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KOLMOGOROV COMPLEXITY 
AND PROBABILITY MEASURES 

JAN ŠINDELÁŘ AND PAVEL BOČEK 

Classes of strings (infinite sequences resp.) with a specific flow of Kolmogorov com
plexity are introduced. Namely, lower bounds of Kolmogorov complexity are prescribed to 
strings (initial segments of infinite sequences resp.) of specified lengths. Dependence of 
probabilities of the classes on lower bounds of Kolmogorov complexity is the main theme of 
the paper. Conditions are found under which the probabilities of the classes of the strings 
are close to one. Similarly, conditions are derived under which the probabilities of the 
classes of the sequences equal one. 

It is shown that there are lower bounds of Kolmogorov complexity such that the studied 
classes of the strings are of probability close to one, classes of the sequences are of probability 
one, both with respect to almost all probability measures used in practice. 

A variant of theorem on infinite oscillations is derived. 

1. INTRODUCTION 

The presented paper starts a series of papers dealing with applications of Kolmogorov 
complexity, mainly in probability theory and statistics. The results of the paper will 
be applied in the next papers of the series. 

The papers will be devoted to distinguishing of probability measures by means of 
Kolmogorov complexity, controlling of the flow of Kolmogorov complexity of infinite 
sequences, pseudorandom generators and Monte-Carlo methods, statistical models 
testing, the law of the iterated logarithm. 

Infinite sequences with a specific Bow of Kolmogorov complexity are considered 
in the paper. Namely, a sequence is of this type if the Kolmogorov complexities 
of its initial segments of specified lengths are bounded from below by given lower 
bounds. Here is the difference from classical approach. Classical results prescribe 
lower bounds of Kolmogorov complexity for all lengths of initial segments of infinite 
sequences under consideration [1, 9,10]. Classical approach deals with all the lengths 
of initial segments, we deal with specified lengths. 

Dependence of probability of our classes on the lower bounds of Kolmogorov 
complexity is the main theme of the paper. Classical approach usually deals with 
the lower bounds close to the lengths of strings under consideration (with some 
exceptions like Theorem 4.1 in [1] is). Our lower bounds may increase slowly (like 
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in Example 1), or they may be close to the lengths of strings under consideration, 
or they may vary somewhere between the above two types of bounds. 

Our approach was motivated by theorems on infinite oscillations. They deal 
with upper bounds of Kolmogorov complexity of some initial segments of infinite 
sequences. If we choose lower bounds of Kolmogorov complexity for the initial 
segments of the same lengths and ascribe no lower bounds for the other ones, then 
we grasp the resulting class of infinite sequences in a way more adequate for further 
applications. Moreover, including of the other lower bounds may affect the classes 
in an inappropriate way. Our approach enables us to control the flow of Kolmogorov 
complexity of infinite sequences in a paper of our series. 

Specific classes of infinite sequences were introduced in [8]. Each of the classes 
depends on a sequence of real numbers. This sequence determines lower bounds of 
Kolmogorov complexity of sequences from the class. Namely, an infinite sequence is 
places into the class iff the Kolmogorov complexity of almost all of its initial segments 
equals or exceeds the corresponding lower bounds. Here "almost all" means "up to 
a finite number of cases". 

Kolmogorov complexity theory was originated by Kolmogorov in [5]. A similar 
approach to the program size complexity was initiated independently by Solomonoff 
[13] and Chaitin [2]. Exposition of the theory can be found e.g. in [1], Chapter 4, 
for detailed explanation with a wide range of applications see [9]. 

The paper is organized as follows. 
The concept of Kolmogorov complexity is outlined in Section 1. Classes of strings 

(sequences resp.) with a specific flow of Kolmogorov complexity are defined in 
Section 2. 

Probabilities of the classes introduced in Section 2 are considered in Section 3. 
Dependence of the probabilities on the lower bounds of Kolmogorov complexity is 
analyzed. It is shown that the classes are of probability close to one (equal one 
resp.) for almost all probability measures used in practice. The special case of the 
Lebesgue measure is treated in Section 4. 

A mild generalization of famous Martin-Lof's result on infinite oscillations [11] 
is derived in Section 5. 

Basic results of the paper concern a relationship between Kolmogorov complexity 
and probability measures (Sections 3 and 4) and infinite oscillations (Section 5). 

