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APPROXIMATION OF CONTROL LAWS 
WITH DISTRIBUTED DELAYS: 
A NECESSARY CONDITION FOR STABILITY 

SABINE MONDIÉ, MICHEL DAMBRINE AND OMAR SANTOS 

The implementation of control laws with distributed delays that assign the spectrum of 
unstable linear multivariable systems with delay in the input requires an approximation of 
the integral. A necessary condition for stability of the closed-loop system is shown to be 
the stability of the controller itself. An illustrative multivariable example is given. 

1. INTRODUCTION 

A wide class of systems meet in practice have delays in their inputs [7]. The control of 
such systems can be achieved through the use of control laws that include distributed 
delays and having the appealing feature, when no uncertainty is present, to lead to 
a closed-loop system whose assigned dynamic is described by a polynomial as in the 
non-delayed case [1, 8]. 

As explained in the work of Manitius and Olbrot [8], when the system is unstable 
the realization of the distributed delay by a differential difference equation must 
be discarded since it involves an unstable pole-zero cancelation as for the Smith 
Predictor. It is then suggested to realize directly the control law by a numerical 
computation of the integral terms at each time instant. 

However, experimental results on a simple example presented by Van Assche et 
al [15], further examined in Engelsborghs et al [4] and the analysis of the resulting 
closed-loop quasipolynomial [13] show that, when the integral term is approximated 
by a quadrature method such as the trapezoidal rule, the closed-loop system is 
unstable when the precision of the approximation is sufficiently high. It was shown 
by Mondie and Santos [10] that, in the monovariable case, closed-loop stability can 
be achieved only if the ideal controller is stable. 

The problem is stated in a multivariable framework in Section 2, and the stability 
of the ideal control law is shown to be a necessary condition for the stability of the 
scheme when the controller is approximated in Section 3. An illustrative multivari
able example is presented in Section 4 and Section 5 is devoted to some comments 
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and concluding remarks. Technical results are collected in the Appendix. 

2. PROBLEM STATEMENT 

Consider a linear multivariable system with delay in the input described by 

x (t) = Ax{t) + Bu{t - h) (1) 

where A G Mnxn,B G MnXm and h > 0 is the delay. According to the proposal of 
Manitius and Olbrot [8], consider the control law described by the following Volterra 
integral equation of the second kind 

u(t) = K 

Notice that 

Bu(t -Һ) = BK 

x{t) + e~hA / e~eABu{t + 6)d9 
J-h 

x{t -h) + e~hA / e~eABu{t -h + 
J-h 

(2) 

)d 

and that for t > h, 9 G [-/i, 0] 

Bu{t -h + 6)=x{t + 9)- Ax{t + 9). 

Therefore, 

±{t) - Ax{t) = BK x{t -h) + e~hA / e~eA{x{t + 9)- Ax{t + 9))d9 
J-h 

and the closed-loop system is described by the functional differential equation of 
neutral type 

x{t) - BKe~hAC{xt) - Ax{t) - BKx{t - h) + BKAe~hAC{xt) = 0, 

where C is the operator defined as C : xt »-r J_h e~0Ax{t + 9) d9. 
The characteristic equation of the closed-loop system is then 

to(.(U-BKe-« £<*>-*>*)-A-BKe-» 

+ BKAe~hA I ee^sI-A^d9)=0. 

Using the equality 

Г e^-^d = (sl - A)-1 [i - e-"(s/-л)] , 

(3) 

(4) 

the expression (3) simplifies to 

det (sln -A- BKe~hA) = 0. 
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Now, the control law requires the realization of the integral term in (2). As explained 
in Manitius and Olbrot's paper [8], if matrix A is Hurwitz, this term can be realized 
as the solution of the differential difference equation 

z (t) = Az(t) + e~hABu(t) - Bu(t - h). 

However, if the matrix A is not Hurwitz, such a realization involves an unstable 
pole-zero cancellation. The authors suggest then to realize the control law using 
some numerical approximation of the integral. 

3. NECESSARY CONDITIONS FOR SPECTRAL ASSIGNMENT 

In this paper, the use of fixed-step approximation methods such as the trapezoidal 
or Newton-Cote methods [9] is considered for the realization of the integral term in 
the control law. In the general case, the approximation can be written as 

/

o q / \ 

e~eABu(t + 6)d9&y] r]ve^hABu ( t - V-h ) , 

(5) 

where q determines the precision of the method, and where the parameters r\v depend 
on the chosen numerical scheme. 

