ON THE *g*-ENTROPY AND ITS HUDETZ CORRECTION¹

BELOSLAV RIEČAN

The Hudetz correction of the fuzzy entropy is applied to the g-entropy. The new invariant is expressed by the Hudetz correction of fuzzy entropy.

1. INTRODUCTION

The fuzzy entropy h(T) of a dynamical system has been introduced in [5] (see also [1, 3, 8, 10]). Generalizing the notion of a fuzzy partition Mesiar and Rybárik have studied the g-entropy (see [7, 10, 11]) based on the Pap g-calculus ([9]). The notion is based on an increasing bijective function $g: [0, \infty] \to [0, \infty]$, such that g(0) = 0 and g(1) = 1. The choice g(x) = x leads to the fuzzy entropy. The corresponding theorem states that to any g-decomposable measure there exists a fuzzy measure such that the g-entropy can be expressed by the fuzzy entropy.

Of course, the fuzzy entropy depends on a family \mathcal{F} of fuzzy sets. If \mathcal{F} contains all constant functions, then the fuzzy entropy equals infinity. This defect has been corrected by Hudetz ([4]) by introducing a correcting member in the definition of the entropy of a fuzzy partition.

The aim of this paper is a study of an analogous correction in the case of g-entropy. Similarly as Mesiar and Rybárik in [7] we prove the corresponding representation theorem. We construct also an example demonstrating that the Hudetz modification of g-entropy can be used although the usual g entropy is not available.

2. g-ENTROPY

Let $(\Omega, \mathcal{S}, P, T)$ be the classical dynamical system, i.e. (Ω, \mathcal{S}, P) is a probability space and $T : \Omega \to \Omega$ is a measure preserving transformation, i.e. $A \in \mathcal{S}$ implies $T^{-1}(A) \in \mathcal{S}$ and $P(T^{-1}(A)) = P(A)$.

We shall consider a σ -algebra \mathcal{F} of \mathcal{S} -measurable fuzzy subsets of Ω , i. e. functions $f: \Omega \to [0, 1]$ satisfying the following conditions:

(i) $1_{\Omega} \in \mathcal{F}$;

¹Supported by grant VEGA 1/9056/02.

- (ii) if $f_1, f_2 \in \mathcal{F}$, then $(f_1 f_2)^+ \in F$;
- (iii) if $f_n \in \mathcal{F}, n = 1, 2, ...,$ then $\bigvee_{n=1}^{\infty} f_n \in \mathcal{F};$
- (iv) if $f_1, f_2 \in \mathcal{F}$, then $f_1 \cdot f_2 \in \mathcal{F}$.

Consider further a \oplus -decomposable (with respect to a function g mentioned above) measure on \mathcal{F} , i. e. a mapping $m : \mathcal{F} \to [0, 1]$ such that $m(1_{\Omega}) = 1$, $m(0_{\Omega}) = 0$, and

$$m(g^{-1}\left(\sum_{n=1}^{\infty}g(f_n)\right) = g^{-1}\left(\sum_{n=1}^{\infty}g(m(f_n))\right)$$

whenever $f_n \in \mathcal{F}$ (n = 1, 2, ...) are such that $\sum_{n=1}^{\infty} g \circ f_n \leq 1$. (Recall that by [6] the function $g \circ f_n \in \mathcal{F}$). If *m* satisfies the above condition, then $\mu = g \circ m \circ g^{-1}$: $\mathcal{F} \to [0, 1]$ is a fuzzy measure, i.e.

$$\mu\left(\sum_{n=1}^{\infty} f_n\right) = \sum_{n=1}^{\infty} \mu(f_n)$$

whenever $f_n \in \mathcal{F}$ (n = 1, 2, ...) and $\sum_{n=1}^{\infty} f_n \leq 1$.

