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ON IMPROVING SENSITIVITY 
OF THE KALMAN FILTER 

P E T R FRANEK 

The impact of additive outliers on a performance of the Kalman filter is discussed and 
less outlier-sensitive modification of the Kalman filter is proposed. The improved filter is 
then used to obtain an improved smoothing algorithm and an improved state-space model 
parameters estimation. 

1. INTRODUCTION 

State-space models represent a powerful modeling tool which opens a unified way 
of dealing with a wide range of time series models. A univariate state-space model 
consists of two processes - an unobservable n-variate Markov chain (xt)tej, the state 
procesSj and the observation process (yt)teJ arising from the state process via some 
transformation. In a general state-space model it is assumed that (i) conditionally 
on (xt)teT the observations yt are independent and (ii) yt depends only on Xt. The 
prominent role among the state-space models belongs to the linear state-space model 
in which the state xt is a linear function of the state xt-\ and an additive random 
term and the observation yt is a linear function of the state Xt and an additive 
random term. 

The basic task solved in the state-space model environment is an estimation of 
unobserved states based on observed values. In the linear state-space model the 
linear minimum variance estimate of xt based on observations 2/1,.. •, yt 1s given by 
the Kalman filter introduced in [11]. Its performance, however, may be negatively 
affected by additive outliers - outlying observations caused by additive errors enter
ing into the linear equation that transforms a state into an observation. This type of 
outlying observations is quite usual in practice and it is therefore desirable to look 
for modifications of the Kalman filter less sensitive to such errors in data. 

Robust modifications of the Kalman filter were already sought by many authors. 
Generally, there are two main attitudes to this problem. First group of authors 
applies the technique of M-estimates and the robust estimate of the state is obtained 
by applying Li-norm or other Huber-like function that bounds an impact of the 
outlying observation. For more details about this approach refer for example to 
[4] or [6]. Second group of authors deals the problem from the Bayesian point of 
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view and general heavy-tailed distributions are used for filtering. Unfortunately, the 
simple recursive form of the Kalman filter is lost in this situation and the filtering 
recursions have to be performed numerically or using Monte-Carlo simulations. This 
concept, quite popular recently, is described for example in [12, 14, 15, 16] or [17]. 
For the most recent achievements at the field of the general state-space models refer 
for example also to [7, 13] or [19]. 

Both concepts have their benefits and drawbacks. In the first approach the simple 
recursive and linear structure of the Kalman filter is preserved but the observations 
are mechanically clipped without any analysis of a nature of the outliers (the missing 
theory justifying this approach was lately presented in [18]). The second approach 
may turn into numerically demanding solutions. 

A Kalman filter modification proposed in this paper combines both approaches. It 
preserves the simple recurrent form of the Kalman filter but the updating function 
determining the influence of a new observation on the filtered estimate is chosen 
on-line according to a nature of the outlying observation. 

2. STATE-SPACE MODEL DEFINITION AND THE KALMAN FILTER 

2.1 . State—space model definition 

A univariate linear state-space model of a time series will be used in this paper. The 
model is assumed to be in the form 

yt = hxt+vt 

xt = Fxt-i+wu (1) 

where xt is an unknown n-variate state vector and yt is a univariate observation, h is 
a known (1 x n) vector, F is a known (n x n) matrix, and vt and wt are independent 
centered random residuals with v a r ^ = a2 and variuj = .R, a2 being an unknown 
value and R being a known (n x n) matrix. For the starting state XQ the standard 
assumptions Exn = #o and varxn = Pn will be used. 

If parameters h, F, a2 and R are constant in time (as is the case in this paper), 
the model (1) is referred to as time-invariant. If the errors vt and wt are assumed 
to be Gaussian, the model (1) is referred to as Gaussian. Unless otherwise stated 
the model (1) will be assumed to be Gaussian in this paper. 

2.2. The Kalman filter 

Denoting the history of observations up to time t as Yt = {t/ i , . . . ,yt} the best 
unbiased linear estimate xt\t of the unknown state xt (based on Yt) and its covariance 
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matrix Pt\t = E (xt - xt\t)(xt — xt\t)' are given by the Kalman filter recursions 

xt\t = xt\t-i + Pt\t-ih'dt2(yt - hxt\t-i) 

xt\t-i = Fxt-i\t^i 

Pt\t = Pt\t-i - Pt\t-ih'dt
2hPt]t„i 

Pt\t-i = FP^i^F'+ R 

d^hP^h' + a2, (2) 

where t G T = {1 ,2 , . . .} and the filter is started by using £0|o = x0
 a n d P 0 | 0 = 

P 0 . In the Gaussian linear state-space model it is C(xt\Yt) -= N(xt\t,Pt\t), i.e. 
the conditional distribution of the state given the history of observations is fully 
determined by the output of the Kalman filter. 

