COUNTABLE EXTENSION OF TRIANGULAR NORMS AND THEIR APPLICATIONS TO THE FIXED POINT THEORY IN PROBABILISTIC METRIC SPACES

Olga Hadžić, Endre Pap and Mirko Budinčević

Abstract

In this paper a fixed point theorem for a probabilistic q-contraction $f: S \rightarrow S$, where (S, \mathcal{F}, T) is a complete Menger space, \mathcal{F} satisfies a grow condition, and T is a g-convergent t-norm (not necessarily $T \geq T_{\mathrm{L}}$) is proved. There is proved also a second fixed point theorem for mappings $f: S \rightarrow S$, where (S, \mathcal{F}, T) is a complete Menger space, \mathcal{F} satisfy a weaker condition than in [13], and T belongs to some subclasses of Dombi, Aczél-Alsina, and Sugeno-Weber families of t-norms. An application to random operator equations is obtained.

1. INTRODUCTION

The origin of triangular norms was in the theory of probabilistic metric spaces, in the work K. Menger [9], see [4, 7, 14]. It turns out that t-norms and related tconorms are crucial operations in several fields, e.g., in fuzzy sets, fuzzy logics (see [7]) and their applications, but also, among other fields, in the theory of generalized measures [7, 11, 17] and in nonlinear differential and difference equations [11].

We present in this paper some results on t-norms which are closely related to the fixed point theory in probabilistic metric spaces, see [4]. The first fixed point theorem in probabilistic metric spaces was proved by Sehgal and Bharucha-Reid [15] for mappings $f: S \rightarrow S$, where (S, \mathcal{F}, T_{M}) is a Menger space, where $T_{M}=\min$. Further development of the fixed point theory in a more general Menger space (S, \mathcal{F}, T) was connected with investigations of the structure of the t-norm T. Very soon the problem was in some sense completely solved. Namely, if we restrict ourselves to complete Menger spaces (S, \mathcal{F}, T), where T is a continuous t-norm, then any probabilistic q-contraction $f: S \rightarrow S$ has a fixed point if and only if the t-norm T is of H-type, see [4].

We investigate in this paper the countable extension of t-norms and we introduce a new notion: the geometrically convergent (briefly g-convergent) t-norm, which is closely related to the fixed point property. We prove that t-norms of H-type and some subclasses of Dombi, Aczél-Alsina, and Sugeno-Weber families of t-norms are
geometrically convergent. We prove also some practical criterions for the geometrically convergent t-norms.

A new approach to the fixed point theory in probabilistic metric spaces is given in Tardiff's paper [16], where some additional growth conditions for the mapping $\mathcal{F}: S \times S \rightarrow \mathcal{D}^{+}$are assumed, and $T \geq T_{\mathrm{L}}$. V. Radu [13] introduced a stronger growth condition for \mathcal{F} than in Tardiff's paper (under the condition $T \geq T_{\mathbf{L}}$), which enables him to define a metric. By metric approach an estimation of the convergence with respect to the solution is obtained, see [4].

We prove in this paper a fixed point theorem for a probabilistic q-contraction $f: S \rightarrow S$, where (S, \mathcal{F}, T) is a complete Menger space, \mathcal{F} satisfies Radu's condition, and T is a g-convergent t-norm (not necessarily $T \geq T_{\mathrm{L}}$). We prove a second fixed point theorem for mappings $f: S \rightarrow S$, where (S, \mathcal{F}, T) is a complete Menger space, \mathcal{F} satisfy a weaker condition than in [13], and T belongs to some subclasses of Dombi, Aczél-Alsina, and Sugeno-Weber families of t-norms. An application to random operator equations is obtained.

Notions and notations can be found in [4, 7, 11, 14].

2. TRIANGULAR NORMS

A triangular norm (t-norm for short) is a binary operation on the unit interval $[0,1]$, i.e., a function $T:[0,1]^{2} \rightarrow[0,1]$ which is commutative, associative, monotone and $T(x, 1)=x$. t-conorm \mathbf{S} is defined by $\mathbf{S}(x, y)=1-T(1-x, 1-y)$.

If T is a t-norm, $x \in[0,1]$ and $n \in \mathbb{N} \cup\{0\}$ then we shall write

$$
x_{T}^{(n)}= \begin{cases}1 & \text { if } n=0 \\ T\left(x_{T}^{(n-1)}, x\right) & \text { otherwise }\end{cases}
$$

Definition 1. A t-norm T is of H-type if the family $\left(x_{T}^{(n)}\right)_{n \in \mathbb{N}}$ is equicontinuous at the point $x=1$.

