant series, also denoted by a, 
defined by (a, 1) = a and (a,tt») = 0 for every non-empty word w. In the same 
way, we identify a word w G S* with the series also denoted by w and defined by 
(w, u) = 0 if u 7-: w and (w,w) = 1. Our notation is taken from [2]. 

The support of a series A is the language supp_4 = {w G S* | (A,w) / 0}. If 
5 G <S, the s-support of a series A is the language A~1s = {w \ (A, w) = s}. 

A series is said to be a language if its coefficients belong to {0,1}, a polynomial 
if its support is finite. The set of polynomials is denoted by <S(£). 

Operations on <S are extended to the set of formal series by letting 

(S + T,w) = (S,w) + (T,w) and (ST,w) = ^ (S,u)(T,v). 
uv=w 

These operations provide <S((E)) with a semiring structure. The natural order over 
<S((S)) is then exactly the extension of the order of <S: X < Y if and only if for all 
w G S*, (X,w) < (Y,w). Since <S is idempotent and complete, <S((S)) is a complete 
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idempotent semiring. In particular, the infimum AnB of two elements A,B e <S((S)) 
is given by (A C\B,w) = (A,w) n (B,w) for each w G S*. The distributivity of the 
lattice (<S((S)),+,n) is inherited from the distributivity of (<S,+,n). 

If S is a series and u a word, we denote by u~*S the series whose coefficient on 
a word v is equal to (S,uv). 

Remark 2. B((S)) can be identified with V(L*): (A,w) = 1 if and only if w G A. 
The order previously introduced corresponds to inclusion, the infimum on elements 
of S to conjunction and the infimum on series to intersection of languages. 

If a series S is proper, the family (*Sn)n>o is locally finite and hence summable. 
The star of S is the sum of this family: S* = ^ n > 0 Sn. 

A series S of V(E*)((E)), where S and E are alphabets, is called a transduction. 

Remark 3. If S belongs to Rat(S)((S)), S is a rational series if and only if it is 
a rational transduction in the classical sense of the term (i. e. its graph is a rational 
relation over S and E) [1, Proposition III.7.3]. 

3. SOME CLASSICAL REPRESENTATIONS 

3.1. Rational series 

Like for languages, rational operations (sum, product and star of proper series) allow 
to define a particular subset of <S((S)); the set of rational series on S with coefficients 
in <S is the rational closure of <S(S) in <S((S)). 

Examples 5. 

- If <S = B, a series is rational if and only if its support is a rational language. 

- Let S be the two-letter-alphabet {a,b}. 

- Let <S = Nmin. Define the series JR by l^a + lNmin& and the series Qa by 
R*. The series Qa is rational, its coefficient on a word w is the number 
of occurrences of a in w. 

- Let E be the one-letter-alphabet {c} and <S = V(E*) be the set of words 
on E. Define the series T by {c}a + {l}b and the series Sa by T*. The 
series Sa is rational, its coefficient on a word w is {cl™la}. 

3.2. Recognizable series 

Let Snxm denote the set of (n,m)-matrices with entries in <S. 
A series <S((S)) is recognizable [2, Chapter 1] if and only if there exist an integer 

n > 1, a morphism of monoids \i : S* -> Snxn and two vectors A G <S lxn and 
7 G <Snxl such that, for all words w, (S,w) = XII(W)J. The triple (A,/x,7) is called 
a linear representation of S and n is its dimension. 
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Examples 6. Let S be the two-letter-alphabet {a, b}. 

- Let S — Nmin. Define the morphism /i : S* -» N ^ : a i-> 1^, b i-> lNmin
 a1id 

the vectors A = 7 = lNmin- This linear representation recognizes the series Qa 

introduced in Example 5, which is then also recognizable. 

- Let E be the one-letter-alphabet {c} and S = V(E*) be the set of words on E. 
Define the morphism JJL : S* —> V(E*)lxl : a i-» {c}, b i-» {1} and the vectors 
A = 7 = {1}. This linear representation recognizes the series Ra introduced in 
Example 5, which is then also recognizable. 

A morphism fi : S* —•> Snxn being fixed, we denote by 5(A,7) the series S 
recognized by (A,/x,7). 

The Kleene-Schutzenberger theorem is the cornerstone of the theory of formal 
series: 

Theorem 4. (Kleene-Schiitzenberger, [2]) A formal series is rational if and only 
if it is recognizable. 

