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ON UNEQUALLY SPACED AR(1) PROCESS 
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Discrete autoregressive process of the first order is considered. The process is observed 
at unequally spaced time instants. Both least squares estimate and maximum likelihood 
estimate of the autocorrelation coefficient are analyzed. We show some dangers related with 
the estimates when the true value of the autocorrelation coefficient is small. Monte-Carlo 
method is used to illustrate the problems. 
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INTRODUCTION 

The presented paper has been motivated by analysis of time series applied in bio
logical research. Namely, densities of spots on two-dimensional gel electrophoresis 
maps were considered. Their time series were approximated via general linear re
gression model with disturbances forming an autoregressive process of the first order 
(AR(1) process). Observations were performed in fixed time instants according to 
some protocol. As a rule, the instants were unequally spaced. 

Different estimation methods are discussed, for example, in [9, 10, 13]. Many 
aspects of parametric modelling approach may be found in [3, 14]. The article [15] 
provides an interesting overview of parametric modelling for growth curve data for 
both equally and unequally spaced cases. A wide range of bibliography can be found 
there as well. Various types of models dealing with unequally spaced case can be 
found in [4, 5, 6, 8], papers [2, 7, 12] are related to the AR(1) case. 

The paper is devoted to estimation of parameters of discrete and unequally spaced 
AR(1) process. Both least squares and maximum likelihood estimates of the auto
correlation coefficient are considered. The estimates are obtained via optimization 
of the corresponding statistics denoted SLS and SML- Analytical properties of the 
statistics rather than the statistical ones are stated. We analyze the dependence of 
the statistics on values of the autocorrelation coefficient in a neighbourhood of zero. 
We show that the statistics SLS may reach minimum (resp. maximum) at zero and 
derive necessary and sufficient conditions characterizing both these situations. We 



14 J. SINDELAR AND J. KNIZEK 

show that the statistics SML niay have minimum (maximum, inflex point respec
tively) at zero and derive necessary and sufficient conditions characterizing all three 
possibilities. Consequently, neither the least squares, nor the maximum likelihood 
estimator of the autocorrelation coefficient is the right one in the unequally spaced 
case. The stated properties of the estimates are illustrated by means of the Monte 
Carlo method. 

The paper is self contained. We state and briefly prove the known results further 
applied in the paper. New results deal with the behaviour of the statistics SLS and 
SML near zero. 

The paper is organized as follows. Unequally spaced autoregressive process of 
the first order is outlined in Section 1: Least squares estimate of the autocorrelation 
coefficient is discussed in Section 2. Auxiliary results related to maximum likelihood 
estimation of the parameters of the process are stated in Section 3. Maximum 
likelihood estimates of the parameters are discussed in Section 4. Section 5 is devoted 
to Monte Carlo simulations. 

1. THE AR(1) PROCESS 

We consider a discrete AR(1) process 

Xt = pXt-i +vt t = ...- 2, - 1 , 0 , 1 , 2 , . . . , (1) 

Hence the random variables vt are independent and identically distributed, they 
have zero mean and a positive variance a2. The autocorrelation coefficient satisfies 
\p\ < 1. We assume that the process is observed at time instants t0 < t± < ... < tn, 
1 < n. Thus the random vector 

Y : = ( Y 0 , . . . , Y n ) 

is obtained, where each Y{ denotes the member Xti of the process. Time increments 

K{ .— Z{ Z{—i 

play an important role rather than the individual times due to stationarity of the 
process. 

Majority of the results stated below holds almost surely (a.s.). This is not ex
plicitly stated, except in cases where misunderstanding may occur. 

2. LEAST SQUARES ESTIMATE OF AUTOCORRELATION COEFFICIENT 

Least squares estimate of the autocorrelation coefficient is considered. The case in 
which all time increments are greater than one is the main theme of the section. 
It is shown that the estimate behaves badly if the true value of the autocorrelation 
coefficient is small. Necessary and sufficient conditions characterizing such situations 
are derived. 