The closed-loop system is now described by the differential-difference equation of 
neutral type 

x(t) - BKe~hAM(xt) - Ax(t) - BKx(t - h) + BKAe-hAM(xt) = 0, (6) 

where J\f is the operator defined as 

Я : xt H- Y^ГÌPЄŁ
Ч

ҺAX (t - --лV 

P = O ^ У ' 

Next, our main result is proved. It is shown that the stability of the ideal controller 
itself is a necessary condition for the stability of the closed loop when a fixed-step 
approximation is used for the implementation of the control law. 

Theorem 1. Consider a spectrally controllable linear system with delay in the 
input described by 

x (t) = Ax(t) + Bu(t - h) 

where A G MnXn, B e MnXm and h > 0 is the delay, and a control law given by 

r r° l 
u(t) = K x(t) + e~hA I e~eABu(t + 9)d9 

L J-h 
that assigns theoretically a prescribed stable closed-loop structure with characteristic 
equation 

det( 5 / n - A - e~hABK) = 0. 
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The implementation of this control law through a constant step approximation 
method (5) for a sufficiently great q results in an unstable closed-loop system if 
the characteristic function of the control law 

det {Jm - Ke~hA(sI - A)-1 (I - e ^ * 7 " ^ } (7) 

has at least one zero with positive real part. 

Proof. We observe first that 

det {/m - Ke~hA(sI - A)'1 (I - e~h(sI-A>>)B} 

= det {/n - BKe-hA(sI - A)'1 (I - c " ^ ' 7 " ^ ) } 

which, according to (4), is equal to 

p(s) := det (i - BKe~hA f e ^ s 7 " ^ d ^ . 

Similarly, we denote pq(s) the characteristic quasipolynomial of the approximated 
control law: 

pq(s) :=det (i - BKe-hAf2vPe-*h{sI-A) ) . 

Assume now that p(s) has a zero in the complex right-half plane, namely So with 
Re(80) > 0. 

We first show that the sequence of functions pq(s) converges uniformly to p(s) in 
a given neighborhood of 8o-

For this, let us recall that for a smooth real function / the error between the 
integral value / ( / ) = J_h /(C)dC and its approximation Iq(f) obtained with a fixed-
step method depends on the value of q and is given by an expression of the form 

I(f)-Iq(f) = -^-fM(Co), 

where the point Co belongs to the interval [-/i, 0] and where a,/3 and 7 are positive 
integers that depend on the chosen method (for instance, in the trapezoidal method, 
j3 = 2, 7 = 2 and a = 12). This result may be easily extended to the case of a 
smooth function g : iR -r <Z7: 

\I(g)-Iq(9)\<^0^fi]\9
i7)(0)\- (8) 

Let X{ (i = l,...,fc) denote the eigenvalues of matrix A and r\i the order of 
multiplicity of A* with respect to the characteristic polynomial of A, and let Zij 
(i = ! , . . . ,&, j = 1,...,%) be the components of matrix A (see Chapter 5'in 
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Gantmacher [5]). We then have 

f° ee<'I-A>M-YiThe-W'I-A) 
•*-h p=0 

= E E Z " (iV*-1**-^) -I^-'e^-^)) . 

Using inequality (8) with g(6) = 0i le9^8 Xi\ it is straightforward to prove that 
there is a positive real number M such that 

| | A ( . ) - A , ( « ) | | < ^ 

for all s e C = {s G <D : |s — 8o| < £}, where e > 0, ||. || denotes some matrix norm, 

A(s) = In-BKe~hA J°he
0(sI-A)d9,aiid Aq(s) = In-BKe-hAZq

p=oVPe^h{sI-A) • 
This proves that the sequence {Ag(s)} converges uniformly to the matrix A(s) 

on C. Because of the continuity of the determinant application and C is a compact 
set of <F, we conclude that {pq(s)} converges uniformly to p(s) on C as well. Fi
nally, it follows from Lemma 2 of the Appendix that for q sufficiently large, each 
quasipolynomial pq(s) has a root SQ such that the sequence {SQ} tends to so. 

Now, the characteristic quasipolynomial of the approximated closed-loop system 
is given by the Laplace transform of (6): 

Q 

det(sAq(s) - A - BKe~hs + BKAe~hA~[\]r}pe-*h(sI-A)). (9) 
v=o 

This determinant can be written as 

a0 ( e~ *S) sU + a i (e~ *S) s""1 + • • • + On (e~« s ) 

where ai(e~~s), i = 0 , . . . , n are quasipolynomials in e~~s and where the coefficient 
of highest degree in s, an(e~~5), coincides with the characteristic function pq(s) of 
the approximated control law. 