Denote yt = hxt\t_i. The terms It = yt — yt are called innovations. According to 
the nature of the Kalman filter the innovations are centered, serially uncorrelated and 
the variables d2 are their variances. In the Gaussian state-space model it is C(It) = 
N(0,d2) and the innovations are independent (refer to [1] for further discussion). 

The Kalman filter is said to converge to a stable solution if the covariance matrix 
Pt\t-i (and hence also the matrix Pt\t) converges to a constant matrix. This feature 
is determined by the underlying state-space model. The Kalman filter run in a time 
invariant state-space model (1) converges to the stable solution if at least one of the 
following conditions applies: 

- |Ai(P)| < 1 for i = 1 , . . . ,n, Xi(F) being an eigenvalue of the matrix F 
(asymptotical stability condition), and P 0 > 0; 

- there is a matrix S such that \\{(F+GSr)\ < 1, i = 1 , . . . , n, G being a matrix 
satisfying GG' = R (stabilisability condition), there is a matrix D such that 
|Ai(P + Dh)\ < 1, i = 1 , . . . ,n (detectability condition), and P 0 > 0. 

If the Kalman filter converges to the stable solution, the impact of the assumption 
made about the unknown starting state (i. e. Xo and P 0 ) is forgotten in time. It may 
be seen from the stabilisability and detectability conditions that this diminishing 
effect depends on the positive definiteness of the matrix JR. Proofs of these features 
may be found in [1] or in [14]. 

3. KALMAN FILTER PERFORMANCE ON DATA 
WITH ADDITIVE OUTLIERS 

3.1. Model of additive outliers 

Additive outliers are usually modeled by replacing the observation error term vt with 
the following error term: 

(1 - Zt)vt + Ztqt. (3) 

Here vt ~ N(0,a2) corresponds to errors from the model (1), qt ~ Ht (Ht being a 
centered symmetric distribution with a variance ty2, ty2 > o2) axe errors producing 
the outliers independent of (vt)teT and Zt are deterministic or random indicators 
(independent of vt and qt) of outliers (e.g. Zt ~ Alt(j), 7 G (0; 1)). 
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3.2. Impact of one outlying observation 

Assume that yt is the outlying observation and there are no other outliers, i. e. Zj = 1 
for j = t and Zj = 0 otherwise. Then var vt = ijj2 > a2 is the right variance at time t. 
Denoting (df )2 the right value of the innovation variance at this time and observing 

R\2 d2
t = hP^tí + a\ = (df )2 - (tf - a\ 

$t ~ °t _ ,„Яч-2 , Фt dľ2 = К ñ ) - 2 + ,_„„„_„' ,,„_ __„ = (d?Г2 + 
(df)Ҷ(df)2-(^-at

2)) к t J (d?)Ч2 

we get 

xt\v'= xt\t^ + Pt\t-itidt

 2(yt - hxt\t_{) 
12 2 

= *t\t + Pt\t-lh\d?)2d2<<yt " ft£*l*-^ 

= £ ^ + A_c,|,. (4) 

Here x^\t is the right filtered value (filtered value obtained by using the true observa
tion error variance I/J2). According to this formula the estimate of the state is moved 
away from the right value and the magnitude of this move depends on the value of 
the innovation and on the difference between the real variance and the variance used 
for filtering. 

