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SOME IDEAS FOR COMPARISON 
OF BELLMAN CHAINS 

LAURENT TRUFFET 

In this paper we are exploiting some similarities between Markov and Bellman processes 
and we introduce the main concepts of the paper: comparison of performance measures, 
and monotonicity of Bellman chains. These concepts are used to establish the main result 
of this paper dealing with comparison of Bellman chains. 
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1. INTRODUCTION 

The main motivation of this work is that it has recently emerged the fact that the 
Maslov's idempotent measure theory allows an optimization theory to be derived at 
the same level of generality as probability and stochastic process theory. Applying 
Bellman optimality principle to optimization process leads to the idempotent version 
of the classical Markov causality principle (see e.g. [3] and references therein). 

This paper is a first attempt to compare Bellman chains using some well-known 
arguments and results on stochastic comparisons of Markov chains (see [5] and ref
erences therein). We present basic results in very simple case where state space 
5 = { l , . . . , s } , s > l , is discrete and finite. The starting point of the paper is that 
the dynamics of Markov and Bellman chains are linear in some specific sense. This 
fact was already noticed in e.g. [1] (see also [6] and references therein). 

Here we only develop the algebraical approach of the comparison result. Measure 
interpretation is a further work. The aim of this paper is only to show similarities 
between Markov and Bellman chains comparisons. 

More formally, let us consider the semiring: 

M = ( i R + , + , . , 0 , l ; < ) 

where < is the classical order on M, set of real numbers. And the idempotent 
semiring 

JD = (JR_ U {-oo}, max, +, -oo , 0; -<) 
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which will be denoted: 

Ю d= {Ш- U {-oo}, , , e, e; -<) 

where -< is defined by: 

Va, b ((a 0 b = b) <==> (a -« b)). 

Note that in this case < and -< are equivalent. 
We denote yVfnp(JD) (resp. Mnj)(M)) the semimodule of n x p matrices with 

entries in ID (resp. M). When n = p we write Mn(E>) (resp. Mn(M)). 
A probability density measure on S is a row vector x = (x\,... ,a;s) such that 

VI < i < 5, 0 < Xi and x iT = 1 where 1 is the row vector which all components are 
1 and (-)T denotes transpose operator. 

A cost density measure on 5 is a row vector x = (x\,..., xs) such that VI < i < 5, 

e <Xi and x 0 e T = e where e is the row vector which all components are e and (if 

V = (Vii-•-,!/*)) 

x 0 y T = ef= 1 ( ^ ® yi) = max (x{ + yi). 
1=1, ...,s 

Evolution of state probabilities of an S-valued Markov chain (-X"n)n>0 = (x°,A) 
can be represented by the classical (+, -)-linear system 

[ x n + 1 = xn A, Mn G W, 

or equivalently: 
xn = xo An^ V n e N ^ 

Where N denotes set of integers, An = _4 • • A. The product of two matrices 

n times 

C e MntP(M) and D G MPti(M) which is an element of MUii(M) denoted by 
C - D (or simply C D) and defined by: 

CD = ^2C(i,k)-D(k,j) 
k=l -I i=l , . . .n ;j=l,...,i 

and A = [A(i, j)]ij£S is a Markov matrix, i.e. a non-negative matrix (Vi,j, 0 < 
A(i, j)) such that 

Alr = Tr. 

Evolution of state cost measures of an 5-valued Bellman chain (Xn)n>n = (x°, A) 
can be represented by a (ffi,®)-linear system: 

xn+i _ xn 0 д^ V n є җ 
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or equivalently: 

Where A®n = A « 

xn=x°®A®n,\/neN. (2) 

• .4, with the <g>-product of two matrices C G Mn,p(E>) and 

n times 
D G JV(P)/(iD) which is an element of Mn,i(E>) denoted by C ® D and defined by: 

c ® D = [ejUiCfc *) ® D(fc, j)\i=ln d=1J 

and the matrix A = [A(i, j)]ijes is a Bellman matrix, i.e. a non-negative matrix 
(Vz, j , e -< A(i, j)) such that 

A®F = &: 

Noticing similarities between evolution equations of Markov chains (1) and Bell
man chains (2) we develop results on comparison of Bellman chains based on Keilson 
and Kester's work on Markov chains comparison [4] where the matrix 

K 

( 1 0 0 • 
1 1 0 
1 1 1 0 

Ví i i 

0 
0 

1 / 

(3) 

plays a fundamental role for comparing Markov chains. Our work and results are 
based on the fundamental matrix 

ж = 

( e e 
e e 
e e 

\ e e 

e\ 
e 

e 

e ì 

(4) 

The paper is organized as follows. Section 2 presents key-ideas to compare Markov 
chains. Section 3 contains all new results to compare Bellman chains. In Section 4 
we present a numerical example to illustrate main concepts of the paper. Section 5 
offers a conclusion. 

2. STOCHASTIC COMPARISON OF MARKOV CHAINS 

We recall main concepts and results of Keilson and Kester [4] which provide our 
main results, Section 3. 