NOTATION 

The following notation is used in the paper. 
The set {0, 1, 2, 3, ...} of natural numbers is denoted by N. The symbols n, t 

denote natural numbers. 
The symbol S denotes a finite alphabet of cardinality c > 2. The symbol S* 

denotes the set of all strings over £, l(x) denotes the length of a string x. The 
symbol E n denotes the set of all strings over S having the length n. 

We interpret strings as natural numbers too. Namely, we arrange strings into a 
lexicographical order, say xn, #i> #2, • • •> and interpret each string xn as the natural 
number n. 
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The set of all (infinite) sequences over S is denoted by S°°. The symbol Sn 

denotes the initial segment of a sequence S having the length n. Consider a set X of 
sequences. The symbol SX denotes the set of all initial segments of the sequences 
form X, i.e. SX = {Sn\S eX&neN}. 

The symbol * denotes a universal Kolmogorov algorithm (see [1], p. 309) with 
inputs from the set S* x N and with outputs in the set S* (this universal Kolmogorov 
algorithm can be replaced by a partial recursive function computed by a universal 
Turing machine in the present paper). 

We consider the cr-field of subsets of S°° generated by the set of cylinders. The 
symbol P denotes a probability measure on S°°, while Pn denotes the corresponding 
marginal probability measure on S n . Hence 

Pn{x} = P{SeX°°\Sn = x} 

holds for each string x G S n . If P is the Lebesgue measure and x G S n , then we 
have Pn{x} = c~n. 

In addition to conventional notation we introduce the following operation. As
sume that A C S* is a set of strings. We define 

A * S ° ° / n := (_4*S°° )nS n 

= the set of all initial segments of sequences from A * S°° 

having the length n. 

Here * denotes the operation of concatenation. We assume that the operations U 
(set union) and * . . . j n are of the same priority. 

2. KOLMOGOROV COMPLEXITY 

A concept of (conditional) Kolmogorov complexity is briefly outlined in the sec
tion. A simple lemma is stated characterizing the number of strings of bounded 
Kolmogorov complexity. 

Let us start with a definition of (conditional) Kolmogorov complexity. 

Definition 1.1. Let <j) be a partial mapping from S* x S* to S*. For each x, w G 
S*, the Kolmogorov complexity is defined by 

K^w) = inf{/(p) \p G S* & <j)(p, w) = x}. 

The string w represents our prior information about the string x. We do not 
assume that the mapping 0 is computable at this moment. The reason is to distin
guish the results based on computability assumptions from the more general ones. 

The number of strings of bounded Kolmogorov complexity is estimated in 
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L e m m a 1.1. Let 0 be a partial mapping from S* x S* to S*. Assume that w is 
a string, / is a nonnegative real number. Then we have 

c / + 1 - 1 
card{x G S* | K^(x\w) < /} < — — . 

P r o o f . The set {x G S*|i^0(x|uv) < /} is the union of the sets Xn := {x G 
T,*\K(f)(x\w) = n} over all 0 < n < /. It suffices to show that each set Xn contains 
at most cn members. Assume that Xn contains j members, say x\, x2, . . . , Xj. 

We want to show that j < cn. If x G S n satisfies K(f)(x\w) = n, then there is 
at least one p(x) G S n such that </>(p(x), w) = x is true, as follows from Defini
tion 1.1. Clearly, all p(x\), p(x2), . . . , p(xj) are different members of S n . Hence 
j < c a r d S n = cn. D 

3. STRINGS AND SEQUENCES WITH A SPECIFIC FLOW 
OF KOLMOGOROV COMPLEXITY 

Classes of strings and sequences with a specific flow of Kolmogorov complexity are 
introduced in the section. Their properties are derived in the foregoing sections. 

Our considerations will be parameterized by the following entities. 

i. A partial mapping (j) from S* x S* to S*. 

ii. A sequence w = (u>0, wi, w2, ...) of strings from S*. 

iii. A sequence f = (/n, /i, f2j ...) of nonnegative real numbers. 

iv. A sequence JV = (no, ni , n2, ...) of different naturals. 

Any number n^ represents the length of a string or strings under consideration. Let 
x be a string of the length n^. Then the string Wi represents our prior information 
about x, the number fi represents a lower bound of the corresponding Kolmogorov 
complexity. 

We fix the partial mapping 0, our prior information w and the lengths M of 
the strings under consideration. We shall vary the lover bounds f of Kolmogorov 
complexity. 