We may study how the error propagates to following estimates. We have 

xt+1\t = Fxt\t = Fxt\t + FAxt\t = xf+1\t + Axt+1\t (5) 

and then 

xt+1\t+1 = xt+1\t + Pt+1\ttidt+1(yt+1 - hxt+1\t) 

= &t+i\t + A£_+1|_ + Pt+1\ttidt+1(yt+1 - hxt+1\t - hAxt+1\t) 

= xf+1\t+1 + (I - dt+1Pt+1\ttih)FAxt\t 

= x*+1\t+1+Axt+1\t+1. (6) 

Following the same steps we finally get for n G N 

Xt+n]t+n = Xt+n\t+n + ( I J C ~ dt+iPt+i\t+i-lh'h)F j Axt\t 

= ásS-nit+n + A Ž ť + n | f + n . I (7) 

Denoting 

Ał 

Æo 

f[{J-dr^Pt+i\t+i-ih'h)F (8) 
i=l 
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we may conclude that 

xt+j\t+j = x?+j\t+j + A)^xt\u j = 0 ,1, . . . (9) 

Thus the impact of the outlying observation diminishes if An tends to zero. For 
example, this is the case if the filter converges to a stable solution. As the recursive 
formula for An does not depend on observations, it may be calculated before the 
filtering starts and may be used as an indicator of a sensitivity of the system to 
outlying observations. 

Similar result may be observed in the case of Pt\t. Now we get 

Pt\t = Ptit-i - P^-xtid^hP'^ 

— v>R p , u'^t ~ at h P i 

-Pt\t-Pt\t-lhJjRy$hPt\t-l 

= P%t-C{tf-°2t). (10) 

If compared with the right value, Pt\t is also affected and in the case yt is an outlier 
it underestimates the true variance of xt\t. It is, however, questionable if the impact 
of the outlying observation should be reflected in this matrix. Believing the model 
(1) is correct, the matrix Pt\t should not depend on observations. According to this 
argument, the impact of outliers will be reflected only in the filtered estimates of 
the state further in this paper. 

4. IDENTIFICATION AND PROCESSING OF OUTLIERS 

4 .1. Outliers detection in a completely identified model 

If all parameters of the state space model (1) are known, the identification of the 
outlying observations is easy. Since It = yt — yt ~ N(0,d2), the observation yt may 
be identified as an outlier (on the probability level a) if 

\yt-yt\ ^ „ , n i v 
-. > Ul-a/2- (11) 

dt 

ui-a/2 being an appropriate quantile of the standardized normal distribution. 
4 .2. Outliers detection in a model with unknown o2 

In practical applications, however, the observation error variance o2 is usually un
known. It has to be estimated so that the identification of outlying observations 
might be performed. To keep the on-line property of the Kalman filter this estimate 
should also be estimated on-line using only the history of observations. 

4.2.1. Adaptive on-line estimation of the observation variance o2 

Suppose all parameters except o2 are known. Assuming the Kalman filter gets into 
the stable state after some time £rj(cr|) (note that this time depends on the value o2

s 
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used to start the filter) we know that innovations are uncorrelated N(0,d2) random 
variables after this time. This feature may be used to construct the estimate a2. 

Taking additional m > 2 observations after time to = t0(as) to start the process 
the following recursive estimate of the innovation variance may be used: 

_. to+m+s 

at0+m+s - „ , „ l_ lj 
j=to 

.. to+m+s-1 1 

= V I2 4- I2 

m + s *-- J m + s *o+m+s 
j=to 

- m+jt-lg _____ 2 
" m + S dt0+m+s-l + m + sho+m+s, 8-1,2,... (12) 

The Kalman filter with dj replaced with this estimate converges to the right value 
of Pt\t but this convergence is rather slow. The reason is obvious. The time t0(as) 
as well as the innovations obtained after this time depend on the value as used to 
start the filter. The impact of the wrong observation variance as is present in all 
historical innovations (and thus in the estimate d2

o+m+s as well) and only slowly 
forgotten by the system. To improve the speed of the convergence it would be helpful 
to start the filter with an estimate of cr2 based on the observation history (i. e. to 
set as = a2

Q+m+s_1) and to recalculate all innovations. 
The estimate of a2

0+m+s_1 may be obtained by using several techniques with 
different additional computational burden. 

E M estimate. The EM algorithm applied in the state-space model environment 
is probably the most universal solution (the EM-algorithm is briefly introduced in 
Section 5.4). Good features of the resulting estimate a2

Q+m+s_1 may be expected 
since cr2 is assumed to be the only unknown parameter of the state-space model. 
However, the computation of the estimate for each observation may result in too 
lengthy processing of the data, even if the number of the iterations is limited. This 
computational complexity may be lowered by processing the data from a window 
covering only M > t0(a

2
Q+m+s_1) + m most recent observations. 

Bayesian on-line estimate. Several authors proposed an on-line estimate of the 
unknown parameters of the linear state-space model (refer for example to [3] or [13]). 
Among these approaches a bank of several Kalman filters run with different values 
of cr2 is a popular solution. The estimation of a2 is then performed on-line using the 
Bayesian approach - refer to [1] for more details. The processing would be faster than 
in the previous case because no repeated processing of the data is involved. However, 
at least some prior information about a2 is required when defining the bank of the 
Kalman filters. 