Let X (resp. Y) be an .S-valued random variable with probability distribution 
x = ( x i , . . . , x 5 ) (resp. » = (y i , . . . , » , ) ) . 
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Definition 1. (K-comparison) We say that X is K-smaller to Y iff 

x K <y K (component-wise), (5) 

recalling that K is an s x s matrix defined by 

/ 1 0 0 ••• 0 \ 
1 1 0 ••• 0 

K = 1 1 1 0 ••• 0 

\ 1 1 1 1 1 1 

If the previous condition (5) is fulfilled then we write X <K Y or also x <K y-

Let us consider A a stochastic matrix. 

Definition 2. (i\T-monotonicity) Let A be an s x 5 stochastic matrix. A is K-
monotone iff 

Vx,y, (Or <K y) => (x A <K y A)). 

From this definition it is interesting to mention the necessary and sufficient con
dition (NSC) for iif-monotonicity in the following result. 

Result 1. A is an 5 x s if-monotone matrix iff 

Vi = l , . . . , 5 - 1 , A{ir)<KA(i + lr). (6) 

Where A(i, •) denotes the zth row of matrix A. 

Let us now recall the main result on stochastic majorization. 

Result 2. (if-comparison of Markov chains) Let (Xn)n>o = (x°,A) (resp. (Yn)n>0 

(y°,B)) be an 5-valued Markov chain. 

If 

(i) x°<Ky°, 

(ii) A K < B K (coefficient-wise), 

(iii) A or B is ^-monotone. 

Then Vn > 0, Xn <K Yn, which is equivalent to: 

Vn > 0, x°An <K y°Bn. 
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3. COMPARISON OF BELLMAN CHAINS 

This is the main part of this paper. We aim to present the main results dealing with 
comparison of Bellman chains. 

Let X (resp. Y) be an S-valued decision variable with cost density x = (x\,..., xs) 
(resp. y = (j / i , . . . ,y s)). We propose to define Jff-comparison of decision variables 
based on the if-comparison of random variables, Definition 1. 

Definition 3. (ifC-comparison) We say that X is IK-smaller to Y iff 

x <g> IK -<y ® IK (component-wise), (7) 

recalling that IK is an s x s matrix defined by 

J = 

/ e 6 e • • • e \ 
e e e • • • e 
e e e e • • • e 

\ e e e e e ) 

If the previous condition (7) is fulfilled then we write X -<JK Y or also x -<JK y. 

Let us give some basic properties of the relation -<JK which proofs are obvious. 

P r o p e r t y 1. The relation -<JK is 

(i) reflexive, 

(ii) and transitive. 

Monotonicity can be defined in the same way as for matrices with entries in M , 
Definition 2. 

Definition 4. (iff-monotone Bellman matrix) Let A be an s x s Bellman matrix. 
A is said to be K-monotone iff 

Vx,y, ((x -<jKy) => (x®A^Ky®A)). 

The next theorem is a logically equivalent characterization for iFf-monotonicity. 
It is inspired by the NSC for if-monotonicity, Result 1. 

T h e o r e m 1. (NSC for iff-monotonicity) Let A be an s x s Bellman matrix. A is 
iff-monotone iff 

Vi = l , . . . , s - 1 , A ( V H J C - 4 ( t + l,-)> (8) 

where -A(i, •) denotes the zth row of matrix A. 
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P r o o f . The (Only if) part of the proof is due to a remark of S. Gaubert during 
a discussion. 

(Only if). Let us note that e* -<K ei+\, i = 1 , . . . s — 1, where ê  denotes vector 
where the ith component is e and the others are e. Thus, because A is iff-monotone, 
e{ ® A = _4(i, •) <JK ei+1 ® A = A(i + 1, •). 

(If). Let us consider x, y such that x -<^ y. We write: 

y ® A ® K = ®s
i=1yi ® A(i, •) ® K. (9) 

Because of (8) and by transitivity of -< we have: 

,4(1, -)®K < ,4(2, •) ® K < . . . ^ A(s, •) ® K. 

This could be rewritten using idempotency of ©: 

,4(2, •) ® K = ,4(1, •) ® K © ,4(2, •) ® K, 

,4(3, •) ® K = ,4(1, •) ® iff 0 ,4(2, •) ® K © ,4(3, •) ® K, (10) 

A(s, •) ® K = A(l, •) ® JK" © . . . © A(s, •) ® -KT. 

Where the ©-sum of two matrices C £ MnyP(E>) and F) £ -A/fnjP(JD) which is an 
element of Mn,p(E)) denoted by C © D and defined by: 

C®D = [C(iJ) © 2?(t,i)]i=l>...n;j=ll...fp. 

Now using the fact y is a cost density vector (i.e., ffif=12/i = e), result (10) and 
associativity of © and distributivity of © over ®, we have: 

y®A®K = ,4(1, •) ® K © (©?=2y*) ® .4(2, •) ® iff © . . . 