A trivial example of a t-norm of H-type is T_{M}. There is a nontrivial example of a t-norm T such that $\left(x_{T}^{(n)}\right)_{n \in \mathbb{N}}$ is an equicontinuous family at the point $x=1$.

Example 2. Let \bar{T} be a continuous t-norm and let for every $m \in \mathbb{N} \cup\{0\}$:

$$
I_{m}=\left[1-2^{-m}, 1-2^{-m-1}\right] .
$$

If

$$
T(x, y)=1-2^{-m}+2^{-m-1} \bar{T}\left(2^{m+1}\left(x-1+2^{-m}\right), 2^{m+1}\left(y-1+2^{-m}\right)\right)
$$

for $(x, y) \in I_{m} \times I_{m}$ and $T(x, y)=\min (x, y)$ for $(x, y) \notin \underset{m \in \mathbb{N} \cup\{0\}}{\bigcup} I_{m} \times I_{m}$ then the family $\left(x_{T}^{(n)}\right)_{n \in \mathbb{N}}$ is equicontinuous at the point $x=1$, i.e., T is a t-norm of H-type.

Proposition 3. ([4]) If a continuous t-norm T is Archimedean than it can not be a t-norm of H -type.

A method of construction a new t-norm from a system of given t-norms is given in the following theorem, see $[4,7]$.

Theorem 4. Let $\left(T_{k}\right)_{k \in K}$ be a family of t-norms and let $\left(\left(\alpha_{k}, \beta_{k}\right)\right)_{k \in K}$ be a family of pairwise disjoint open subintervals of the unit interval $[0,1]$ (i.e., K is an at most countable index set). Consider the linear transformations $\varphi_{k}:\left[\alpha_{k}, \beta_{k}\right] \rightarrow[0,1], k \in$ K given by

$$
\varphi_{k}(u)=\frac{u-\alpha_{k}}{\beta_{k}-\alpha_{k}} .
$$

Then the function $T:[0,1]^{2} \rightarrow[0,1]$ defined by

$$
T(x, y)= \begin{cases}\varphi_{k}^{-1}\left(T_{k}\left(\varphi_{k}(x), \varphi_{k}(y)\right)\right) & \text { if }(x, y) \in\left(\alpha_{k}, \beta_{k}\right)^{2} \\ \min (x, y) & \text { otherwise }\end{cases}
$$

is a triangular norm, which is called the ordinal sum of $\left(T_{k}\right)_{k \in K}$ and will be denoted by $T=\left(<\left(\alpha_{k}, \beta_{k}\right), T_{k}>\right)_{k \in K}$.

The following proposition was proved in [12].
Proposition 5. A continuous t-norm T is of H-type if and only if $T=\left(<\left(\alpha_{k}, \beta_{k}\right), T_{k}>\right)_{k \in K}$ and $\sup \beta_{k}<1$ or $\sup \alpha_{k}=1$.

Remark 6. If $T=\left(<\left(\alpha_{k}, \beta_{k}\right), T_{k}>\right)_{k \in K}$ and $\sup \beta_{k}<1$ or $\sup \alpha_{k}=1$, then T is of H-type for any summands T_{k} (not only for continuous and Archimedean summands $T_{k}, k \in K$, see [12]). Hence , if

$$
\left.T=\left(<\left(1-2^{-k}, 1-2^{-k-1}\right), \bar{T}\right\rangle\right)_{k \in \mathbb{N} \cup\{0\}}
$$

we have $\sup \alpha_{k}=\sup \left(1-2^{-k}\right)=1($ cf. Example 2).
For an arbitrary t-norm of H -type we have by [4] the following characterization.
Theorem 7. Let T be a t-norm. Then (i) and (ii) hold, where:
(i) Suppose that there exists a strictly increasing sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ from the interval $[0,1)$ such that $\lim _{n \rightarrow \infty} b_{n}=1$ and $T\left(b_{n}, b_{n}\right)=b_{n}$. Then T is of H-type.
(ii) If T is continuous and of H-type, then there exists a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ as in (i).

From the proof of the above theorem it follows that the condition of continuity of whole sequence $\left(x_{T}^{(n)}\right)_{n \in \mathbb{N}}$ can be replaced by the condition that the function $\delta_{T}(x)=T(x, x)(x \in[0,1])$ is right-continuous on an interval $[b, 1)$ for $b<1$.

Theorem 8. Let T be a t-norm such that the function $\delta_{T}(x)=T(x, x)(x \in[0,1])$ is right-continuous on an interval $[b, 1)$ for $b<1$. Then T is a t-norm of H-type if and only if there exists a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ from the interval $(0,1)$ of idempotents of T such that $\lim _{n \rightarrow \infty} b_{n}=1$.