As shown above, ao(e~~s) has a root located at s% with Re(8g) > 0, for q suffi
ciently large. According to Lemma 1 of the Appendix, this particular neutral-type 
quasipolynomial has an infinite number of roots located with regularity on a vertical 
line with this same positive real part. 

Clearly, such roots of pq(s) are roots of the analytic function f(s) defined as 

f{s) := a0(e-^)sr 

detlln-BK-2vPe-W3l-A)Un. 
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Consider now the analytic function g(s) 

g{s) := { 0 1 ( e " ' * ) a*-1 + ... + an ( V s t ) } . 

Notice that there exists an isolated zero, say s0, of magnitude large enough on the 
above mentioned vertical line with positive real part Re(8g) so that on the contour 11 
centered at s0 of radius To, chosen so that 1Z belongs to the right-half complex plane, 
we have that \f(s)\ > \g(s)\ for each point on 1Z and f(s) and g(s) do not vanish 
on TZ. Therefore it follows from Rouche's Theorem (see Chapter 12 in Bellman and 
Cooke [3]) that f(s) and f(s) +g(s), i. e. the closed-loop characteristic function (9), 
have the same number of zeros inside 1Z and we can conclude that (9) has a zero 
inside this contour. This zero has indeed positive real part and the result follows. • 

Remark 1. A consequence of the above result is that the parameter K in the 
control law (2) must meet not only the design requirements of the assigned closed-
loop, but it also must be such that the control law itself is stable. 

Remark 2. In the general multivariable case, for a choice of K leading to a desired 
closed-loop assignment, one can verify, using a graphical test (such as a Mikhailov 
diagram), if the necessary condition is satisfied or not. It is also possible to perform 
a time domain analysis of the stability of the control law with respect to the size of 
the delay /i, using the Lyapunov-Krasovskii approach. 

4. ILLUSTRATIVE EXAMPLE 

In simple cases, it is possible to parametrize the closed-loop and the control law 
characteristic equation in order to perform a stability analysis with respect to the 
parameters of K. Consider the example introduced by Manitius and Olbrot [8]: 

u(t-h). 

where h = 1. According to the design procedure recalled in Section 2 the control 
law (2) with [ki,k2] = \—4eh + 1, —4eh\ that assigns the closed-loop (s + l ) 2 is: 

/

0 rO 

u(t + 6)d9-4 eeu(t + 6) d6. (10) 
-h J-h 

It is described in the frequency domain as: 
l_e-hs 1 _ e-h(s-i)\ 

1 - —^ + 4 u(s) = (1 - 4eh) Xl(s) - 4ehx2(s). 
s s — 1 / 

The simulation results when the integrals in (10) are approximated using a trape
zoidal quadrature method [9] show the instability of the closed-loop system (Figure 1). 

" i i (*) ' 
. x2 (ř) = 

0 0 ' 
1 1 

' Xi(í) " 
. x2{ť) + ' 1 ' 

0 
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Fig. 1. Closed-loop response. 

This behavior is explained, according to the arguments presented in the previous 
section by the instability of the ideal controller, whose characteristic equation is: 

, l-e-ha l - e " ^ 8 - 1 ) 
1 + 4 = 0. (И) 

The Mikhailov diagram of (11) shows indeed two encirclements of zero indicating 
two unstable roots (Figure 2). 

Im 

7 Re 

Fig. 2. Controller Mikhailov diagram. 

In this example, it is possible to parametrize the control law in order to find if 
other spectrum assignments fullfil the necessary condition of stability of the con
troller. A D-partition analysis [7] of the characteristic equation of the controller and 
of the closed-loop assigned spectrum is performed in order to do so. This analysis is 
based on the fact that the roots move continuously as the parameters vary continu
ously, and that they necessarily cross the imaginary axis when they go from a region 
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of stability to one of instability. Moreover, according to the argument principle, the 
number of roots in a given region is constant. For convenience, the parameters are 
chosen as a\ — k\ — k2 and a2 — e~hk2 . The resulting parametrized ideal controller 
characteristic equation is 

/ l-e-hs l _ e - f c ( - - i ) \ 
1 - a i a2 = 

V * » - - / 
0 

and the parametrized closed-loop spectrum is given by 

s2 - (1 + ai + a2) s + ai = 0. 