Simple recursive estimate. The following simple recursive estimate gives good 
practical results for univariate time series and is not too computationally demanding. 
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Fig. 1. True (circles) and filtered state obtained from the Kalman filter run on clean 
(thick) and contaminated (thin) data. 

Denote Xs = l / (m + 5 - 1 ) . After time t0(a^) it is d2 = d2 and Pt\t-i — P 
and d2 = hPh' + a2. We then may get the recursive estimate of the observation 
variance as follows 

^t0+m+s — "ío+m+s ҺPҺ 

= (1 - ЪҖ+m+^í + A s (7 ť
2

0 + m + s - ҺPҺ'). (13) 

For practical purposes this estimate is not very satisfactory from the following two 
reasons: (i) for small m the estimate is negative with high probability, (ii) for small 
s there is too much weight given to a newly observed innovation and the resulting 
estimate is not smooth. It is therefore better to replace it with some modification, 
for example 

at0+m+s ~ (1 A s)(T< o + m + s + ^s\h0+m+s hPh) '\+ (14) 

with As set as above or as an arbitrary constant (close to zero). As may be easily 
seen, this second estimate is not asymptotically unbiased but gives good practical 
results. 

More computing effort is again the cost of improved speed of the convergence. 
Increased computational intensity may be bound if the recalculation of the innova
tions does not start at the beginning of the time series but only M observations back 
in history, M > to(a2

Q+rn+s_l) + m , or by recalculating the estimate after obtaining 
more than one observation. The value m should be selected to obtain an applicable 
properties of the estimate d2

0+m+1, m = 10 proved to be sufficient. 
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ĉYVP 

°Oo 

Л °° ^ 

Åzæ°i Д ° L 
э Г ^ Ч Í ^ Д F vчж i v 

oV \A \Г' Я °ҷj ţo 
\Л %Tc 
jy Vo J 

oЧжl 
o 

o o 
o Q | 

^ o » A д 

1 cľ °° \/îí \ fl o7 o У \ 
l / o \ Г 

w oi/° 
(ľ* oV 

o o 

з 

! 
| 
> 

0 50 

Tinie 

100 

i 
v. 

a-

І 

1 -

~ 

\ 

Г i 
\ -~ 
*-. ,-

V*- -Г 

-

0 50 

Tнne 

100 

Fig. 2. True (circles) and filtered state obtained from the Kalman filter (thick) and the 
modified filter (thin) run on the data Y - upper panel; variance Pt\t obtained from the 

Kalman filter (solid) and the modified filter (dashed) - lower panel. 

E x a m p l e 4.1. One hundred observations were generated from the following model: 

yt = xt+ vt 

xt = 0.65 xt-i +wt, (15) 

where vt ~ iV(0,2) and wt ~ 1V(0,1) (data Y). Then observations number 25 and 
75, respectively, were shifted by 10 upwards and 5 downwards, respectively, (data 

YAO). 
Figure 1 shows the filtered state obtained by the Kalman filter run on data sets 

Y and YAO- AS may be seen, in the case of the contaminated data YAO the state 
estimates are spoiled after the outlier occurred. The impact of the outliers was fully 
absorbed - up to a third decimal place - after 9 observations in both cases. 

Figure 2 shows the filtered state obtained by the Kalman filter and the modified 
filter with the on-line observation variance estimation run on the data set Y. The 
Kalman filter was run using the right values of the parameters, the modified filter 
was run using a2 = 10 as the starting value and m = 10. The filter returned the final 
estimate a2

00 = 3.033, but the standard deviation of the filtered state converged to 
the right value faster (after 50 observations the absolute difference between standard 
deviations returned by the two respective filters was less than 0.04). 
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4.2.2. Outliers detection 

Having the on-line estimate dt of the innovation variance, t > £o(<5f_i) + rn, the 
observation yt may be detected as an outlier if 

\yt-ýt\ 
> Щ-а/2, t > ío(ôf-i) + m, (16) 

ui-a/2 being an appropriate quantile of the standardized normal distribution (but 
now a can not be interpreted as an exact confidence level as the estimate of innova
tion variance is used - instead it reflects a level of insurance against outliers). Some 
ideas how to set a may be found in [18] but in this paper all parameters of the 
state-space model are assumed to be known. 