A family $\mathcal{A} = \{f_1, \ldots, f_k\} \subset \mathcal{F}$ is a g-fuzzy partition of Ω , if $\sum_{i=1}^k g(f_i(\omega)) = 1$ for any $\omega \in \Omega$. The g-entropy $H_g(\mathcal{A})$ of the g-fuzzy partition \mathcal{A} is defined by the formula

$$H_g(\mathcal{A}) = g^{-1}\left(\sum_{i=1}^k g(\Phi(m(f_i)))\right),\,$$

where $\Phi = g^{-1} \circ \varphi \circ g$, $\varphi(x) = -x \log x$ for x > 0, $\varphi(0) = 0$, hence

$$H_g(\mathcal{A}) = g^{-1}\left(\sum_{i=1}^k \varphi(\mu(g(f_i)))\right).$$

If $\mathcal{A} = \{f_1, \ldots, f_k\}$ and $\mathcal{B} = \{h_1, \ldots, h_t\}$ are two *g*-fuzzy partitions, then their common refinement $\mathcal{A} \vee \mathcal{B}$ is given by the formula

$$\mathcal{A} \vee \mathcal{B} = \{g^{-1}((g \circ f_i) \cdot (g \circ h_j)); i = 1, \dots, k, j = 1, \dots, t\}.$$

It is possible to show the existence of the limit

$$h_g(\mathcal{A},T) = \lim_{n \to \infty} g^{-1} \left(\frac{1}{n} g(H_g\left(\bigvee_{i=0}^{n-1} T^{-i} \mathcal{A}\right) \right),$$

where $T^{-i}(\mathcal{A}) = \{f_1 \circ T^i, \dots, f_k \circ T^i\}$. The entropy of T is defined by the formula

$$h_g(T) = \sup\{h_g(\mathcal{A}, T); \mathcal{A} \text{ is a } g\text{-fuzzy partition}\}\$$

As we have already mentioned, the fuzzy entropy h(T) can be obtained putting $g(u) = u, u \in [0, 1]$. In the following proposition the symbols $H_g(\mathcal{A}), h_g(\mathcal{A}, T), h_g(T)$ are taken with respect to the given g-decomposable measure m, the symbols $H(\mathcal{B}), h(\mathcal{B}, T), h(T)$ with respect to the induced fuzzy measure $\mu = g \circ m \circ g^{-1}$.

Recall that if $\mathcal{A} = \{f_1, \ldots, f_k\}$ is a g-fuzzy partition and $h_i = f_i \circ g(i = 1, 2, \ldots, k)$, then $g(\mathcal{A}) = \{h_1, \ldots, h_k\}$ is a fuzzy partition, i.e. $\sum_{i=1}^k h_i = 1$.

Proposition. For any dynamical system (Ω, S, P, T) , any g and any g-partition \mathcal{A} there holds:

- (i) $H_g(A) = g^{-1}(H(g(A))),$
- (ii) $h_g(A, T) = g^{-1}(h(g(A), T)),$
- (iii) $h_g(T) = g^{-1}(h(T)).$

Proof. [10], Proposition 10.6.6.

3. HUDETZ CORRECTION

Let us start with a dynamical system $(\Omega, \mathcal{S}, P, T)$. Define μ on the family of all integrable functions by the formula $\mu(f) = \int_{\Omega} f \, dP$. Let $m = g^{-1} \circ \mu \circ g$. The Hudetz correction instead of entropy of a fuzzy partition $\mathcal{B} = \{h_1, \ldots, h_k\}$

$$H(\mathcal{B}) = \sum_{i=1}^{k} \varphi(\mu(h_i))$$

uses the difference

$$H^{\flat}(\mathcal{B}) = H(\mathcal{B}) - F(\mathcal{B})$$

where

$$F(\mathcal{B}) = \mu\left(\sum_{i=1}^{k} \varphi(h_i)\right).$$

Mention that the sum $\sum_{i=1}^{k} \varphi(h_i)$ need not belong to \mathcal{F} , of course μ is defined on the family of all integrable functions on Ω . We want to define a g-analogy of the value $F(\mathcal{B})$. Recall that in g-calculus

$$a \oplus b = g^{-1}(g(a) + g(b))$$

(\oplus is a partial operation on [0,1], $a \oplus b$ is defined if $g(a) + g(b) \leq 1$). Therefore the entropy $H_g(\mathcal{A})$ can be reformulated as

$$H_g(\mathcal{A}) = \bigoplus_{i=1}^k \Phi(m(f_i)).$$

Similarly

$$a \odot b = g^{-1}(g(a) \cdot g(b)),$$

whence

$$\mathcal{A} \lor \mathcal{B} = \{f_i \odot h_j; i = 1, \dots, k, j = 1, \dots, t\}$$