The following lemma leads to least squares estimate of the autocorrelation coef
ficient. 
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Lemma 2.1. The random variables 

(Y - p^Yi^) • x / W 2 " 
-4.:= 

V ^ ,2k» 

are independent and identically distributed. They have zero mean and variance a2. 

P r o o f . Consider the differences Y{ — pkiY^i = Xti — pkiXti__. They equal 
pki~1vti__+i + ... + pvti-i + vti according to (1). Hence the differences have zero 

mean. Their variance equals a2 • ( p 2 ^ - 1 ) + ... + p2 + l) = a2 • 1~_°V • Thus the 

random variables Ai have zero mean and variance a2. Moreover, each Ai depends 

only on vt.__+i,..., vti, hence Ai,...,An are mutually independent. • 

An estimate of the autocorrelation coefficient may be found by means of (non
linear) least squares method. It minimizes the sum ____l

=l A
2, i.e. it minimizes the 

statistics 

SLS - 1 - r r ^ • (-) 
i=l 

The same estimate is obtained by means of maximum likelihood method assuming 
that the random variables vt are normally distributed and the value of the random 
variable YQ is known. 

We introduce the following notation. We write / ~x g if / = g6 holds in some 
neighbourhood of x, where 9 is a continuous function with 6(x) = 1. Hence if / ~x g, 
then the functions / and g are of the same sign and of the same magnitude in a 
neighbourhood of x. Clearly, the relation ~x is an equivalence. For instance, we 
have 1 - x2k ~i k(l — x2). 

The statistics SLS is a convex function of p when all time increments equal one. 
Its behaviour may be more complicated in unequally spaced case. To illustrate this 
fact we investigate behaviour of the statistics in a neighbourhood of zero. 

Lemma 2.2. a) If h > 1, then we have ^ f ( O ) = 0. 

b ) We have1 Sf**(0) = - 2 ^ i = 1 I W - i . 

c) If ki > 1 for all i, then in some neighbourhood of zero we have 

dSLS 

дp 
jo - 2 p 2_ZYiYi-.+_ZYÏ 

. ki=2 i=l 

P r o o f , a) Let us rewrite A2 in the form 

__ (Yi__p___-_У 
A = • ~ 1 4- (? 4- . . . o 2 ^-- 1 ) 1 + p* + . .. p 

x T h e operator ___Ui^i i s abbreviated by _Zk{=k f o r a n y * € { 1 , . . . , n } . 



16 J. ŠINDELÁŘ AND J. KNÍŽEK 

Assume that ki > 1. Then we have 

дЛ2 _ \ 2kt [pk>-2YtYi-i - P2ki-2Yг

2-г] 
= P-dp ~ H \ l + p2 + ... + p2^~1) 

[Y2 - 2pk<YiYi-l + p^Yl,] • 2 • [1 + 2p2 + ... + (hi - l ) ^ * ' - - ) - 2 ] | 

[l + p2 + ... + p2(^-D]2 j 
(3) 

This derivative evaluates to zero for p = 0. Lemma 2.2 a) is proved. 

b) We have ^ f^(O) = __]ki=l ^ ( 0 ) by part a) of the lemma. If k{ = 1, then 

we have —-gjf = 2(Yi - £ ^ - 1 ) ^ - 1 , thus —-g^-(O) = 2YiYi^i. Summarizing these 

results we obtain ^f^(O) = - ___ki=l 2YiYi-1. 

c) The expression in braces of (3) is denoted by fi(p). Assume that ki > 1 for all 
i. If ki = 2, then /i(0) = AYiYi-\ 4- 21^2 is valid, as follows from definition of the 
function fi. If ki > 2, then fi(0) = 2Y?. Hence in some neighbourhood of zero we 
have - ^ - o P [(Eki=2 4 ^ - 1 + 2 l f ) + (Eki>2

 2 i f ) ] > therefore part c of the 
lemma is valid. • 

The statistics SLS reaches a local extreme at zero when all time increments are 
greater than one, as shown in 