4.3. On-line processing of outlying observations 

Outlying observations are usually treated by replacing the innovation term dt
2(yt — 

jjt) in the Kalman filter with some general function g(h)> The Huber function 

gUub(h) 

[ It/% iíIte{0;Kdt) 

K/dt if lt > Kdt 

-ffHub(-It) if h < 0, 

(17) 

where K is usually some quantile of the standardized normal distribution (e.g. 
^1-0/2) 1s quite popular. However, this choice is made ad hoc. Two other updating 
functions based on the model of additive outliers are proposed in this paper. 

If the observation yt is identified as an outlier using the rule (11) or (16), the 
estimate xt\t should be constructed with respect to this fact. The impact of the 
suspected observation on the filtered value should be reduced but simply omitting 
it would be too strict - some measure of a distance of the particular observation 
from what was expected according to the history of observations should be taken 
into account. For this purpose a system of distributions is proposed from which the 
appropriate distribution Ht is selected to model the outlier. 

4.3.1. System of normal distributions 

The simplest applicable system is in the form 

A = {H(q);Ę-=h(q) 
дq y/2ҡp 

exp 2 p2_ 
,pЄ(0, oo '}• (18) 

It is a system of normal distributions with the standard deviation p used as the 
factor that drives the observation error variance. This parameter should correspond 
to a distance of the observed value yt from the expected value yt. For this purpose 
the attained level pt of the test (11) or (16) may be used, for example pt = 2 (1 — 
$(\h/dt\)), where $ is a cumulative distribution function of the standardized normal 
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distribution. Then pt = p(pt) = p(yt ~ yt) may be any function satisfying pt -+ at 

for pt -» a-, pt -» oo for pt -> 0+ and pt = at for pt > a. 
Denoting s2 = hPt\t-ih' the updating function in this system is in the form 

9ы(It) = It/(s2

t+P

2(It)). (19) 

4.3.2. System of generalized error distributions 

The previous system has good practical results but modeling outliers using normal 
distribution may be considered as improper. To avoid this criticism the following 
system proposed in [2] (and used to model errors in data also by other authors) may 
be used: 

£2 = < H(q); 
дH_ 
дq 

h(q) 
Ч> 

exp — -

r- 2 -1 

1 q 1 + P 

2 ч> 
,¥>>(). /) € [0 ,1 ] 

(20) 

where l/k = T((3 + p)/2) 2^3+p^2. The variance of a random variable X with the 
density h(q) taken from this system is 

var. x = 2>+vEÍІÍł±4 
Г ( i ( l + r f ) 

As may be seen, the value p = 0 corresponds to the normal distribution, the value 
p = 1 corresponds to the double-exponential distribution which is the heaviest one 
from this system (this system may be enlarged by taking p G [0,b],b > 1 with a 
reasonable bound b < 10). The parameter (p2 should be related to the estimate a2 

so that for p = 0 the variance of the selected distribution Ht was equal to (/r2, i.e. 

The parameter pt should then again correspond to a distance of the observed 
value yt from the expected value yt and should satisfy that pt —Y 0 for pt -> a—, 
pt -> 1 for pt -> 0+ and pt = 0 for pt > a. 

To obtain the updating function for this system the following theorem may be 
used (its proof may be found in [15]). 

T h e o r e m . (Masreliez, 1975) Suppose C(xt\Yt-i) = N(xt\t-i,Pt\t-i) a n d that 
the conditional density p(yt\Yt-i) is twice differentiable. Then 

xt\t = xt\t-\ + Pt\t-\h'gt(yt) 

Pt\t = Pt\t-i ~ P^t-itiGMhP^t-x 

Pt+l\t = FPtltF' + R, 

where 

9t(Уt) = 
дP(yt\Yt-i) 

p(yt\Yt-i дyt 
and Gt(yt) = 

дgt(yt) 

дyt 

(21) 
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This theorem requires the density p(yt\Yt-i) and its first and second derivatives in 
the point yt. In a fact it is necessary to find the convolution N^Xt^^hP^t^h') * 
Ht, Ht £ £2 , i .e. to find the integral 

p(yt\Yt-i) = 
1 jfe 

y/2ňr 
k [°° Hx-Vt)2\ f 1 x-yt 

Ч> 

2 > 
І+P 

dx. 

