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1. I N T R O D U C T I O N 

It is well-known [1,4] that the structure of many discrete-event dynamic systems 
may be represented by square matrices A over the max-plus semiring 

sft-z- ({ -co}Ui? ,0 ,®) = ({-oo}Ui? ,max,+) . 

For example, if the initial event-times of such a system are represented by a vector 
s, then the event-times after r stages are given by the rth term of the orbit 

{A(r> ® s(r = 1,2,...)} where A ( r ) = A ® A ® .. .*® A(r-fold). 

The reachability problem asks whether s can be chosen so that the orbit contains 
a given vector b . Clearly, the answer is affirmative if and only if event-times b can 
be achieved after one stage from suitable previous event-times, so algebraically the 
reachability problem produces the linear-equations problem: to solve A ® x = b . 

In a practical situation, the data may be such that an exact solution is not 
possible. In [4] it was shown how to find the maximum solution to the inequality 
A ® x < b - the so-called principal solution - from which may be inferred the 
Chebyshev-least perturbation of b necessary to make the system A ® x = b soluble. 
Some necessary facts relevant to this are reviewed in the next section. 

In [5], the same problem was solved for the related algebraic system fuzzy algebra. 
The question of achieving solubility by modifying the matrix A was examined for 
fuzzy algebra in [2], while for both fuzzy algebra and 5ft the search for solubility by 
omitting equations was shown in [3] to lead to an NP-complete problem. 
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In the present paper, we consider how solubility may be achieved for a system 
A ® x = b over 5ft if both A and b may be perturbed. Specifically, we seek a 
Chebyshev-least perturbation, consistent with solubility, of the matrix [A,b]. 

2. PRELIMINARIES 

In the system 5ft, we write a^ to denote the r-fold product a® ... ® a. Since the 
operation ® represents arithmetical addition, a^ has the value ra. a^~^ is the 
multiplicative inverse in 5ft, hence a^-1) = —a. 

The system 5ft is embeddable in the self-dual system 

Q = ({-oo} U R U {+oo}, 0 , ®, ©', ®') = ({-oo} U R U {+oo}, max, +, min, +) 

where the operations ®,®', representing arithmetical addition, differ only in that 

—oo ® +oo = —oo, —oo ®' +oo = +oo. 

The set of all m by n matrices over £y will be denoted by $s(m,n), the set of all 
m—vectors by G(m) and the operations ©,® and 0 ' ,® ' are extended to matrix 
algebra in the usual way. Matrices will be denoted by upper-case italics and vectors 
by lower-case bold letters. 

For any matrix A = [aij] G *<s(m,n), the conjugate matrix is A* = [—o ]̂ G 
^(n, m) obtained by negation and transposition. We shall use the following proper­
ties of conjugation (compare [4, p. 5]) 

(A*)* = A and (A ® J5)* = £* ®' A*. (1) 

A set of linear inequalities A ® x < b over 5ft always possesses a solution. The 
greatest is 

xp(A,b) = A*®'b . (2) 

This principal solution is calculated in 9 but lies in 5ft. It is also the greatest 
solution of A ® x = b if and only if any solution exists (see [4, p. 5] and [1, p. 112]). 

For brevity, in what follows, the symbol [_4,b] for A G S(m,n ) ,b G $s(m) repre­
sents the m x (n + 1) matrix obtained by appending column b as column n + 1 to 
matrix A. 

Definition 1. Given two matrices P, Q G $s(m,n), their Chebyshev distance will 
be denoted by A(P,Q) = max^j \pij — qij\. 

Definition 2. For two given integers m, n denote the family of all soluble max-plus 
linear systems with n unknowns and m equations by 

<S(m, n) = {(A, b); A G 5(m, n), b G 9(m); system A ® x = b is soluble}. 

A Chebyshev-best soluble approximation of an insoluble system 

A ® x = b, A G 3(m, n), b G Q(m) 
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is a pair A' G 9 ( m , n ) , b ' G $s(m) such that (-4',b') G S(m,n) and 

A([A',b'],[A,b])<A([A",b"],[A ,b]) 

for each pair (A",b") G <S(m,n). 

Let us denote by 

S+(B ® x; b) = max{(.B ® x); - 6 J 
i 

and by 

<5~ ( 5 ® x; b) = mm{(B ® x)» - 6;} 
i 

the extreme positive and the extreme negative deviation of F?®x from b, respectively. 
In notation of max-plus algebra 

<J+(.B®x;b) = b * ® ( 5 ® x ) 

and 

<T(.B®x;b) = b* ® ' ( f l®x) . 