T h e o r e m 2 .1 . Let k = min^i,...,n k{. We denote B := 2 Ylki=2 YiYi-i +EIL1 Yi '-

a) Suppose that all vt are normally distributed. If k = 1, then SLS 1s strictly 
monotone at zero a. s. 

b) Assume that k > 1. Properties of SLS at zero are summarized in the following 
table: 

k = 2, 29 < 0 jfe = 2, B >0 k>2 

SLS reaches a local SLS reaches a local SLS reaches a local 
minimum at zero maximum at zero maximum at zero. 

P r o o f , a) Let us apply Lemma 2.2b). If k = 1, then the sum __]k=1 y ^ i - i = 
— \dS

d
LS (0) contains at least one summand. Suppose that all vt are normally dis

tributed. Then the sum differs from zero a .s . Thus the partial derivative dQLS (0) 

differs from zero a.s. Hence the statistics SLS 1s strictly monotone at zero a.s. 

b) Firstly, let A; equal two and B be negative. Then the sign of the derivative ^f-
equals the sign of p in some neighbourhood of zero, as follows from Lemma 2.2 c). 
Hence SLS(P) reaches a local minimum at zero. The sign of the derivative dS

d
LS 

equals the sign of — p in the remaining two cases, hence SLS(P) reaches a local 
maximum at zero in both cases. , • 
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Least squares estimate of the autocorrelation coefficient minimizes the statistics 
SLS- But Theorem 2.1 shows that the statistics usually reaches a local maximum 
at zero when all time increments are greater than one. Consequently, the estimate 
behaves badly for small values of the autocorrelation coefficient. This statement is 
demonstrated by means of simulations in Section 5. The behaviour of the statistics 
SLS is illustrated in Figure 1. 

| - S
L s | 

/ ' 4 

/ \ 
• / \ 

/ \ 

\ / 

/ 
^....-"" 1-^1 

-1 -0 .5 

Fig . 1. Graphs of SLS(P) obtained from simulations with k > 1. Typical behaviour 
(local maximum at zero) is illustrated on the first three pictures. 

3. ON COVARIANCE MATRIX OF AR(1) PROCESS 

Auxiliary results related to maximum likelihood estimation of parameters of AR(1) 
process are stated in this section. 

Let us state a form of the covariance matrix of the random vector Y. Covariances 
of AR(1) process satisfy cov(Xt,Xt+k) = JZ^T • p'*'- It means that for j > i we 
have cov (Yi,Yj) = Y^-J • p*-+-+*i--. Hence the covariance matrix of the random 
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vector Y has the form 

£ = 

/ 1 pkl pkl+k2 

1 Пk2 

X-P2 

symm. 

V 

pk\ + ...+kn \ 

k2 + ...+kn 

pk3 + ... + kn 

r%Kn 

) 

(4) 

Hereafter "symm." indicates that the matrix is symmetrical. Assumptions stated 
above guarantee that the matrix £ is positive definite. 

Let us evaluate the determinant of the covariance matrix and find its inverse. 

L e m m a 3 .1 . a) The determinant of the covariance matrix £ is given by 

_2(n+l) n 

b) The inverse of the covariance matrix £ equals 

/ Oi Һ 
C\ 

0 . 
b2 

0 \ 
0 

1 - P 2 c2 

<72 

1 
symm. 

C n - l Ьn 

an ) 

with the elements a ,̂ bi and c* given by 

ӣi = 
i - P

2k< 
bi = 

r\ki 

1 - P

2k-
•1+ÜІ+ UІĄ-I . 