(22) 

A closed form solution does not exist. But using the Taylor expansion and the fact 

that the absolute value of a normally distributed random value has the folded-normal 

distribution we may use the following asymptotically equivalent approximation 

p(Уt\Yt-l) = -f=2- I e x P ( - 9 
V27ГT Џ> J-00 \ 2 

{z + Vt-Vt)2\ ( 1 

2 5? J e X P ~2 

1+P 

dx 

kт? ( -

- " - E л r ^ ^ e x p ^ - -

k 

2 > 
1 + P 

( 1 / E Z ^ 
- e x p - - ' 
v V 2 V f 

where 

E|z |: 

Further it is 

Qp(yt\Yt-i) 

dyt 

УІł exp 
1 (Уt ~ Уt 

st 

(yt -ўt)[l-2Ф Уt ~ Уt 

st 

= p(yt\Yt-i)—— ^ — x 
Ч> i + p 1 + P 

Уt -Уt 

st 
v^fexp ( 4 

WW--(V)! 

(yť - fo) 1 - 2Ф 

Ž/t ~Уt 

ž/t -j/t 

5í 

^ 

-( 1 '-»( f i^))+«'( f i.r t)-*-*> 
and therefore 

Sp(j/«|K-

% 
^ =p( W |Y t . 1 )-i-4- (2* (-*f---) - l) (E|Z|)fcř 

^ I + P i + p v V 5* / / 

Finally 

«<">" - ^ Ä Г = ̂ î+í (2* ( ^ ) - 0(E|2|)fe 
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is an approximation of the function g(yt)- Now this approximation has to be adjusted 
so that for non-outlying observations the modified filter corresponds to the Kalman 
filter. Define 

9A(yt) = 9A(vt)- (<M(sgn (»« - Vt)Kdt) - s^-MKy-(\n-yt\-KJ<) 

or 

S-AV,) = ,AM ( • * • < * - * > * ' - l ) ( l + e-<l«-W--.A 
V rf£ gA(sgn (j/ t - j / t ) i f dt) J \ J 

where K is the appropriate quantile (see formula (11) or (16)). The updating func
tion may now be defined as 

' i/d2
t ithe&Kdt) 

9L2{h) = l mm{g*A(yt),It/%} it h > Kdt (23) 

, -9L2(-h) if h < 0. 

Example 4.2. The data YAO were processed using the Kalman filter and the 
modified filter with outlier detection and processing using the system £ 2 (a = 0.005). 
Figure 3 shows the result. The modified filter detected outliers at times 25, 51 and 
75. The impact of outliers in the case of the modified filter was less destructive than 
in the case of the Kalman filter and was fully absorbed after two time periods. The 
filter returned a final estimate <5 0̂0 = 2.964, again the standard deviation of the 
filtered state converged to the right value quite fast. 

The three respective updating functions are displayed in Figure 4. The impact of 
outliers is bound for all three updating functions. New updating functions, however, 
are not so strictly rejecting moderately outlying observations. This corresponds to 
uncertainty about observations that are close to a non-outliers region. On the other 
hand, observations that are very far from the expected value are treated more strictly 
by the new updating functions than by the Huber function. 

5. IMPROVED SMOOTHING AND PARAMETER ESTIMATION 

5.1. K a l m a n smoother 

Having the observation history Y? we may be interested in looking for the estimates 
of unknown states at time t, t = 0 , 1 , . . . , T. This problem is called (fixed-interval) 
smoothing. In the environment of the state-space models the smoothed estimates 
may be obtained by using the following backward recursions: 

&t\T = &t\t + Pl(xt+i\T ~ F&t\t)> 

Pt\T = Pt\t - Pt(Pt+l\T ~ Pt+l\t)Pt > 

P*t=PtltF'P;' (24) 
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Fig. 3. True (circles) and filtered state obtained from the Kalman filter (thick) and the 

modified filter (thin) using the data set YAO-

defined for t = T — 1, T — 2 , . . . , 0. Hence, the filtered estimates are the basis of the 
smoothing algorithm. As may be expected, the smoothed estimates are also affected 
by outlying observations. We may study an impact of a single outlier yt (continuing 
from Section 3.2) as follows. 