Here is an algebraic characterization of recognizability, A submodule of <S((S)) 
is stable if for each element T of this submodule and each word u, the series u~1T 
still belongs to the submodule. 

Proposition 5. [2] A series S G <S((E)) is recognizable iff there exists a stable, 
finite generated left submodule of <S((E)) containing S. 

3.3. Hadamard product of recognizable series 

In this subsection, we prove that the Hadamard product of two recognizable se
ries with coefficients in a finite semiring S is recognizable, whether the semiring is 
commutative or not. 

The Hadamard product of two series S and T is the series S 0 T such that for 
all words w, (S 0 T, w) = (5, w)(T, w). 

Lemma 6. If S is finite, S G <S((E)) is rational if and only if all its s-supports are 
rational (s G S). 

P r o o f . Let 5 be a rational series. According to J. Berstel and C. Reutenauer [2, 
Proposition III.2.2], the s-supports of S are rational. Conversely, if the s-supports 
of S are rational, according to [2, Proposition III.2.1], for each s G <S, the series 
^L,wes-1sw 1S r a t - o n a - - The result follows straightforwardly since 
s = Esess&wes-isw)- D 
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Proposition 7. If S is finite, the Hadamard product of two recognizable series is 
recognizable. 

P r o o f . Let S and T be two recognizable series and r in S. The r-support of 
S 0 T is rational. Indeed, the set 0 = {(s, t) G S x S \ st = r} is finite because S is 
finite. Furthermore, for each word w, w belongs to (S QT)~lr if and only if there 
exist (s, t) in 0 such that w belongs to S~1s D T~1t. 

And so 
(s®T)-1r= (J (s-^nr-1*). 

(s,t)ee 

Now, the languages S~1s and T _ 1 t are recognizable by Lemma 6. Since the set 0 
is finite, the r-supports of 5 0 T are recognizable. It follows by Lemma 6 that the 
series S 0 T is recognizable. • 

4. MULTI-REPRESENTATIONS AND PSEUDO-RECOGNIZABILITY 

4.1. Definitions 

In this section, we extend the notion of linear representation introduced in Section 3.2 
to that of multi-representation. We defined this new notion in [7], in analogy with 
multi-automata [6], 

If c is an element of <S, we define the series c\S by (c\S,w) = c\(5, iu), for each 
word w. A morphism /i being fixed, for each triple (c, A,7) G S x Slxn x Snxl, we 
denote by 5(c, A,7) the series c\/5(A,/i). Note that 5(1, A,7) = S(X,j). 

In some cases, such a series is recognizable. We fix \i. Let S = 5(c, A, 7) and 
T = S(A,7): c\T = S. 

Proposition 8. If S is finite, S(c, A, 7) is rational. 

P r o o f . We claim that c\T = ^28E^(c\s)T~1s. Indeed, for each word w G S* 
and every 5 G <S, we have 

'(T-1s,w) = l if (T,W) = S 

(T~1s,w) = 0 if (T,w)^s. 

So 

^(cVOCT-Vti;) = J2 £ c\s 
ses sesweT-1s 

= £ c \(r,w) = X;(cV->). 
ses ses 

Hence 5 is a finite sum of recognizable series, since, by Lemma 6, the s-supports of 
T are rational languages. Thus, S is recognizable. • 
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In the commutative case, the Hankel matrix of a series can be used. The Hankel 
matrix of a series S on a commutative semiring is the infinite (£* x S*)-matrix H(S) 
defined by H(S)UyV = (S,uv). 

Let us recall the key result about Hankel matrices. 

Theorem 9. [10, Corollary II.3.2], [2, Thm. II. 1.2] Let S be a commutative semir
ing. A series with coefficients in S is recognizable if and only if its Hankel matrix 
has only a finite number of independent columns. 

Corollary 10. If the semiring of coefficients S is commutative, the series S(c, A, 7) 
is rational. 

P r o o f . The following relation holds, for any words u, v: 

H(S)UiV = S(uv) = c\T(uv) = c\H(T)UiV. 

If H(T) has a finite number of independent columns, so has H(S). • 

Let us define multi-representations and pseudo-recognizability. 
Let n > 1 be an integer, /x be a morphism of monoids S* -> Snxn and $ be 

a positive boolean formula o n < S x 5 l x n x 5 n x l . It is convenient to call atom an 
element of S x Slxn xSnxl. 