(5) 

(6) 

(7) 

P r o o f , a) The matrix expanded on the right hand side of (4) is denoted Q. Let 
us take 

[ zth row ] := [ zth row ] - pki • [ (i + l ) th row ] 

in the matrix. We obtain a lower triangular matrix with diagonal elements 1 — 
p2kl, 1 - p 2 * 2 , . . . , 1 - p2kn and 1. Hence the determinant of the matrix Q equals 
n i L i (l — P2ki)> Thus the determinant of £ evaluates according to (5). 

b) It can be confirmed directly that the inverse of the matrix £ equals (6). • 

Let us evaluate the quadratic form y £ _ 1 y and find some of its properties. 



On Unequally Spaced AR(1) Process 19 

Lemma 3.2. Consider a vector y := (j/o- !/i • • • • > 2/n) of reals. Let us denote 

^ i ^ . y E - V . (8) 
1 — PZ 

a) We have 

ѓ = l ^ 

b) We have -D(y) > 0 if and only if y differs from zero vector. 

P r o o f , a) The form (6) of the inverse of £ stated in Lemma 3.1 gives us 

n—l n 

D(y) = aiyl + any
2
n + ]T ay\ + 2 J^ bi^-i . (10) 

i=l i=l 

We have c» = — 1 + a* + a^+i for all i, thus 

n—l n n 
D(y) = - E ^ + E a i (^ 2 + ^-i) + 2 E 6 » ^ - i (n) 

2=1 i=l i=l 

i=l i=l \ r H / 

where the coefficients az and bi are given by (7). Finally, the right hand side of (9) 
equals (12). 

b) The matrix E _ 1 is positive definite. Hence D(y) = 73—j • y S _ 1 y is positive if 
and only if y is different from zero vector. • 

The statistics SLS leads to least squares estimate of the autocorrelation coeffi
cient. Let us express the statistics by means of the statistics D(Y). 

Lemma 3.3. We have 

SLS=[D(Y)-Y2]-(l-p2). (13) 

P r o o f . We have £ " = 1 ^ f-JH^ = D(Y) ~ Yo by Lemma 3.2a). Let us 
multiply both sides of the equation by (1 — p2). The left hand side of the new 
equation equals the statistics SLS> as follows from definition (2) of the statistics. • 
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4. MAXIMUM LIKELIHOOD ESTIMATION AND AR(1) PROCESS 

Maximum likelihood estimates of parameters of AR(1) process are considered. The 
case in which all time increments are greater than one is the main theme of this 
section. We show that the maximum likelihood estimate of the autocorrelation 
coefficient may not be the appropriate one when the true value of the coefficient is 
small. 

Let us start with likelihood function of the random vector Y. We assume that 
the random variables Vt have normal distribution. Hence the random vector Y has 
normal distribution JV(0,£). It means that the likelihood function C = C(Y\p, a) 
satisfies 

C2 = d- | .SГ 1 -exp(-Y' .S- 1 ү) 

= CiЧEГ^-exp (------£. D(Y) (14) 

where C\ > 0 does not depend on parameters of the process. 

Maximum likelihood estimates of the variance a2 and of the autocorrelation co
efficient p may be obtained by means of the following proposition. 

P ropos i t i on 4 . 1 . a) The maximum likelihood estimate a2 of variance is given by 

o(Y)-(l-p2) 

ПC-" Џi' 

i=l 

1 

(16) 

a2{p) = . . . ^ . , ( 1 5 ) 

b) Assume that a = a. Then we have 

C-^(Y\p,a) = C2-D(Y) 

where C2 > 0 does not depend on p. 

P r o o f , a) The likelihood function satisfies 

-Sj->- = --plMS0-<iV)--'Or> • — , 

as follows from (14) and the fact that D(Y) does not depend on a by (9). Determi
nant of the covariance matrix IE has been found in Lemma 3.1 a). We have In | E | = 
(n + l)ln((j 2) + C3, where C3 does not depend on a2. Hence -^ ln|.£| = (n-Fl)cr~2. 
Summarizing these results we obtain 

2 ^ In £ = a" 4 • [ - (n + 1) • a2 + D(Y) • (1 - p2) ] . 