Analogously $a \ominus b$ could be defined by the formula

$$a \ominus b = g^{-1}(g(a) - g(b)),$$

of course, only if $g(b) \leq g(a)$, i.e. $b \leq a$. Since we want to define

$$F_g(\mathcal{A}) = m\left(igoplus_{i=1}^k \Phi(f_i)
ight),$$

and

$$H^{\flat}(\mathcal{A}) = H_g(\mathcal{A}) \ominus F_g(\mathcal{A})$$

we must to prove the inequality $F_g(\mathcal{A}) \leq H_g(\mathcal{A})$.

\$

Lemma 1. $F_g(\mathcal{A}) = g^{-1}(F(g(\mathcal{A})))$ for any g-fuzzy partition \mathcal{A} .

Proof. We have $m = g^{-1} \circ \mu \circ g$, $\bigoplus_{i=1}^{k} a_i = g^{-1} \left(\sum_{i=1}^{k} g(a_i) \right)$, $\Phi = g^{-1} \circ \varphi \circ g$, $g(\mathcal{A}) = \{g \circ f_1, \ldots, g \circ f_k\}$. Therefore

$$m\left(\bigoplus_{i=1}^{k} \Phi(f_{i})\right) = g^{-1} \circ \mu \circ g \circ g^{-1}\left(\sum_{i=1}^{k} g(g^{-1} \circ \varphi \circ g)(f_{i})\right)$$
$$= g^{-1}\left(\mu\left(\sum_{i=1}^{k} \varphi(g \circ f_{i})\right)\right) = g^{-1}(F(g(\mathcal{A}))\right).$$

Lemma 2. $F_g(\mathcal{A}) \leq H_g(\mathcal{A})$ for any g-fuzzy partition \mathcal{A} .

Proof. By Proposition we have $H_g(\mathcal{A}) = g^{-1}(H(g(\mathcal{A})))$, by Lemma 1 we have $F_g(\mathcal{A}) = g^{-1}(F(g(\mathcal{A})))$. Since φ is concave, we have

$$\mu(\varphi(h_i)) = \int_{\Omega} \varphi(h_i) \, \mathrm{d}P \le \varphi\left(\int_{\Omega} h_i \, \mathrm{d}P\right) = \varphi(\mu(h_i)),$$

hence

$$F(g(\mathcal{A})) = \mu\left(\sum_{i=1}^{k} \varphi(h_i)\right) = \sum_{i=1}^{k} \mu(\varphi(h_i)) \le \sum_{i=1}^{k} \varphi(\mu(h_i)) = H(g(\mathcal{A})),$$

and

$$F_g(\mathcal{A}) = g^{-1}(F(g(\mathcal{A}))) \le g^{-1}(H(g(\mathcal{A}))) = H_g(\mathcal{A}).$$

496

Definition. For any g-fuzzy partition $\mathcal{A} = \{f_1, \ldots, f_k\}$ we define

$$H^{\flat}_{g}(\mathcal{A}) = H_{g}(\mathcal{A}) \ominus F_{g}(\mathcal{A})$$

Theorem 1. $H_g^{\flat}(\mathcal{A}) = g^{-1}(H^{\flat}(g(\mathcal{A})))$ for any g-fuzzy partition \mathcal{A} .

Proof. By the definition of the operation Θ , Proposition and Lemma 1 we obtain

$$\begin{aligned} H_{g}^{\flat}(\mathcal{A}) &= H_{g}(\mathcal{A}) \ominus F_{g}(\mathcal{A}) \\ &= g^{-1}(g((H_{g}\mathcal{A})) - g(F_{g}(\mathcal{A}))) \\ &= g^{-1}(g(g^{-1}(H(g(\mathcal{A}))) - g(g^{-1}(F(g(\mathcal{A}))))) \\ &= g^{-1}(H(g(\mathcal{A})) - F(g(\mathcal{A}))) \\ &= g^{-1}(H^{\flat}(g(\mathcal{A}))). \end{aligned}$$

Theorem 2. $H_g^{\flat}\left(\bigvee_{i=0}^{n-1} T^{-i} \mathcal{A}\right) = g^{-1}\left(H\left(\bigvee_{i=0}^{n-1} T^{-i}(g(\mathcal{A}))\right)\right)$ for any g-fuzzy partition \mathcal{A} .