Namely, we consider strings satisfying the following two conditions. The length 
of our string is specified in the sequence no, ni , n2, The Kolmogorov complexity 
of the string is bounded from below by the corresponding lower bound. Classes of 
such strings are introduced in 

Definition 2.1. Consider a string x G S*. The string is called ((f), w, f,JV)-
complex iff there is some i G N such that we have l(x) = ni and 

K<i,(x\wi) > fi. 
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The set of all (0, w, f,JV)-complex strings is denoted by 

C s t r f , V -

Clearly, the class of all (</>, w, f,JV)-complex strings having the length rii equals 

C s t r ^ fl En< . 

We investigate probabilities of such classes below. 

Classes of sequences with a specific flow of Kolmogorov complexity were studied 
e. g. in [7] and [8]. Loosely speaking, a sequence is of this nature if the Kolmogorov 
complexities of its long initial segments are bounded from below by prescribed lower 
bounds. We consider a slightly more general type of sequences. Namely, the Kol
mogorov complexities of (sufficiently long) initial segments of specified lengths are 
bounded from below by prescribed lower bounds. The sequences are introduced in 

Definition 2.2. Consider a sequence S G S°°. The sequence is called 
((/>, w, f,JV)-complex iff 

3 t V t > t : ^ ( 5 n , K ) > / i . 

The class of all (0, w, f,JV)-complex sequences is denoted by 

Cseqpjf. 

Let S be an (</>, w, f,JV)-complex sequence. If i is sufficiently large, then the Kol
mogorov complexity K^Sn^Wi) of the initial segment Sn. is bounded from below 
by / . . 

The class of all (0, w, f,JV)-complex sequences is the union of the classes intro
duced in 

Definition 2.3. Consider a sequence S G S°°. The sequence is called 
((f), w, f,./V, £)-complex iff 

Vi>t:Kt(Sni\wi)>fi. 

The class of all (<j>, w, f,JV, £)-complex sequences is denoted by 

Clearly, the sets C s e q ^ ' ^ constitute a nondecreasing sequence of sets. Their 

union equals Cseq^'^, hence we have 

C s e q f e A C s e q f ^ . (3.1) 
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Assume that i > t. Then the initial segments of the (</>, w, f,JV, £)-complex se
quences having the length n.; are (0, w, f, ^ -complex strings. Therefore, we have 

x G SCseqpJJt n (U^ 0 S n i ) = * x G C s t r ^ a.s. (3.2) 

"Almost surely" means "up to a finite number of cases". Clearly, if i < t, then 
Kolmogorov complexity of the initial segments of the length n; may be "too low". 
The number of such strings is finite. Here the "almost surely" in (3.2) arises. 

4. KOLMOGOROV COMPLEXITY AND PROBABILITY MEASURES 

We investigate probabilities of the classes introduced in the previous section. A 
dependence of the probabilities on the sequence f of the lower bounds of Kolmogorov 
complexity is the main theme of the section. 

Before going ahead, we introduce a notation and prove a lemma. 
Let P be a probability measure on S°°. For each n, / we define 

( c /+ i _ 11 
Unf(P) := max I Pn(X) | I C S n & card (X) < —— \ . (4.1) 

Here f denotes a nonnegative real number. 
Consider the strings of bounded Kolmogorov complexity, i. e. the strings x satis

fying K(f)(x\w) < f. The probability of such strings having the length n is bounded 
from above by I I n / (P) , as is shown in 

L e m m a 3.1 . Let P be a probability measure on E°°. Assume that w is a string, 
/ is a nonnegative real. 

Then we have 
pn{x G s n | K*(X\W) <f}< n n / (P) . 

P r o o f . We have card {a; G S n | K^^w) < / } < c
 c _ j " 1 according to Lemma 1.1, 

which together with (4.1) proves our lemma. • 

Probability of the class of (</>, w, f, ^ -complex strings having the length U{ is 
considered now. A lower bound of such probabilities is derived in the following 
proposition. A simple condition is given under which the probabilities converge to 
one. 