In particular, for continuous t-norms the following characterization holds, [4].
Theorem 9. Let T be a continuous t-norm. Then the following are equivalent:
a) T is not of H-type.
b) There exist $a_{T} \in[0,1)$ and a continuous strictly increasing and surjective mapping $\varphi_{a_{T}}:\left[a_{T}, 1\right] \rightarrow[0,1]$ such that

$$
T(x, y)=\varphi_{a_{T}}^{-1}\left(\varphi_{a_{T}}(x) \star \varphi_{a_{T}}(y)\right), \text { for every } x, y \geq a_{T}
$$

where the operation \star is either $T_{\mathbf{P}}$ or T_{L}, where $T_{\mathbf{P}}(x, y)=x y$ and $T_{\mathbf{L}}(x, y)=$ $\max (x+y-1,0)$.

3. COUNTABLE EXTENSION OF t-NORMS

An arbitrary t-norm T can be extended (by associativity) in a unique way to an n-ary operation taking for $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}, n \in \mathbb{N}$, the values $T\left(x_{1}, \ldots, x_{n}\right)$ which is defined by

$$
\prod_{i=1}^{0} x_{i}=1, \quad \prod_{i=1}^{n} x_{i}=T\left(\prod_{i=1}^{n-1} x_{i}, x_{n}\right)=T\left(x_{1}, \ldots, x_{n}\right)
$$

Specially, we have $T_{\mathrm{L}}\left(x_{1}, \ldots, x_{n}\right)=\max \left(\sum_{i=1}^{n} x_{i}-(n-1), 0\right)$ and $T_{M}\left(x_{1}, \ldots, x_{n}\right)=$ $\min \left(x_{1}, \ldots, x_{n}\right)$.

We can extend T to a countable infinitary operation taking for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ from $[0,1]$ the values

$$
\begin{equation*}
\prod_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow \infty} T_{i=1}^{n} x_{i} \tag{1}
\end{equation*}
$$

The limit on the right side of (1) exists since the sequence $\left(\prod_{i=1}^{n} x_{i}\right)_{n \in \mathbb{N}}$ is nonincreasing and bounded from below.

Remark 10. An alternative approach to the infinitary extension of t-norms can be found in [10].

In the fixed point theory it is of interest to investigate the classes of t-norms T and sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ from the interval $[0,1]$ such that $\lim _{n \rightarrow \infty} x_{n}=1$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty} x_{i}=\lim _{n \rightarrow \infty} \prod_{i=1}^{\infty} x_{n+i}=1 \tag{2}
\end{equation*}
$$

In the classical case $T=T_{\mathbf{P}}$ we have $\left(T_{\mathbf{P}}\right)_{i=1}^{n}=\prod_{i=1}^{n} x_{i}$ and for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ from the interval $[0,1]$ with $\sum_{i=1}^{\infty}\left(1-x_{n}\right)<\infty$ it follows that

$$
\lim _{n \rightarrow \infty}\left(T_{\mathbf{P}}\right)_{i=n}^{\infty}=\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty} x_{i}=1
$$

Namely, it is well known that

$$
\prod_{i=1}^{\infty} x_{i}>0 \Leftrightarrow \lim _{n \rightarrow \infty} \prod_{i=n}^{\infty} x_{i}=1 \Leftrightarrow \sum_{i=1}^{\infty}\left(1-x_{i}\right)<\infty
$$

The equivalence

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(1-x_{i}\right)<\infty \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty} \prod_{i=n}^{\infty} x_{i}=1 \tag{3}
\end{equation*}
$$

holds also for $T \geq T_{\mathbf{L}}$. Indeed

$$
\left(T_{\mathbf{L}}\right)_{i=1}^{n} x_{i}=\max \left(\sum_{i=1}^{n} x_{i}-(n-1), 0\right)=\max \left(\sum_{i=1}^{n}\left(x_{i}-1\right)+1,0\right)
$$

and therefore $\sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty$ holds if and only if

$$
\lim _{n \rightarrow \infty}\left(T_{\mathbf{L}}\right)_{i=n}^{\infty} x_{i}=\max \left(\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty}\left(x_{i}-1\right)+1,0\right)=1
$$

 implication

$$
\sum_{i=1}^{\infty}\left(1-x_{i}\right)<\infty \quad \Rightarrow \quad \lim _{n \rightarrow \infty} \prod_{i=n}^{\infty} x_{i}=1
$$