Thus, for D(Y) > 0 the likelihood function reaches its unique maximum at n+i""** • 
Moreover, the random vector Y differs from zero vector a. s. Hence -D(Y) is positive 
a. s. by Lemma 3.2b), which leads us to (15). 
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b) Let us take a = a. The determinant |E | has been evaluated in (5). Substituting 
a2 = a2 we obtain 

|E | = (n + l ) - ^ 1 ) • Dn+1(Y) • f [ (1 - P2ki) 
2 = 1 

Moreover, part a) of the proposition gives us 

LfL.D(Y)=n + im 

Without loss of generality we can assume that D(Y) is different from zero, since 
it is positive a. s. It results that the likelihood function satisfies C2(Y\p, a) = 
C4 [ £>n+1(Y) • njL-i (1 - P2ki) ] ~ \ where C4 > 0 does not depend on p. We take 
— ̂ q-jth power of both sides of the equation and obtain the desired result. • 

Proposition 4.1 shows that the maximum likelihood estimate of the autocorrela
tion coefficient minimizes the statistics 

SML := D(Y) n(i-vfco 
li=l 

1 
n + 1 

(17) 

Maximum likelihood estimate of the autocorrelation coefficient is a solution of 
the likelihood equation •£- \nC(Y\p, a) = 0. Moreover, the left hand side of the 

equation satisfies - ^ j • JMn£(Y|p,a) = -§^\IISML(P)- Let us evaluate the last 
stated derivative. It enables us to state some properties of the statistics SML-

L e m m a 4 . 1 . a) We have 

Q-^-SMM = ^ y • ^ o o + ^ T • £ i - ^ • 

b) Moreover, it holds 

TT«DW) = E 7 T ^ ' W + ^- i ) ' p k i - y ^ (x + p2kiK • (18) 

P r o o f . Validity of the first equation of the lemma follows from definition (17) 
of the statistics SML- The second equation follows from Lemma 3.2 a). • 

Assume for a moment that all time increments equal one. Then the maximum 
likelihood estimate of the autocorrelation coefficient is a root of a cubic equation 
(see [1]). The root lies in the interval (—1,1). Let us turn to case of arbitrary 
time increments. Now we show that the statistics SML reaches its minimum in the 
interval (—1,1). 
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Proposition 4.2. We have SML ~O Z)ILO Yi- Moreover, SML converges to infin
ity if p tends to any of the values 1" and -l"1". 

P r o o f . Recall that we have 

SML = D(Y) Ц(I-P^) 
i=l 

1 
n + 1 

(19) 

Assume that p equals zero. Then SML equals D(Y). Moreover, D(Y) equals 

E7=oy2 by L e m m a 3 - 2 a ) - T h u s SML ~O E?=o^i2-

Suppose that p is close to one of the values ± 1 . Then we have 

D(Y) ~±1 y0- + (i_p-)-1.f;i>r*-^ir«-1)a 

1 = 1 
K{ 

as follows from Lemma 3.2 a) and the fact that 1 — p2ki ~±i ki • (1 — p2) holds. 

Moreover, we have [ "JIL-i i1 ~ P2ki) ] * ~±1 ("I?=i * 0 ^ ' (l - p 2 ) 1 " ^ . Let 
us use these results and the form (19) of the statistics SML- We obtain 

Q [ у 2 / 1 „2ч , V^ (Yt-fO^Yt-O 

•Ьл/í, ~±1 П о С1 ~ P ) + 2_y _ 

t = l 

1 

ki n> 
\ t - i y 

i 
n + l 

( ì - V ) - ^ 

The last multiplier (l — p2) n+1 converges to infinity if p tends to any of the values 
1~ and — 1+. As a result, SML converges to infinity as well. • 

We investigate behaviour of the statistics SML near zero. 

Theorem 4.1. Let k = mini=iv . . j n k{ be minimum of all time increments. 

a) If k = 1, then SML 1s strictly monotone at zero a. s. 

b) Assume that k > 1. Properties of the statistics SML at zero are summarized in 
the following table: 

k is odd 

SML has an inflex point 
at zero 

k is even 

Efcl-*-'.-,.-i<o 

SWL reaches a local 
minimum at zero 

k is even 

SML reaches a local 
maximum at zero. 