Propos i t ion 3 .1 . Let P be a probability measure on S°°. 
a) For each i natural we have 

P n i (Cst r*y n S"') > 1 - n n i / j (P) . (4.2) 

b) If lim^oo n n . / ; (P) = 0, then 

lim P n i (Cst r£ .7 n S n i ) = 1. (4.3) 
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P r o o f . We have 

Pni (Cstipj? fl En<) = 1 - P n , ( s n ' \ C s t r * # ) 

= l-Pni(xeXni\Kt(x\wi)<fi) (4.4) 

according to the definition of the set CstTpJJ. At the same time, Lemma 3.1 gives 

Pni (x e 2ni\Kt(x\wi) < fi) < nni/i(P), 

which, together with (4.4) gives (4.2). 

Part b) of our proposition immediately follows from its part a). • 

Probability of the set of ((/>, w, f,JV, £)-complex sequences is considered in the 
following proposition. A lower bound of the probability is found. A simple condition 
is stated under which the probability of the class of (0, w, f ,JV)-complex sequences 
equals one. 

Proposition 3.2. Let P be a probability measure on E°°. 

a) For each t natural we have 

P ( C s e q f % ) > 1 - S £ t n n i / l ( P ) . (4.5) 

b)I f 

then we have 

E £ o П П ł / , ( P ) < o o , (4.6) 

PІCвeqţiï) = 1. (4.7) 

P r o o f , a) It suffices to prove that the set 

* f : = E ° ° \ C s e q f % 

is measurable and 

P ( * t ) < £ £ f n n i / j ( P ) (4.8) 

takes place. Clearly, we have 

Xt = U £ t {S e E°° | K^Sn, \wi) < fi}. (4.9) 

The sets {S G E°° \K(/)(Sn\w) < / } are cylinders, hence they are measurable, i.e. 
the set Xt is measurable too. 

It holds 
P(Xt) < E £ t P{S e S°° | K^Sn, \wi) < fi}, (4.10) 
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as follows from (4.9). Moreover, for each n we have 

P{SeX°°\K(f)(Sn\w)<f} = Pn{Sn\SeZ°°kK(j)(Sn\w)<f} 

= Pn{xeXn\K4)(x\w)<f}. 

Applying the last result to (4.10) we obtain the inequality 

P{.Xt) < E £ t P „ d * e snM J ^ - * " . ) </.}> 

which, together with Lemma 3.1 proves (4.8). 

b) The set C s e q ^ ^ equals S°° \ U£2.0Ai, hence it is measurable. We have (3.1), 

so that it suffices to prove that lim^oo P(CseqpJJ t) = 1 is true. The last written 

equality follows from (4.6) and (4.5). • 

Before going on, we introduce a notation and prove a simple lemma. 
Assume that P is a probability measure on S°°. We define 

7rn(P) := max Pn{x}. (4.11) 
xe~n 

Clearly, 7rn(P) is the probability of a most probable string of the length n (recall 
that there may be several most probable strings). 

Lemma 3.2. Let P be a probability measure on E°°, / and g be nonnegative reals. 
If 7rn(P) < g, then we have I I n / (P ) < 2 • g • cf. 

P r o o f . We have I I n / (P ) < 7rn(P) • c-~_f- by (4.1) and (4.11). Moreover 2 < c, 

hence c
 c_~1 < 2 • cf is true. Therefore, we always have 

n n / ( P ) < 2 . 7 r n ( P ) . c ' . (4.12) 

If 7rn(P) < g, then we have I I n / (P) < 2 • g • cf. • 

Estimates of the probabilities of interest, i. e. of the probabilities Pn . (Cstr f '£ fl Sn i) 
and P(CseqpJJ t) can be obtained from the lemma by means of the relations (4.2) 
and (4.5). Consider a sequence #0, <7i> 92 , • • • of positive reals. Then we have 

-ni(P)<9i = » P n i ( C s t r ^ n S n 0 > l - 2 - ^ - c ^ , (4.13) 

Vi>t: -ni(P)<9i =-> P(Cseqp^t)>l-2-i:°_t-gi.c
fi. (4.14) 

There is a natural question which classes of probability measures are covered by 
the results obtained in Propositions 3.1 and 3.2. More precisely, we search for classes 
of probability measures such that each probability measure in the class satisfies our 
basic relations lim^oo P n i ( C s t r ^ ^ fl T,ni) = 1 and P(Cseqf'^) = 1, i.e. (4.3) and 
(4.7). 
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Theorem 3 .1 . Assume that V is a class of probability measures on S°°, 
go? Pi J 92 ? • • • are positive reals. 