Proof. We have $T^{-i}(\mathcal{A}) = \{f_1 \circ T^i, \dots, f_k \circ T^i\}, T^{-i}(g(\mathcal{A})) = \{g \circ f_1 \circ T^i, \dots, g \circ f_k \circ T^i\}$. Of course, recall the definition of the refinement of g-fuzzy partitions: $\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{A})$ consists of all \odot -products

$$f_{i_1} \odot (f_{i_2} \circ T) \odot \ldots \odot (f_{i_n} \circ T^{n-1})$$

= $g^{-1}((g \circ f_{i_1}) \cdot ((g \circ f_{i_2}) \circ T) \cdot \ldots \cdot ((g \circ f_{i_n} \circ T^{n-1}))$

i.e. of all functions $g^{-1} \circ h$, where $h \in \bigvee_{i=0}^{n-1} T^{-i}(g(\mathcal{A}))$. Therefore

$$g\left(\bigvee_{i=0}^{n-1}T^{-i}(\mathcal{A})\right)=\bigvee_{i=0}^{n-1}T^{-i}(g(\mathcal{A})),$$

and

$$\begin{split} H_g^{\flat} \left(\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{A}) \right) &= g^{-1} \left(H\left(g\left(\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{A}) \right) \right) \right) \\ &= g^{-1} \left(H\left(\bigvee_{i=0}^{n-1} T^{-i}(g(\mathcal{A})) \right) \right). \end{split}$$

Theorem 3. For any g-fuzzy partition \mathcal{A} there exists

$$h_g^{\flat}(\mathcal{A},T) := \lim_{n \to \infty} g^{-1}\left(rac{1}{n}
ight) \odot H_g^{\flat}\left(\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{A})
ight),$$

and there holds

$$h_g^{\flat}(\mathcal{A},T) = g^{-1}(h^{\flat}(g(\mathcal{A}),T)).$$

Proof. By the definition of \odot and Theorem 2 we have

$$g^{-1}\left(\frac{1}{n}\right) \odot H_g^{\flat}\left(\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{A})\right)$$

= $g^{-1}\left(g\left(g^{-1}\left(\frac{1}{n}\right)\right)g\left(H_g^{\flat}\left(\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{A})\right)\right)\right)$
= $g^{-1}\left(\frac{1}{n}H\left(\bigvee_{i=0}^{n-1} T^{-i}(g(\mathcal{A})\right)\right).$

Of course,

$$\lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} T^{-i}(g(\mathcal{A}))\right) = h^{\flat}(g(\mathcal{A}), T).$$

Since g^{-1} is continuous,

$$g^{-1}(h^{\flat}(g(\mathcal{A}),T)) = \lim_{n \to \infty} g^{-1} \left(\frac{1}{n} H\left(\bigvee_{n=0}^{n-1} T^{-i}(g(\mathcal{A})\right) \right)$$
$$= \lim_{n \to \infty} g^{-1} \left(\frac{1}{n} \right) \odot H_g^{\flat}\left(\bigvee_{i=0}^{n-1} T^{-i}(\mathcal{A}) \right)$$
$$= h_g^{\flat}(\mathcal{A},T).$$

Definition. Hudetz g-entropy $h_g^{\flat}(T)$ is defined by the formula

 $h_g^{\flat}(T) = \sup\{h_g^{\flat}(\mathcal{A}, T); \mathcal{A} \text{ is a } g\text{-fuzzy partition}\}.$

Theorem 4. $h_g^{\flat}(T) = g^{-1}(h^{\flat}(T))$.