P r o o f . Let us approximate the derivative ^-IUSML(P) in a small neighbour
hood of zero. We have D(Y) ~ 0 ]Ci!=o^i2> a s foU°ws from Lemma 3.2a). More
over, Lemma 4.1b) gives §-pD(Y) ~ 0 T,?=i2kiPki~l ' [ - ^ - 1 ] - It results that 
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§-pD{Y) ~ 0 V;fci=fc 2kiP
k'~l • [-YiYi-!], because E ^ Y Y - i ^ 0 holds a.s. Fi

nally, we have £ ? = ! - = - £ $ - - - ~ 0 £*.=* - 2 A ^ - i . ' 
Using these approximations and Lemma 4.1a) we obtain 

o • • " 

дp 
lnsML(7>) ~o (JZYA -(-2kpk-1 £ YiYi_1)+-^- (-2kp*k~l £ 

Vi=o / V ki=k J n + i \ ki=k 

The second summand can be disregarded, as /92fc_1 is substantially smaller than 
pk~l. Thus 

§-plnSML(p) ~0 -pk~' • J 2fc- ( E Y i 2 ) I • E **-- " (2°) 

Assume that k = 1. Then L^-1 equals one. Hence the derivative -§-\IISML(P) is 
positive (resp. negative) in some neighbourhood of zero a. s. Thus SML is strictly 
monotone in the neighbourhood. 

Suppose that k > 1. Then the derivative -f- In SML(P) evaluates to zero for p = 0. 
Moreover, its sign equals the sign of -pk~~1'J2ki=k * i ^ - i in a neighbourhood of zero, 
as follows from (20). Parsing the possibilities "k is odd/even" and "Y2k--k ^ ^ - i ls 

positive/negative" stated in Theorem 4.1b) we find that the theorem is valid. • 

Maximum likelihood estimate of the autocorrelation coefficient minimizes the 
statistics SML- Theorem 4.1b) shows that the statistics may have an inflex point 
or it may reach a local maximum at zero when all time increments are greater than 
one. Consequently, the maximum likelihood estimate may not be the appropriate 
one when the true value of the autocorrelation coefficient is small. It should be noted 
that maximum likelihood estimators are not always efficient, or the best possible, 
as pointed out in [11]. Behaviour of the statistics SML and SLS is illustrated in 
Figure 2. 

Estimates of the autocorrelation coefficient stated in the paper minimize the 
following statistics: 

i 
n + l maximum likelihood estimate minimizes D(Y) • [ n iLi {-• ~ P2ki) ] 

least squares estimate minimizes ( D(Y) - YQ ) • [l - p2] . 

The statistics seem to be alike. But the behaviour of the estimates is different, 
as suggested by Theorems 2.1 and 4.1. This claim is supported by simulations 
performed in the next section. 

5. MONTE CARLO SIMULATIONS 

We deal with small sample properties of the estimators stated in previous sections. 
The length of the series considered in simulations is 100, 10 000 repetitions are 
performed. Sample means (SM) and sample standard deviations (SSD) of the 
estimates are considered. Variance o2 equals one in all the experiments. 
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Fig . 2. Graphs of SML(P) and SLS(P) obtained from simulations with k > 1. The 

statistics SML(P) may have an inflex point, local minimum or maximum at zero. 

Two types of simulations are stated. Firstly, time increments equal either two or 
three, about 50 % for each. The value of the autocorrelation coefficient varies from 
—0.9 to 0.9. Secondly, fixed value —0.5 of the autocorrelation coefficient is taken. We 
use the same type of time increments, but replace some of them by ones. From 10 % 
to 90 % of the increments are replaced. For instance, if 20 % of them are replaced, 
then about 40 % of the increments equal two and the remaining approximately 40 % 
equal three. 