Suppose that the relation irni (P) < g{ holds almost surely for each probability 
measure P G V. 

a) If limi-^oo 9i = 0 is true, then there is a sequence f of lower bounds such that 
lim^oo fi = oo takes place and lim^oo Pni(Cstr\'£ H En t) = 1 is true for each 
probability measure P eV. 

b) If S^0g i < oo is true, then there is a sequence f of lower bounds such that 
lim^oo fi = co takes place and P(CseqJ.'^) = 1 is true for each probability measure 

Pev. 
P r o o f . Let P b e a class of probability measures over E00, P E V. 

a) Put fi = - \ • logcft if ft < 1, /• = 0 otherwise. Clearly, lim;_>0o fi = oo. 
Moreover, 2 • ft • c^ = 2 • y/gi holds almost surely. Hence 2 • ft • c*{ —>i 0 is true and 
(4.3) follows form (4.13). 

b) Put in = 0. There are 0 < i\ < i2 < i% < . . . natural such that Eg.ifeft < c - 2* 
takes place for all k = 1, 2, 3, — Put fi = k for each i = i*., . . . , ifc+i — 1 and 
for any k = 0, 1, 2, — Clearly, lim^oo fi = oo. Moreover, there is an index 
ko E N \ {0} such that ~ni (P) < gi is true for all i > ijt0. It suffices to prove that 

E £ i | i o 2 . 0 . . c * < o o 

holds, as follows from (4.14). We have 

S~ i f c o2. f f i .c^=2.Sr= f c oStr1ffi-^-

Further on, we have 

yik + l-l fi _ k yik + l-l 
^i=ik 9i'c - c • L,i=ik ft 

< ck-c~2k, 

as both fi = kis true for i = i*., . . . , ik+i - 1 and Egl^ft < c - 2* takes place. 
Therefore, we have E g ^ 2 • ft • c^ < 2 • Ej^l^c -* < oo which finishes the proof. • 

If a single probability measure P is considered, then our basic relations 
lim^oo Pm(Cstrptf nT,ni) = 1 and P(Cseqf^) = 1 are satisfied under simple and 
mild conditions, as is shown in 

Corollary 3.1. Let P be a probability measure on E°°. 

a) If limi_»oo ~m (P) = 0 is true, then there is a sequence f of lower bounds such that 
both lim^oo fi = oo and lim^oo Pni (Cstr fjf VI En*) = 1 are true. 

b) If E£l07rni (P) < oo is true, then there is a sequence f of lower bounds such that 
both limi_>oo fi = oo and P(CseqpJ?) = 1 are true. 
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P r o o f . Put gi = ~ni(P) for each i natural. Apply Theorem 3.1. • 

We slightly reformulate Theorem 3.1 to the form appropriate for practical appli
cations. 

Corollary 3.2. Assume that V is a class of probability measures on S°°, 
ho,h\, h2 ,... are positive reals. 

Suppose that ~ni(P) is of 0(hi) type1 for each probability measure P G V. 

a) If limi-^oo hi = 0 is true, then there is a sequence f of lower bounds such that 
lim^oo fi = oo takes place and lim^oo Pn. (Cstr^ '^ fl S n i ) = 1 is true for each 
probability measure P G V. 

b) If £g 0 / i i < oo is true, then there is a sequence f of lower bounds such that 
limi-j.oo fi = oo takes place and P(Cseqf ^ ) = 1 is true for each probability measure 
PeV. 

P r o o f , a) It suffices to find a sequence go, g\, g2 , . . . of positive reals such that 
we have both gi —>>; 0 and Qi/hi —>i oo. Then C(P) < gi/hi holds almost surely, 
hence irni (P) < C(P) -hi < gi holds almost surely too and the proof follows directly 
from Theorem 3.1a. The desirable g^s can be found easily; we can take gi = y/T~ 
for each i natural. 
b) It suffices to find a sequence g0, #i, g2,... of positive reals such that we have 
both S g 0 ^ i < oo and gi/hi ->j oo. Then irni(P) < gi holds almost surely and the 
proof follows directly from Theorem 3.1b. 