The series S($) is the image of $ by the morphism from the free distributive 
lattice over S xSlxnx Snxl into the distributive lattice (<S((£)), +, fl) obtained by 
mapping the atom (c, A,7) to S(c, A,7). 

The pair (/x, $) is by definition a multi-representation of S. We call /x the base 
and $ the acceptance formula of the multi-representation (/x, $) . The series 5 is 
said to be recognized by (/x, $) . 

A series is pseudo-recognizable if it has a multi-representation. As it is shown in 
the next examples, pseudo-recognizable series are not necessarily recognizable. 

Examples 7. 

- Let £ = {a, b} and H = {c}. Consider series with coefficients in the commuta
tive semiring V(E*). 

Let S and T be the series defined as follows: (S,w) = {c^a} and (T,w) = 
{c^l b}, for a l l i e s * . 

Both series are recognizable (see Example 5 and Theorem 4) and admit a 
linear representation with the same base. Indeed, let /x : E* -> ^(.B*)2^*2 be 
the morphism defined by 

„«.)=(<<> {;,)-rt»)=(<j> {!>)• 

and let Xs = ({1} 0), 75 = ({0}), AT = (0 {1}) and 7 r = ({?}). Then 
(S,w) = \sfJ,(w)ys and (T,w) = Ar/.(to)7T-
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Now, the infimum of these series is pseudo-recognizable, recognized by (/i, $) , 
where <£ = (1, As, 75) A (1, AT, 7T). The coefficient of a word w in S H T is the 
intersection of (S,w) and (T,w) (see Example 2). So we have: 

(0 if \w\a ^ \w\b, 
(SnT,w) = { / , ,N 

[clH/2 if Ha = H 6 ( = ¥ ) -

Note that S C\ T has rational coefficients since they are singletons. Hence, by 
Remark 3, S D T is rational if and only if it is a rational transduction. 

But the inverse of a rational transduction is a rational transduction (it is 
easy to see using transducers) and a rational transduction preserves rational 
languages [1, Corollary III.4.2]. Since the support of a transduction E* —> 
H* is the inverse image1 of E*, the series S VI T is pseudo-recognizable and 
not recognizable (here supp(5 fl T)={w G E* | |u>|a = \w\b}, which is not 
recognizable [2, Example III.3.1]). 

- Consider series on E = {a, b} with coefficients in Nmin. We take series S and 
T as follows: (S,w) = \w\a and (T, w) = \w\b, for all w G S*. Both series 
are recognizable. We can obtain some multi-representations for them from the 
previous example. The infimum of these series is pseudo-recognizable. Now, 
we saw in Example 2 that the infimurri on Nmin is the maximum on N, so 
(S fl T, w) = \w\a fl \w\b = max(\w\a, \w\b)> But this series is not recognizable 
on Z.min [8], and hence cannot be recognizable on Nmin-

Remark 11 . As shown in [7], if the semiring of coefficients is finite, then a formal 
series is pseudo-recognizable if and only if it is recognizable. 

Note that, in general, there exist series which are not pseudo-recognizable. For 
example, if the semiring of coefficients is countable, there is a countable number of 
pseudo-recognizable series, but the set of series is not countable. 

Example 8. It is easy to see, as a special case of Remark 11, that the pseudo-
recognizable series with coefficients in B are recognizable. Indeed, these series can 
be identified with their supports and the infimum of two languages is their intersec
tion. In particular, the series ^i t | I |a= | t l,L w is not pseudo-recognizable in B((E)) [2, 
Example III.3.1]. 

Proposition 12. The set of pseudo-recognizable series is closed under (finite) 
addition and (finite) infimum. 

We denote by <SpSRec ((£)) the set of pseudo-recognizable series on E, with coef
ficients in S. 

1 The inverse image of a language L by a transduction S : S* —y H* is the set S X(L) = {w G 
£* I (S,w) H L Ï 0}, so S~l(E*) = {we^*\ (S,w) D S* # 0} = {w E E* | (S,w) 7- 0} = suppS . 
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4.2. Why using multi-representations? 

Multi-representations can be used to solve certain equations on formal series. Con
sider the following problem: let A, B and K be recognizable series on an idem-
potent semiring 5, what can be said about the supremal series X < K such that 
AX < X + B? It is shown in [7] that this series exists, is recognizable if S is finite 
(with a constructive proof), and is pseudo-recognizable if S = Nm i n and A is a 
language. 