The boundaries of the regions are determined by substituting s = 0 and s = ju. 
The stability regions of the closed-loop and of the ideal controller shown in Figure 3 
are named Regions I and II, respectively. Their intersection is called Region III. It 
is the region where there is hope to have closed-loop stability. 

Fig. 3. Stability regions of the controller (I) and of the closed-loop (II). 

It follows from Figure 3 that a choice of a\ — 0.25 and a2 = —1.3, insures the 
stability of the ideal closed-loop spectrum and of the ideal control law. One can verify 
with the help of Mikhailov diagrams that for a numerical approximation of q = 16 
the approximated control law is stable but that the resulting closed-loop is unstable. 
Stability of the closed-loop is achieved for higher precision of the approximation of 
the control law, namely q > 150. 

This fact raises the question wether or not, for precise enough approximations, the 
stability of the ideal closed-loop, combined with that of the controller are sufficient 
conditions for the stability of the closed-loop approximated scheme. However, the 
analysis of the previous section is based on the study of the roots of large magnitude, 
and although we know from Rouche's Theorem that there are roots located in the 
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vicinity of the ideal assigned roots, we cannot say much about the location of roots 
of medium magnitude. 

Notice that in this example, the region where these conditions are fulfilled (Region 
III in Figure 3) is quite reduced, hence the freedom of the designer in assigning the 
spectrum is very restricted. 

5. COMMENTS AND CONCLUSIONS 

The origin of instability arising when an approximation of the control law of Manitius 
and Olbrot [8] is used to stabilize multivariable input delay systems is explained with 
the help of a complete frequency domain analysis of the closed-loop quasipolynomial. 
Roughly speaking, one can say that if the control law is unstable, a precise enough 
approximation has an unstable root in the vicinity of this root. Due to its particular 
nature, the approximated control law, has an infinite number of roots of arbitrarily 
large magnitude associated to each root, in particular the unstable ones. The fact 
that the characteristic equation of the control is the principal term of the closed-
loop characteristic equation, implies that its unstable roots of large magnitude are 
transmitted to the closed-loop. 

Control laws that include distributed delay terms are common in control laws 
for delayed systems. This is the case of well known control schemes such as those 
based on a prediction (Smith controller [12, 14], Process Model Control [17]) or those 
derived from design procedures in appropriate rings [6,11] or Bezout domain [2]. The 
study performed in this paper indicates that caution is in order when approximating 
these distributed delays. 

In the case of linear systems with commensurate delays in the framework of a 
Bezout domain [2], a parametrization of stabilizing controllers in the spirit of Youla-
Bongiorno can be achieved. This raises the question of finding conditions for the 
existence of a stable stabilizing controller that would generalize the concept of strong 
stabilization for linear systems [16]. 

APPENDIX 

The following key lemmas for the proof of our main result are recalled or proved 
here. 

L e m m a 1. (Bellman and Cooke [3]) Consider a quasipolynomial such that 

/ 

f(s,ehs) = f(ehs) = J2Pjeih3-
i=1 

Then the zeros of f(ehs) are given by 

s = h~1log(zj) = / i - 1 log |z i |+ i / i - 1 {arg(z j ) + 2A;7r}, 

j = 1 , . . . , / ; A, = 0 , ± l , ± 2 , . . . 
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where Zj,j = 1 , . . . , / are the I zeros of f(z), the polynomial in z with constant 
coefficients of degree / obtained by letting z = e -hs 

Remark 3. (Bellman and Cooke [3]) The zeros of f(ehs) lie on a finite number of 
chains. Each chain consists of a countable infinity of zeros spaced 2'irh~1 units apart 
on a vertical line defined by Re(s) = h~l log \ZJ\ . 

Lemma 2. Consider a function / with an isolated zero at s0 G <C, which is analytic 
in a neighborhood V of s0, and a sequence of analytic functions {/n} in V that 
uniformly converge to / in V. Then, Ve > 0, there exist IV > 0 such that, for n > IV, 
fn has a zero in an ^-neighborhood s0. 

P r o o f . Consider the circle C centered at s0 of radius e > 0. For small enough 
e we have that rj := min{|/(s)| ;s € C} is strictly positive (because / is continuous 
and has an isolated zero at s0). Now, it follows from the uniform convergence of 
/ „ to / , that there exist IV > 0 such that Vn > IV, Vs G C, | / n - / | < 77. Vs G C, 
\fn — / | < V -z \f(s)\ > therefore Rouche's Theorem allow us to conclude that, as / , 
fn = f + (fn — f) has a zero inside C. • 
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