Put io = 0. There are 0 < i\ < i2 < i^ < . . . natural such that Sg i fc/ii < c~2k 

takes place for all k = 1, 2, 3, — Put gi = c~k for each i = i\., ..., i&+i — 1 and 
for any k = 0, 1, 2, — We have gi/hi > 2k for any i = i&, . . . , 2̂ +1 — 1 and for any 
k > 1 natural, hence gi/hi ->{ 00. We have £ £ 0 ^ = ^^Qi + ^i^i^hi-gi/hu 
so that £ £ 0 # i <h+ ^=1c~2k • ck < 00. D 

The following example shows that the results of this section cover almost all 
probability measures used in practice. Corollary 3.2 is used as a tool. 

Example 1. The aim of the example is to show that our basic relations 

l i m P n i ( C s t r ^ n E n O = 1, 
i—»oo ' 

P ( C s e q f ^ ) = 1 

are true for almost all probability measure used in practice. Moreover, there is a 
single sequence f of lower bounds with 

lim fi = 00 
i—j>oo 

1 Hence 7rn i(P) < C(P) • hi is true almost surely, where C(P) is a constant depending on P. 
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such that our basic relations are valid for all the probability measures just mentioned. 
It is worth mentioning that strings represent members of a product sample space 

here. 
Consider a probability measure P. Recall that 7rn(P) is the probability of a most 

probable string of the length n. As a rule, 7rn(P) converges to zero exponentially 
with the length of the strings. This is true for ergodic measures. The opinion of the 
authors is that 7rn(P) is of 0(n~2) type for almost all probability measures used in 
statistical practice. 

Consider a class of probability measures, say V. 

a) For the sake of safety assume, that 7rn(P) is of 0 ( 1 / In In n) type for each probabil
ity measure P from our class. Then there is a single sequence f of lower bounds satis
fying lim^oo fi = co and such that our basic relation lim^oo Pm (Cstr f $ nEn*) = 
1 is true, as follows from Corollary 3.2a. For instance, we can take 

/ n = logc lnlnlnn Vn > 3814280 , (4.15) 

as can be proved easily by means of (4.13). At the same time, almost all probability 
measures used in practice lie in our class V. 

b) For the sake of safety assume, that 7rn(P) is of 0 ( n _ 1 ln~3 / 2n) type for each 
probability measure P from our class. Then there is a single sequence f of lower 
bounds satisfying lim^oo fi = oo and such that our basic relation P(Cseqf ^ ) = 1 

is true, as follows from Corollary 3.2b. Of course, limi^co Pni(Cstrp^ C\ Sn i) = 1 
holds too. For instance, we can take 

/ n = logc(ln1/3n) V n > 3 , (4.16) 

as can be proved easily by means of (4.14). Once more, almost all probability 
measures used in practice lie in our class V. 

c) Let us turn to nondegenerated ergodic measures. If a single ergodic measure P is 
considered, then our basic relations are fulfilled through 

fn=e-n Vn, (4.17) 

where 0 < e < 1 depends on our ergodic measure. If V is the class of all nondegen
erated ergodic measures, then our basic relations are fulfilled through 

/ n = n / l n l n n V n > 2, (4.18) 

as e - n < n/ In Inn holds almost surely for any 0 < e < 1. 

To cover a wide class of probability measures by the results of this section, the 
sequence f of lower bounds should tend to infinity slowly, e. g. like the sequences 
(4.15) and (4.16) do. 

For narrower classes of probability measures, like for ergodic measures, the se
quence f of lower bounds is usually of the form n / "something slowly nondecreasing", 
e.g. like the sequences (4.17) and (4.18) are. 
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5. KOLMOGOROV COMPLEXITY AND THE LEBESGUE MEASURE 

The Lebesgue measure, denoted by P in the section, plays a significant role in prob
ability theory and statistics. We derive conditions under which our basic relations 
lim^oo P n . ( C s t r ^ n £n*) = 1 and P ( C s e q ^ ) = 1 are true for the case of the 
Lebesgue measure. 