5. REPRESENTATION IN THE PIN-SAKAROVITCH WAY 

5-1. Non linear representations . 

This subsection is tightly inspired by a paper of J.-E. Pin and J. Sakarovitch [9]. 
Let (M, 1M) and (1V, ljv) be monoids. The free product (or coproduct) M*IV of 

monoids M and IV is the quotient (M U IV)*/7£, where TZ is the set of relations: 

TZ = {m- m! = mm!, n- n' = nn', m- lyv = m, lIy • m = m, 

n- 1M = n, lMmn = n | m, m' G M, n, n! G IV}. 

We can identify M * IV to the elements of the form mnnimi ---nrmr with 
m o , . . . , mr G M and n i , . . . , nr G IV with the product 

(mnnimi • • • nrmr)(m'0n'1m'1 • • -n!r,m'r,) 

= mnnimi • • • nr(mrm'0)n[m'1 - • -n'r,m'r,. 

This operation provides M * IV with a monoid structure. The set V(M * IV) has 
a semiring structure inherited from the monoid structure of M * IV (see Example 1). 

Let S be a complete idempotent semiring and fi = {cOr,... ,u;r} be an alphabet. 
We denote by <S *fi* the free product of S and fi* provided with their multiplicative 
structure. If r G S * fi*, we call specialization of r in the r-tuple ( s i , . . . , sr) G Sr 

the image of r by the morphism from S * fi* into (5, •) which associates s; to a;*, 
1 < i < r. This element is denoted by T(SI , . . . , sr). 

If a belongs to V(S*tt*), we call specialization of a in the r-tuple ( s i , . . . , sr) G 5 r 

the image of a by the morphism of complete idempotent semirings, from V(S *fl*) 
into 5, which associates s; to u^ 1 < i < r. More concretely, it is the element 

a(su... ,5 r) = Ş~V(si,... , s r ) . 
rЄcг 

A formal series S is representable if and only if there exist an integer n > 1, a 
morphism /i : S* -> 5 n X n and an element a G 7^(5 * fT), where ft is a nMetters 
alphabet, Q = {en, . . . , £ i j , . . . , e n n}, such that for all words w 

(S,w) = o - ( ( / i H ) n , . . . , ( / i H ) . , . . . , ( / i M ) n n ) . 

The couple (/i, cr) is a non linear representation of the series 5. 
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A series is representable by a singleton if it has a non linear representation (/i, a) 
where a is a singleton of V(S * fT). 

We denote by <SRep((£)) the set of all representable series on S, with coefficients 
in S. 

Example 9. A recognizable series is representable. 

Example 10. Consider the following transduction from S = {a} into E = {b}: 

(S,an) = ^2 kmn> where M is any set of integers. 
meM 

This transduction is representable in V(E*)((E)). Indeed, let us consider the 
one-letter-alphabet f) = {a;}, the element a = Y^meM00™ oiV(V(E*) * $!*) and the 
morphism [i : S* —> V(E*) : a i-> {b}. We have (5, w) = a(/j,(w)). 

Proposition 13. The series 

(S,an) = Y^ bmn, where M is any infinite set of integers, 
meM 

is not recognizable. 

P r o o f . By contradiction: assume that S is recognizable and M is infinite. 
We denote by uq the word aq (for q in N) and by Bq the coefficient of uq in 5, 

i.e. 
Bq = {bmq\meM}. 

Note that words in Bq have as a length a multiple of q. 
Since the series S is recognizable, according to Proposition 5, it belongs to a 

stable, finite generated left submodule of <S((E)), say M. We denote by (Si)iei a 
finite generating family of M. 

The submodule M is stable and so for each positive integer r/, the series u~1S 
belongs to M. Hence, there exist families (aqji)iei of elements of V(E*) such that 

VqeN, u-1S = J2^)iSi. 
iei 

That is, for the coefficient of an: 

Vq G N, Vn G N, J > g , , ( S ; , a " ) = (u~lS,an) = (S,an+q) = Bn+q. (1) 
iei 

Let us have a look to the set I. 
For i e I, we set 

Qi = {q\ <*q,i 7̂  0} and Ni = {n\ ( # , an) ? 0}. 
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If Qi is finite, we denote by qi its maximal element and in the same way, if Ni is 
finite, we denote by fii its maximal element. We set 

q = max{gi,i £ I\Qi finite} and n = max{nj,i £ I\Ni finite}, 

with the convention max(0) = 0. 
Note that if an element i of I is such that Qi is finite and q > q, then aq^ = 0. 