5.2. Kalman smoothing performance in a presence of outlying 
observations 

Suppose now that yt is the only outlier and suppose further that An -> 0 for n —> oo. 
If the convergence does not hold, the impact of a single outlier at time t affects the 
performance of the filter and smoothing in this case is not reasonable - in such 
situation remodeling the state-space equations or transforming the observations is 
advisable. Denote s =- t + u the last time when the impact matrix Au is treated as a 
non-zero matrix, i.e. it = min [k] ||-4|j.||2 < e}. Till this time the filtered estimates 
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Fig. 4. Huber (dotted), gLi(It) (thin) and #L2(It) (thick) at time 25. 

contain a measurable error (in the sense of the modeled time series). Then we get 

XS\T = Xs\s + P*s (xs+i\T - FXS\S) 

= xf\s + Axs]s + P*s (xs K | T - Pxf]8 - F Axs\s) 

= X?\T + (I-P;F)AXS\S 

= xf\T + (I-P*sF)AuAxt\t 

= xs\T + Axs\T. 

Denote 

Next 

Ą = ( I - а д ^ , i = i , . . . , u - i . 

(25) 

(26) 

XS-1\T = Ž s_i | s_i + P : _ J ( Ž S | T - P Ž s _ i | s _ i ) 

= Ž s _ l | s _ l + A Ž s _ i | s _ i + P : _ 1 ( Ž s | T + A Ž s | T - P Ž s _ 1 | s _ 1 - P A í s _ 1 | s _ 1 ) 

= ž f - i | T + S-*s-i\s-i + P*S-I(&*S\T - F Ax^s-i) 

= £f_1|T + Au_x Axt\t + P*s_x (I - P*s F) Ať
uAxt\t - P^FA^ Axt\t 

= * f- i |T + {<-i + P*s-i K + P*s-i Pl FAU- PU F AU_,) Axt\t 

= x8_x\T + Ax s _i | T . (27) 

Similarly we get 

Ć.R Xs-j\T = ^s-j\T + Д Ž S - І | Т Î J = 1, . . . , îi, (28) 
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where 
-\xs-j\T = B^jAx^t 

and the impact matrix Bu_j is given by the following backward recursions: 

Bu = (I-P*t+UF)AU 

* _ - i = (I-P*t+u-\P)K-\+P*t+u-\Bu 

Bu-2 = (I - P*t+u-2
F)Au-2 + P*+u-\Bu-i 

B\ = (I-P*t+1F)A\+P*t+lB2 

Bl
0 = A\ + P\B\, 

i. e. the impact matrix Bu__j evolves as 

BU = (I- P tV__ iF)i4j l_ i + P\+_-iB__i+u i = 1 , . . . , « - 1. 
(29) 

Prior time t the impact of the outlier yt on the smoothed estimate may be expressed 
as follows: 

£*-i|T = &t-i\t-i + Pt-i(vt\T + A*t|T - -F^ - i i t - i ) 

= *f-i|T + ^t*-iBoA*t|« (30) 

and hence the impact matrix prior time t evolves as follows: 

r>t D * 0 ^ 
**-! - M - 1 ^ 0 

S* r>* r?t r>* r>* o t 
-2 - ^t-2^-1 - ^ t - 2 ^ - 1 ^ 0 

(31) 

5.3. Improved smoothing 

Hence, the outlying observation affects smoothed estimates prior the time of its 
occurrence. Again, a magnitude of this impact depends on the filtering error L\xt\t 
and the impact matrices __?*•. These may be calculated for a given state-space model 
before any data are observed. Robust modification of the smoothing recursions may 
be obtained when using an output of the modified filter instead of the output of the 
Kalman filter. 

5.4. EM-algorithm 

So far all parameters of the state-space model except a2 were assumed to be known. 
In practical applications, however, the starting state mean XQ is not known and the 
matrices F and R may contain unknown elements that have to be estimated. The 
EM-algorithm proved to be an efficient tool for completing this task. 
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Assume (xo,r,Fr,a
2,Rr) is a set of estimates obtained in the rth step of the 

algorithm. Assuming C(yj\xj) ~ N(hxj,a2) for j = 1,...,T we may write the 
log-likelihood of the history Yr as (up to a constant) 