The probabilities of the classes of (0, w, f, JV)-complex strings having the length 
rii converge to one under a simple and general conditions, as is shown in 

Proposition 4 .1 . Let P be the Lebesgue measure on S0 0 . 

a) For each i natural we have 

P n i ( C s t r * ^ H E n 0 > 1 - 2 • cfi~ni. 

b) If lim;_>oo m — fi = oo takes place, then we have 

l i m P n i ( C s t r ^ n S n 0 = l. 
i—j>oo ' 

P r o o f , a) Clearly, Pn{x) = c~n is true for each string x of the length n, as P is 
the Lebesgue measure. So that we have ~ni (P) = c~ni for each i natural. We take 
gi := -n.(P) = c~ni in (4.13) and obtain the desirable result. 
Part b) of our proposition immediately follows from its part a). • 

A simple condition under which the probability of the class of (0, w, f,JV)-
complex sequences equals one is stated in 

Proposition 4.2. Let P be the Lebesgue measure on E°°. 

a) For each t natural we have 

P ( C s e q f % ) > l - 2 . E £ t c * - " < . 

b) If T.i^0c
fi~ni < oo, then we have 

P(Cseq*;7) = 1. 

P r oof. a) We take gi := ~ni (P) = c~ni, like in the proof of the previous propo
sition, and apply it to (4.14). 
Part b) follows from the part a). ---

Proposition 4.2b was proved by Martin-L6f for the special case when all the 
lengths of initial segments of infinite sequences are considered, i. e. for the case 
when rii = i holds for all i natural (see [11]). 
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6. ON INFINITE OSCILLATIONS 

The aim of this section is to state and prove a result on infinite oscillations closely 
related to the original and well known result of Martin-L6f [11]. 

The classes of (*, JV, f,AT)-complex sequences are considered in the foregoing 
text. In other words, Kolmogorov complexity is defined by means of a universal 
Kolmogorov algorithm \P, i.e. (/> = $ takes place. Our prior information about a 
string equals the length of the string, i. e. w = M holds. 

Let us recall a result on infinite oscillations due to Martin-L6f [11] and Katseff 
[4]. It reads (in our notation): 

Assume that m = i holds for each i natural. Moreover, let ho, hi /12, ••• be a 
recursive sequence of naturals such that hi < fi <i takes place for each i. If 

y»oo J i i - i _ ^ 

then 
K*(Si\i) < fi (6.1) 

is true for infinitely many i G N, i.e. the class Cseqf ^ is empty 

We need an information on indexes i satisfying (6.1) for purposes of the next 
papers in our series. For this reason we prove a result resembling the Martin-
Lof's theorem. The core of our construction is closely related to both Calude's [1], 
pp. 361-367 and Katseff's [4] ones. 

We start with 

L e m m a 5.1. Let Ui < n and let Ai C £n* hold for each i = 1, 2, . . . , p, where p 
is a natural number. 

If Ai * S°°/n, -42 * S^/n j • • • ? Ap * S°° / n are pairwise disjoint sets, then we have 

Xpi=1c~ni card Ai < 1. (6.2) 

Moreover, equality takes place in (6.2) if and only if 

u L i ^ * £ ° 7 n = sn . (6.3) 

P r o o f . Clearly, 
card (Ai * E°°/n) = cn~ni • card Ai (6.4) 

holds for each i = 1, 2, . . . , p. Further on, we have 

1 = c _ n cardE n 

> c- ncard(Uf= 1Ai*E°°/ n ) . (6.5) 

The sets A\ * E°° / n , . . . , Ap * E°° / n are pairwise disjoint, hence 

c - n ca rd (U? = 1 A i *E°7 n ) = c - n E? = 1 c n - n i cardA i 

= Ef= 1c"n <cardAi (6.6) 
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takes place, as follows from (6.4). Using (6.5) and (6.6) we find that (6.2) is true. 
Finally, the equality takes place in (6.2) iff the equality is valid in (6.5), i. e. iff (6.3) 
holds. • 

Let us proceed to the main topic of the section, a theorem on infinite oscillations. 

T h e o r e m 5.1. Assume that both sequences M and f are recursive sequences of 
naturals. Moreover, let fi < ni hold for each i G N. Finally, let qo, #i, (72, • • • be a 
recursive and increasing sequence of naturals. 

Then there is a constant C such that for each U G S°° and m e N the following 
holds: if 

s ^ " 1 cfi~ni ^1 (6-7) 
takes place, then there is i G {#m, gm + 1, . . . , qm+i — 1} such that we have 

K*(Uni\ni)<fi + a (6.8) 

P r o o f . Let us describe the core of our proof. We find a recursive sequence 
A0, Ai, A2, . •. of finite sets of strings such that: 

i. The cardinality of each set A{ does not exceed the prescribed value c^. 

ii. The set U?™^~ A{ contains an initial segment of any string in some E n . Here 
m G N. 