Our experiments show that the absolute value of the autocorrelation coefficient 
may be estimated correctly, but the sign of the estimate may be wrong. Because of 
this, absolute values of the estimates are also stated. Subscript a is used to mark 
the case of absolute values. 

We start with the case where all time increments are greater than one and the 
value of the autocorrelation coefficient varies. 

Table 1 shows the properties of maximum likelihood estimator of the autocorre-
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lation coefficient. The estimator does not behave well for small values of p, which 
is in accordance with Theorem 4.1. Reasonable absolute values of the estimates are 
obtained if the value of p equals —0.5, —0.3, 0.3 and 0.5. 

Table 1. Properties of maximum likelihood estimator 
of the autocorrelation coefficient. 

p -0 .9 -0 .7 -0 .5 -0 .3 -0 .1 0.1 0.3 0.5 0.7 0.9 

SM -0.889 -0.680 -0.315 -0.052 -0.005 -0.003 0.048 0.312 0.681 0.889 

SSD 0.033 0.132 0.390 0.351 0.284 0.284 0.352 0.394 0.124 0.033 

SMa 0.889 0.689 0.483 0.296 0.204 0.203 0.297 0.484 0.689 0.889 

SSDa 0.033 0.066 0.135 0.196 0.198 0.199 0.196 0.134 0.066 0.033 

Table 2 shows the properties of maximum likelihood estimator of variance. It 
suggests that, even in case where the sign of the autocorrelation coefficient has been 
wrongly estimated, reasonable estimates of the variance can still be obtained. 

Table 2. Properties of least squares estimator 
of the autocorrelation coefficient. 

p -0 .9 -0 .7 -0 .5 -0 .3 -0 .1 0.1 0.3 0.5 0.7 0.9 

SM 0.998 0.998 0.992 0.960 0.930 0.929 0.959 0.990 0.998 0.999 

SSD 0.149 0.163 0.177 0.173 0.159 0.161 0.171 0.176 0.164 0.148 

Table 3 shows the properties of least squares estimator of the autocorrelation coef
ficient. A brief look at the last two rows dealing with absolute values of the estimates 
shows that the estimator is a bad one. This is also suggested by Theorem 2.1. 

Table 3. Properties of least squares estimator 
of the autocorrelation coefficient. 

p -0 .9 -0 .7 -0 .5 -0 .3 -0 .1 0.1 0.3 0.5 0.7 0.9 

SM -0.958 -0.870 -0.516 -0.124 -0.009 -0.004 0.121 0.508 0.872 0.959 

SSD 0.013 0.157 0.644 0.783 0.779 0.779 0.784 0.651 0.146 0.013 

SMa 0.958 0.884 0.825 0.792 0.778 0.778 0.792 0.825 0.884 0.959 

SSDa 0.013 0.023 0.027 0.030 0.032 p.033 0.030 0.027 0.022 0.013 
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Let us turn over to fixed value —0.5 of the autocorrelation coefficient. The number 
of time increments equal to one varies from 10% to 90%. 

Table 4 shows the properties of maximum likelihood estimator of the autocorre
lation coefficient. It indicates that the behaviour of the estimator is improved, even 
in cases when only a small number of time increments is equal to one. 

Table 4. Properties of maximum likelihood estimator 
of the autocorrelation coefficient 

(the first row - percentage of time increments equal one). 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

SM -0.428 -0.472 -0.486 -0.488 -0.487 -0.489 -0.490 -0.490 -0.489 

SSD 0.283 0.161 0.112 0.099 0.095 0.091 0.090 0.090 0.087 

SMa 0.481 0.480 0.487 0.488 0.487 0.489 0.490 0.490 0.489 

SSDa 0.178 0.137 0.110 0.099 0.095 0.091 0.090 0.090 0.087 

We have found in our simulations that there is an improvement in the behaviour 
of least squares estimator of the autocorrelation coefficient in cases where more than 
60 % of time increments equal one. 
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