T 

\nL(YT) = -\\na2 - ^ L <T(yj - hxj)2. (32) 
i = i 

In the E-step of the algorithm the conditional expectation 

G(x0,r,Fr,a
2

r,Rr) = E (In L(YT)\YT) 

is found. In our case it is easy to get 

T 

2CT~ 

T 1 . , 
G(x0>r,Fr,a

2,Rr) = - - l n < j 2 - — J ] [(Vj - hxj{T)
2 + hPj{Tti] . 

j=i (33) 
Г Ą—Л 

In the M-step of the algorithm the expression (33) is maximized according to the 
unknown parameters. Using some matrix calculus it is not too complicated to solve 
the likelihood equation and to express the updated estimates as 

-FV+i — BA~ , 

Rr+1 =T-1(C-BA~1B'), 

a2

r+1 = T-1 Y,[(vt ~ hxt\T)
2 + hPt\Thl 

t=i 

X0,r+1 = X0\T, (34) 

where 

-4 = ^2(pt-i\т + Ж Í - I | T Ż [ _ I | T ) , B = Y2(Ptìt-!\т + xцтx^т), 
t=l 

т 

C -- ^2(Pt\T + xt\тxt\т) 

t=l t=l 

т 

t=l 

and the matrix Pt:t-\\T may be obtained recursively as 

- P T , T - I | T = (I - PT\T-ihd>T )FPT\T, 

Pt-l,t-2\T = Pt\tP*t-2 + 

P*t-i(Pttt-i\T-FPt^llt^)P*f

t_2l * = T , T - 1 , . . . , 2 . . 

Now these estimates may be used as an initial value for the new cycle of the EM-
algorithm until the algorithm converges to some stable solution. The EM estimates 
may be modified to incorporate some structural assumptions about elements of F 
and R (refer to [9] for more details). 
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Table 1. Results of the EM-algorithm and its less sensitive modification. 

x0 F R 

Ordinary EM on data Y 

Ordinary EM on data YAO 

Improved EM on data Y 

Improved EM on data YAO 

0.1311 0.5490 1.0573 1.9231 

0.1267 0.4978 1.1790 3.3953 

0.2068 0.5042 1.2868 1.5752 

0.3259 0.4064 1.7067 1.7223 

5.5. Improved E M algor i thm 

If there are outlying observations in the data, the EM estimates of the state-space 
model parameters tend to overestimate a2 and underestimate the matrix F. Having 
less outlier-sensitive smoothing algorithm, its output may be used to get improved 
EM estimates. However, minor changes are necessary in this case. In the case of the 
contaminated data the modified filter bounds the impact of the outlying observations 
on xt\t and £t|r- Thus the terms A, B and C are correct (i.e. close to the reality) 
but the smoothing errors yt — hxt\T will be too large if yt was detected as an additive 
outlier. In the modified EM-algorithm it is thus necessary to replace the third term 
of (34) by the term 

T 

a2
r+l = T-1 Y,Mvt - hxtyr) + hPt\Tti], 

t=i 

where </?(•) is some bounded function. 

Example 5.1. The ordinary and improved EM-algorithm were run on data sets 
Y and YAO with the following starting values: Xo = 0 , F = —0.1, R = 10 and 
a2 = 10. Results of 400 iterations of each algorithm are summarized in Table 1. 

Note that the ordinary EM algorithm estimated much higher observation variance 
in the case of the data set YAO- Results of the improved EM algorithm run on the 
data set YAO are comparable to the results of the ordinary EM algorithm run on 
the data set Y. The improved EM algorithm returned a better estimate of the 
observation variance even in the case of contaminated data. Please note that the 
EM-algorithm may be easily generalized for multivariate state x and -F with linear 
constrains. 

6. EXAMPLE OF ANALYSIS OF REAL-LIFE DATA 

Average monthly prices (multiples of 10000 pesetas/100 kg) of a lamb meat in Spain 
observed in a time period 1985-1988 were processed using the Kalman smoother 
and the modified smoothing algorithm. The data were taken from the article [6], A 
state-space representation of a seasonal time series with 12 seasons was used with 
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Fig. 5. Smoothed monthly prices of a lamb meat in Spain (1985-1988). Estimates 
obtained by the Kalman smoother are displayed by using the thin line, estimates obtained 

by the modified smoother are displayed by using the thick line. 

initial values of the state-space model parameters proposed in the mentioned article. 
The result is displayed in Figure 5. The impact of the outlying observation number 
39 is less serious in the case of the modified smoother. 

N o t e 6.1. The algorithms described in this paper were implemented in the statis
tical environment XploRe. 
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