Proof. By Theorem 3

$$h_g^\flat(\mathcal{A},T) = g^{-1}(h^\flat(g(\mathcal{A}),T) \le g^{-1}(h^\flat(T))$$

for any g-fuzzy partition \mathcal{A} . Therefore

$$h_g^{\flat}(T) = \sup\{h_g^{\flat}(\mathcal{A},T);\mathcal{A}\} \le g^{-1}(h^{\flat}(T)).$$

Now let $\mathcal{B} = \{h_1, \ldots, h_k\}$ be any fuzzy partition, i.e. $\sum_{i=1}^k h_i = 1$. Then $\mathcal{A} = \{g^{-1} \circ h_1, \ldots, g^{-1} \circ h_k\}$ is a g-fuzzy partition, and $g(\mathcal{A}) = \mathcal{B}$. Therefore

$$h_g^{\flat}(\mathcal{A}, T) \le h_g^{\flat}(T).$$

 \mathbf{But}

$$h_g^{\flat}(\mathcal{A},T) = g^{-1}(h^{\flat}(g(\mathcal{A}),T)) = g^{-1}(h^{\flat}(\mathcal{B},T))$$

We have obtained

$$h^{\flat}(\mathcal{B},T) = g(h_g^{\flat}(\mathcal{A},T)) \le g(h_g^{\flat}(T))$$

for any fuzzy partition \mathcal{B} . Therefore

$$h^{\flat}(T) = \sup h^{\flat}(\mathcal{B}, T) \le g(h^{\flat}_{a}(T)).$$

Example. Let $\Omega = [0, 1), S = \mathcal{B}([0, 1))$ be the σ -algebra of Borel subsets of $[0, 1), P = \lambda$ be the Lebesgue measure, $T : \Omega \to \Omega, T(x) = 2x \pmod{1}$, i.e. T(x) = 2x, if x < 1/2, T(x) = 2x - 1, if $x \ge 1/2, \mathcal{F}$ be the family of all S-measurable functions $f : \Omega \to [0, 1], g(x) = x^2$. Let

$$\mathcal{A} = \{f_1, \ldots, f_{k^2}\},\$$

where $f_i = k^{-2}, i = 1, 2, ..., k^2$. Then $h_g(\mathcal{A}, T) = (\log k^2)^{1/2}$, whence

 $h_g(T) = \infty.$

Put now $\mathcal{B} = \{\chi_{<0,1/2}, \chi_{<1/2,1}\}$. Then \mathcal{B} is generating partition, whence

$$h^{\flat}(T) = h(\mathcal{B}, T) = \log 2$$

by [10] Theorem 10.3.16. Now

$$h_a^{\flat}(T) = (\log 2)^{1/2}$$

by Theorem 4.

(Received March 18, 2002.)

REFERENCES

- [1] A.I. Ban: Entropy of fuzzy T-dynamical systems. J. Fuzzy Math. 6 (1998), 351–366.
- [2] D. Butnariu and E. P. Klement: Triangular norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111-143.
- [3] D. Dumitrescu: Entropy of fuzzy dynamical systems. Fuzzy Sets and Systems 70 (1995), 45-57.
- [4] T. Hudetz: Quantum topological entropy. In: Quantum probability VIII (L. Accardi et all, eds.), World Scientific 1992.
- [5] P. Maličký and B. Riečan: On the entropy of dynamical systems. In: Proc. Conf. Ergodic Theory and related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135-138.
- [6] R. Mesiar and M. Navara: T_s -tribes and T_s -measures. J. Math. Anal. Appl. 201 (1996), 91–102.
- [7] R. Mesiar and J. Rybárik: Entropy of a fuzzy partition: general model. Fuzzy Sets and Systems 99 (1998), 73-79.
- [8] R. Mesiar and D. Vivona: A note to the entropy of fuzzy T-dynamical systems. J. Fuzzy Math. To appear.
- [9] E. Pap: Null-Additive Set Functions. Kluwer, Dordrecht and Ister, Bratislava 1995.
- [10] B. Riečan and T. Neubrunn: Integral, Measure, and Ordering. Kluwer, Dordrecht and Ister, Bratislava 1997.

,

[11] J. Rybárik: The entropy based on pseudoarithmetical operations. Tatra Mountains Math. Publ. 6 (1995), 157-164.

Prof. RNDr. Beloslav Riečan, DrSc., Mathematical Institute of the Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, and Department of Mathematics, Faculty of Natural Sciences – Matej Bel University, Tajovského 40, 974 01 Banská Bystrica. Slovakia.

 $e\text{-mail: } rie can @mat.savba.sk, \ rie can @fpv.umb.sk \\$

۰.