. . . © . . . © ys ® -4(5, •) ® K. 

Because x -<JK y, that is Vj, (®*=jXi) © (ffif=Jyi) = ffif=Jyi, we obtain: 

y®,4®irY = x®A®i?fff iy®A®iF .r (component-wise), 

which is equivalent tox®_4-<jff<'y®,4 and ends the proof. • 

The next theorem is the main result of this paper. Once again let us note that it 
is inspired by If-comparison of Markov chains, Result 2. 

Theorem 2. (iPf-comparison of Bellman chains) Let (Xn)n>o = (x°,A) (resp. 

(*n)n>o = (y°>B)) be an 5-valued Bellman chain. 

If 

(i) *° <JK y°, 

(ii) A ® K -< B ® K (coefficient-wise), 



Some Ideas for Comparison of Bellman Chains 161 

(iii) A or B is K-monotone. 

Then Vn > 0, Xn -<JK Yn, which is equivalent to: 

Vn > 0, x° ® A®n
 ^JK y° ® B®n. 

P r o o f . Assume that A is iff-monotone. Because of (ii), we have 

y°®A®K-<y0®B®K (component-wise). 

Because of (i) and Definition 3 (apply to x = x°, y = y° and matrix A), we thus 
have 

x° ® A ® K -< y° ® A ® K. 

By transitivity of -< we obtain: 

x° ® A ® iff -<< y° ® .0 ® K. 

Thus we proved that x° -<JK y° ==> -c1 = x° ® .4 -<(JK y° ® B = yl. Now, the proof 
is easily achieved by induction on n. • 

4. ILLUSTRATIVE EXAMPLE 

Let us recall that the main motivation to study Bellman chains is its link with 
dynamic programming (see e.g. [2]). However, in this section we only develop a 
small example to illustrate the main concepts of the paper. 

We consider the state space S = {1,2,3}. Then the matrix K defined by (4) is 

ж = 

First we present iff-comparison of performance measure. Then we illustrate nec
essary and sufficient condition for iRT-monotonicity of a Bellman matrix (see Theo
rem 1). Finally, we illustrate the main result of the paper dealing with comparison 
of Bellman chains (see Theorem 2). 

4.1. iFf-comparison of cost functions 

Let x° = (0, - 2 , -3) and y° = (-20,0, -1) be two cost density measures. 

By computing x° ® K = (0, - 2 , -3) and y° ® K = (0,0, -1) we conclude that: 

x° ® K -< y° ® K (component-wise). 

Thus x° is iRT-smaller than y°. 
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4.2. jK'-monotone matrix 

Let us consider the following 3 x 3 Bellman matrix 

в = 

The aim is to show that B is irY-monotone because it satisfies (8), Theorem 1. 
Let us compute B eg) IK: 

0 - 4 - 7 
B®K = | 0 - 3 - 6 

0 0 - 2 

We check that: (0 ,-4 ,-7) -< (0 ,-3 ,-6) -< (0,0,-2) (component-wise). This is 
the NSC for ifT-monotonicity, Theorem 1. The dynamical aspects of a JPT-monotone 
Bellman chain are illustrated in Table 1. 

Table 1. Monotone Dynamics. 

n x° ® B®n y° ® B®n 

0 

1 

2 

3 

(0,-2,-3) 

(0,-3,-5) 

(0,-4,-7) 

(0,-4,-7) 

(-20,0,-1) 

(0,-1,-3) 

(0,-3,-5) 

(0,-4,-7) 

4.3. IftT-comparison of Bellman Chains 

In Table 2 we illustrate the result of Theorem 2 on comparison of Bellman chains 
(x°,.A) and (y°,B) where: 

x° = ( 0 , - 2 , - 3 ) , y° = (-20,0,-1) 

and 
/ o 

в = A 

(0 
0 

Vo 

-10 \ 

-11 

- 5 ) 

-4 - 7 \ 

0 - 3 - 6 , 

\ -oo 0 -2 ) 

Note that the following conditions of Theorem 2 are fulfilled, i. e 

(i) x° <JK y°, 

(ii) A® K < B ®K (coefficient-wise), 

(iii) B is 2?f-monotone. 
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And we can check in Table 2 that Vn, x° eg) A®n ^K y° <g> £®n. 

Tab le 2. Comparison results. 

n x° ® A®n y° ® Б®" 

0 

1 

2 

(0, - 2 , -3) 

(0,-4,-8) 

(0,-5,-10) 

(-20,0,-1) 

(0,-1,-3) 

(0,-3,-5) 

5. CONCLUSION 

In this paper we presented fundamental tools for comparing Bellman chains. It is 

inspired by Keilson and Kester's work on monotone Markov chains and the fact that 

Bellman chains are analogue of Markov chains up to a semimodule. 

As further work we aim to develop theoretical aspects on comparison of cost 

measures. We also aim to develop algebraic approaches for bounding Bellman chains 

with large number of states by Bellman chains with reduced state space. 

(Received December 9, 2002.) 
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