Hence if U is a sequence from E°°, then at least one of its initial segments lies in 
some of the sets Aqm, Aqm+i, . . . , Aqm+1-i. This gives us the desired upper bound 
of Kolmogorov complexity of the segment. 

1. First of all, we construct a recursive sequence Ao, Ai, A2, . . . of sets such that: 

a) Both Ai C £ n ' and card A{ < cfi hold for each i G N. 

b) If meN is fixed, then the sets AQm *S°° / n , AQrn+i *E°° / n , . ..,AQm+1-i* 
S °° / n are pairwise disjoint, where n = ma,x{ni\i = qm, ^m+lj • • • ?<Zm+i— 1}-

2. Let m be fixed in the rest of the proof. We denote 

r 

s 

n 

= Qm+l ~ 1, 

= max{ni | i = r, r + 1, . . . , s}. 

Suppose that r < i < s and that the sets Ar, Ar+\, . . . , A;_i have been 
constructed. We put 

Ei := {x G Xni I U)-}r Ak * S°° / n n {x} * S° ° / n = 0 }. 

Hence Ei contains all the strings from S n i which are not the initial segments 
of strings from the set U]^}r Ak * S°°/n. 
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We consider two cases. If cardF^ < c^, we put Ai = _?»; then card A; < cfi 

holds. If card.E; > c^, then Ai contains the first cfi sequences from Ei (first 
with respect to a specified lexicographical order); hence cardA^ = cfi holds. 
Therefore, a) and b) are true in both cases. 

We started with i = r, i. e. with the empty sequence A r , . . . , Ar-\. Thus 
Ur

k=
1
rAk = 0 and Er = SUr are true, so that cardi5r > cfr holds. Therefore, 

we have card Ar = cfr. 

3. We prove that a), b) and Xs
i=rc

fi~ni > 1 (i.e. (6.7)) imply 

U U ^ * £ ° 7 n = £n . (6.9) 

It means that any sequence from E°° has an initial segment in some of the sets 
Ar, .Ar+i, . . . , As. We distinguish two cases. 

First, let card Ai = cfi hold for each i=-r , r + 1, . . . , s . Then 

p := Xs
i=rc~nicard Ai = £f_ rc*-n< > 1 

is true, as follows from (6.7). The inequality p < 1 follows from a), b) and 
Lemma 5.1. Hence we have p = 1 and (6.9) follows from Lemma 5.1. 

Second, let i e {r + 1, r + 2, . . . , s} be such that card .A; < cfi is true (recall 
that we have cardA r = cfr). Then 

(Ulz}rAk * S°° / n ) U (Ei * S°°/n) = Zn 

and Ai = Ei are true, so that (6.9) holds. 

4. The sequence A0, A\, Ai, . . . is obviously recursive, hence there is a constant 
C such that the inequality 

Kq(x\ni) < logc(cardAi) + C 

holds for each i e N and x e Ai. Moreover, logc(card.A;) < fa is true by a). 
So that 

Ky(x\m)<fi + C (6.10) 

takes place for each i e N and x e Ai. 

5. Let U e S°°. Then Un € S n , so that there is i e {r, r + 1, . . . , s} such that 
L7n e Ai * E°° / n , hence we have Uni G A{. Therefore, (6.8) follows from (6.10) 
with x = Uni. • 

The Martin-L6f's result on infinite oscillations stated above is a special case of 
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Corollary 5.1. Assume that both sequences .At and h = (ho, hi, h2, •..) are re
cursive sequences of naturals. Moreover, let hi < /. < nj hold for each i € At. 

If 
S £ 0 ^ - n i = o o , (6.11) 

then the class Cseq f J^ is empty. 

P r o o f . We can find a recursive sequence /g, /{ , / ^ . . . of naturals such that 
fi < hi holds for each i natural, 

lim hi — fl = oo 
i—-»oo 

takes place and " 

is valid. 
Then we find a recursive and increasing sequence <7o> <Z1> Q2, • • • of naturals such 

that 
E?™+1~V<-n< > 1 

*—Qm — 

is true for each m natural. 
Let U e E°°. Applying Theorem 5.1 we find that 

K*{Uni\ni)<fl + C 

holds for infinitely many i's, where C is a constant. Hence Ky{Uni \ rii) < fi is valid 
for infinitely many i's, which finishes the proof. ---
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