In the same way, if Ni is finite and n > n, then (Si, an) = 0. 

We denote by J the following subset of I: 

J = {i £ I\ Qi and Ni are infinite}. 

According to the above remark, we have for q > q and n > n: 

^2aq,i{Si,an) = J2^i(Si,an). 
iei ieJ 

Equation (1) now becomes: 

Vq>q, Vn>n, ^2aqti(Sua
n) = Bn+q. (2) 

ieJ 

Let us fix some i in J: Qi is infinite by definition of J . 
For all q in Qi, let vq be a word of aq^. 
From Equation (2), 

vq(Si,an) C Bn+q. 

In particular, the length of any word of vq(Si, an) is a multiple of n + q. If (Si, an) 
is not the empty language, let x and y be two of its words. 

For each element q of Qi, n + q divides \vqx\ and \vqy\, hence n + q divides 
\\x\ — \y\\. Since the set Qi is infinite, ||x| — \y\\ can be divided by an infinity of 
integers, and so it is 0. Hence x and y have the same length. As we are dealing with 
a one-letter-alphabet, x and y are the same word. 

We conclude that the set (Si,an) is either empty or a singleton for i £ J . Using 
similar arguments, we can prove that the set aQti is either empty or a singleton for 
i £ J . The left term of Equation (2) is a finite sum of empty sets and singleton sets 
and the right one is infinite for n + q > 0, hence we have a contradiction. • 

We saw in Example 7 that rational transduction preserve rational languages [1, 
Corollary III.4.2]. Here is a generalization to representable transductions. 

Theorem 14. [9, Corollary 5.3] Let E be an alphabet. The inverse image of a 
recognizable language on E by a representable transduction (from S* into E*) is a 
recognizable language of £*, and hence a rational language of E*. 
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5.2. Representable vs. pseudo-recognizable 

5.2.1. General case 

Theorem 14 says, in particular, that the inverse image of S* by a representable 
transduction, is a rational set of S*. But the support of the transduction proposed 
in Example 7 is the language {w G S*||uv|a = \w\b} which is not rational (see 
Example 8). So 

^ * ) p S R e c « £ » % V(Z*)Rep((X)). 

Proposition 15. The series 

(5, an) = 2_2 bmn, where M is any infinite set of integers, 
m£M 

is not pseudo-recognizable. 

P r o o f . The proof of this proposition is quite similar to the proof of Proposi
tion 13. 

We denote by S the semiring of coefficients, that is V({b}*) and, as in the proof 
of Proposition 13, by uq the word aq and by Bq its coefficient in S: Bq = {bmq | m G 
M } . 

Assume S is pseudo-recognizable. Let (/i, $) be a multi-representation of S. We 
can put $ in normal form. In other words, we write $ as 

* = v ( A (c>A>7)), 
EeV \(c,A,7)GE / 

where V is a finite subset ofVf(SxSlxnxSnxl). 
By Corollary 10, we know that left-cut has no influence on rationality, because 

the semiring S is commutative (see Example 1). So we can write: 

$= V f A (M.7)], 
E€V \(A,7)6£ / 

where V is a finite subset of Vf(S
lxn x snxl). 

Hence the series S can be written as: 

s=n f n S(M,7)\, (3) 
EeV \(A,7)GE / 

where the sum is done over a finite set. 
Let us consider a particular E in V. From Equation (3), we obtain: 

f | S(l,X,l)<S. (4) 
(A,7)e£ 
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To simplify notation, we assume that E has two elements. Equation (4) becomes 
T nU < 5, where T and U are rational series. 

By the algebraic characterization of Proposition 5, we know that T (resp. U) 
belongs to a stable, finite generated left submodule of £((£)) , say M (resp. JV). We 
denote by (Ti)iei (resp. (Uj)jej) a finite generating family of M (resp. J\f). 