Note that if x = xp(B,h) then S+(B ® x;b) = 0 and <J-(B ® x;b) < 0, moreover 
S~ (B ® x, b) = 0 if and only if the system F? ® x = b is soluble. 

Theorem 1. Let A G Q(m,n) and b G $s(m) be such that (A,b) £ <S(m,n); let 
us define 

5 = (5-(A®xp(A,byM)(1/4)' (3) 

If B G 3(m, n) is such that A(A, £ ) < 5, i. e. 

(5(_1) ® A < B < S ® A, 

then A ( # ® x , b ) > S for each x G 9?(n), with equality only if (xp(A,b))* ®x = 5 (2 ) . 

P r o o f . Let (xp(A,b))* ® x = s (2 ). This means that maxj{xj - ( x ^ ^ b ) ^ } = 
£(2), hence for each j Xj < £(2) + (xp(^4,b))j; or in max-plus algebra notation 
x < e(2) ® x p (A,b) . Two cases arise: 

1. e > S. Since B > 5 ( _ 1 ) ® A, we have 

J + ( B ® x , b ) = b * ® ( £ ® x ) > 
> o~(_1) ® b* ® (A ® x) = 
= c5(_1) ® (_4* ®' b)* ® x = (by (1) and associativity of ®) 
= ( J ( - 1 ) ® ( x p ( A , b ) ) * ® x = (by (2)) 
= 5 ( " 1 ) ® e ( 2 ) > 5 . 
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2. e < 8. Since B < 5 ® A and x < e(2) ® xp(_4, b), we have 

<T(_B®x,b) = b * ® ' ( _ 3 ® x ) < 
< b* ®' (8 ® .4 ® e(2) ® xp(_4, b)) = 
= 8 ® e(2) ® b* ®' (_4 ® xp(_4, b)) = (by commutativity of 

scalar multiplication) 
= 8 ® e(2) ® 5 (~4) < (by (3)) 
< o^ 1 ) . 

Hence either 5+ (_5®x,b) > J or 8~(B ® x,b) < 5 ( _ 1 ) and so A(J5®x;b) > o\ • 

3. ALGORITHM APPROXIMATION 

Input: Matrix A G 9(ra,n) , vector b G 5(ra). 

Output: A pair (-4',b') G «S(ra,n) with A([_4,b], [_4',b']) smallest possible. 

S tep 1. Find the principal solution xp(_4,b) and 5 := (A(_4 ® x"(_4,b),b)) (1/4) . 

S tep 2. x:=(5 ( 2 )®xP(_4,b). 

S tep 3. For each row i w i th 6* ®' (A ® x); = q ) do (comment |£i| < 8) 

begin b[ := £; ® &*; for all j do a^ = e | _ 1 ) ® a2J end. 

Example. Suppose the following matrix A and vector b are given. 

/ 10 - l 11 \ 

A = ( l n„ 5 l ; b -

We compute successively 

x?(A,b) = 

so the Chebyshev error is A(_4 ® xp(_4,b),b) = ó~(4) = 8 and it is achieved in row 4. 
Now, 

•A' = 

Theorem 2. Algorithm APPROXIMATION correctly finds in 0(mn) steps a 
Chebyshev-best soluble approximation of system _4®x = b,.4 G ̂ ( r a j n ^ b G 9(ra) 
over max-plus algebra. 

P r o o f . Notice, that for x defined in the second step of the algorithm, J + (5 ( 2 ) ® 
_4®xp(_4,&);6) = <S(2), 5-(5(2)®_4®xP(_4,&);6) = 5 ( " 2 ) , and hence A(Ax,b) = 5 ( 2 ) . 
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Then, system A ' ® x = b ' is soluble, x being a solution. Further, A([A, b] , [A*, b']) < 
S. Moreover, Theorem 1 shows tha t it is impossible to find a soluble system A"®*. = 
b " with Chebyshev error A([A,b], [-4",6"]) smaller than S. 

The complexity bound is trivial. ---

In conclusion, we recall [4, p . 5] the important property of x p (A, b ) tha t no x can 
have both 

S+(A®x,b) < 0 (i.e. A®x<b) 

and 
S~(A®x,b) >S-(A®xp(A,b),b) = S{-4). 

Setting x = S^~2) ® y, it follows tha t no y can have A(A ® y , b ) < S^~2) (see also 
[6]). In other words, to produce a soluble approximation if only b may be per turbed 
incurs a t best a Chebyshev error double tha t incurred at best if both A and b may 
be per turbed. 
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