The submodules M (resp. J\f) is stable, and so for all positive integer g, the series 
u~lT (resp. u~xU) belongs to M (resp. J\f). Hence, there exist families (ctq,i)iei 
(resp. (Pq,j)jej)) of elements of S such that 

VrI G N, u~lT = Y,aq,iTi and u~lU = Y,P«JUJ' 
iei jeJ 

That is, for the coefficient of an: 

Vo € N, Vn G N, \T^ATi,an)\ = ( V T a n ) = (T,an+"), 

and (~l0«AUj,an) J - ( u ^ a " ) = (U,an+*). 

And so for all integers q and n, we have: 

f J > , , . ( T . , a " ) J n | £ /? g , J (C/ i , a
n ) J = (T,o"+«) n (jJ,a"+<) C B n + , . (5) 

For i G / , we set 

Q/V, = {(g, n) | {aq,i(Tu an)) n (t/, an+^) = 0, t G 7} 

If QNi is finite, we denote by qi the maximal q that belongs to it and by n; the 
maximal n. We set: 

<7 = max{(/;, i G /1 Q/V; finite} and n = max{n;, i G 71 QNi finite}. 

With a similar argument as in the proof of Proposition 13, we can prove that for 
q > q and n > n, the pieces of the sets aq^ and (Ti, an) that enter into Equation (5) 
are either empty sets or singleton ones. So the left member of Equation (5) is a 
finite set. 

The same conclusion can be drawn for all sets E which appear in Equation (4). 
Since the sum in Equation (3) is finite and the set Bn+q is infinite for q and n large 
enough, we have a contradiction. • 

Corollary 16. 
P ( ? ) R e p ( ( E ) ) ^ ( S * ) M e c ( ( E ) ) . 

Hence there is no inclusion relation between the set /P(!B*)Rep((E)) and the set 

^(5*)p S Rec((S)) . 
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5.2.2. A particular case: the coefficients belong to a finite semiring 

In this section, we show that a series on a finite semiring S is represent able if and only 
if it is rational, so if and only if it is pseudo-recognizable, according to Remark 11. 

Let n G N and ft = {cOn,... ,cOnn} be an alphabet. For all a G V(S * ft*), we 
call specialization of a the subset of all specializations of a in all the n2-tuple of S. 
We denote it by Spec a: Speccr = {a f sn , . . . , s n n ) | ( s n , . . . , s n n ) G Sn2}. 

Proposition 17. If S is finite, the set of specializations of all the elements of <S*fT 
is finite. 

Corollary 18. A represent able series (on a finite semiring) is necessarily represen-
table by an element of Vf(S * ft*). 

Now, it is sufficient to prove that a series represent able by a singleton is recogni
zable. Since the set of representable series is stable under addition, we will be able 
to conclude. 

Lemma 19. A series representable by a singleton is recognizable. 

P r o o f . Such a series is the Hadamard product of series recognized by singletons 
of the form {siUijS2}, Si,S2 ^ ^ uij ^ ^> which represent clearly recognizable 
series. Since S is finite, such a series is recognizable by Proposition 7. • 

As a result, we obtain the following theorem: 

Theorem 20. On a finite semiring, a series is representable if and only if it is 
recognizable. 

6. A MORE GENERAL REPRESENTATION 

In this section, we suggest a common generalization of both notions of pseudo-
recognizability and represent ability. We work with series on S, with coefficients in 
a complete idempotent semiring S. 

We consider such a representation: let n > 1 be an integer, /i : S* -r Snxn 

be a morphism and $ be a positive boolean formula on S x V(S * ft*), where 
ft = {cOn,... ,unn} is an alphabet. We call atoms the elements (c,a) G S x 7^(5 * 
$1*). The series recognized by such a representation, which we will call pseudo-
representable, is the image of $ by the morphism from the free distributive lattice 
on 5 x V(S * ft*) in the distributive lattice *S((£)) which associates to the atom 
(c,a) the series whose value on a word w is c\o-((/i(uv))n,... , (n(w))nn). 

To obtain a representable series, it is sufficient to reduce $ to an atom (1, a). To 
obtain a pseudo-recognizable series, it is sufficient for each a which appears in the 
acceptance formula to be of the form {siCJi^}, s\,S2 ^ <̂> uij ^ ^* Thus this is 
really a generalization of both notions. Furthermore, we have the following theorem. 
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T h e o r e m 2 1 . If S is finite, the pseudo-representable series are recognizable. 

7. CONCLUSION 

These representations allow us to go beyond representability. It could be interesting 
to see if, for recognizable series, they provide smaller representations than linear 
ones. 

(Received December 9, 2002.) 
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