holds.
We shall need some families of t-norms given in the following example.
Example 11. (i) The Dombi family of t -norms $\left(T_{\lambda}^{\mathrm{D}}\right)_{\lambda \in[0, \infty]}$ is defined by

$$
T_{\lambda}^{\mathbf{D}}(x, y)= \begin{cases}T_{\mathbf{D}}(x, y) & \text { if } \lambda=0 \\ T_{\mathbf{M}}(x, y) & \text { if } \lambda=\infty \\ \left(1+\left(\left(\frac{1-x}{x}\right)^{\lambda}+\left(\frac{1-y}{y}\right)^{\lambda}\right)^{1 / \lambda}\right)^{-1} & \text { if } \lambda \in(0, \infty)\end{cases}
$$

(ii) The Schweizer-Sklar family of t-norms $\left(T_{\lambda}^{\mathbf{S S}}\right)_{\lambda \in[-\infty, \infty]}$ is defined by

$$
T_{\lambda}^{\mathrm{SS}}(x, y)= \begin{cases}T_{\mathbf{M}}(x, y) & \text { if } \lambda=-\infty \\ \left(x^{\lambda}+y^{\lambda}-1\right)^{1 / \lambda} & \text { if } \lambda \in(-\infty, 0) \\ T_{\mathbf{P}}(x, y) & \text { if } \lambda=0, \\ \left(\max \left(x^{\lambda}+y^{\lambda}-1,0\right)\right)^{1 / \lambda} & \text { if } \lambda \in(0, \infty) \\ T_{\mathbf{D}}(x, y) & \text { if } \lambda=\infty\end{cases}
$$

(iii) The Aczél-Alsina family of t-norms $\left(T_{\lambda}^{\mathbf{A A}}\right)_{\lambda \in[0, \infty]}$ is defined by

$$
T_{\lambda}^{\mathbf{A A}}(x, y)= \begin{cases}T_{\mathbf{D}}(x, y) & \text { if } \lambda=0 \\ T_{\mathbf{M}}(x, y) & \text { if } \lambda=\infty \\ e^{-\left(|\log x|^{\lambda}+|\log y|^{\lambda}\right)^{1 / \lambda}} & \text { if } \lambda \in(0, \infty)\end{cases}
$$

(iv) The family $\left(T_{\lambda}^{S W}\right)_{\lambda \in[-1,+\infty]}$ of Sugeno-Weber t-norms is given by

$$
T_{\lambda}^{\mathrm{SW}}(x, y)= \begin{cases}T_{\mathbf{D}}(x, y) & \text { if } \lambda=-1 \\ T_{\mathbf{P}}(x, y) & \text { if } \lambda=\infty \\ \max \left(0, \frac{x+y-1+\lambda x y}{1+\lambda}\right) & \text { otherwise }\end{cases}
$$

The condition $T \geq T_{\mathbf{L}}$ is fulfilled by the families: 1. $T_{\lambda}^{\mathbf{S S}}$ for $\lambda \in[-\infty, 1] ; 2 . T_{\lambda}^{\mathbf{S W}}$ for $\lambda \in[0, \infty]$.

On the other side there exists a member of the family $\left(T_{\lambda}^{\mathrm{D}}\right)_{\lambda \in(0, \infty)}$ which is incomparable with $T_{\mathbf{L}}$, and there exists a member of the family $\left(T_{\lambda}^{\mathbf{A A}}\right)_{\lambda \in(0, \infty)}$ which is incomparable with $T_{\mathbf{L}}$.

We shall give some sufficient conditions for (2).
Proposition 12. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of numbers from $[0,1]$ such that $\lim _{n \rightarrow \infty} x_{n}=1$ and t-norm T is of H-type. Then (2) holds.

Proof. Since t-norm T is of H-type for every $\lambda \in(0,1)$ there exists $\delta(\lambda) \in(0,1)$ such that

$$
x \geq \delta(\lambda) \quad \Rightarrow \quad \prod_{i=1}^{p} x>1-\lambda
$$

for every $p \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} x_{n}=1$ there exists $n_{0}(\lambda) \in \mathbb{N}$ such that $x_{n} \geq \delta(\lambda)$ for every $n \geq n_{0}(\lambda)$. Hence

$$
\begin{aligned}
{\underset{i=1}{p} x_{n+i}}^{\geq}{\underset{i=1}{p} \delta(\lambda)}>1-\lambda
\end{aligned}
$$

for every $n \geq n_{0}(\lambda)$ and every $p \in \mathbb{N}$. This means that (2) holds.

Remark 13. If T is a t-norm such that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ from the interval $(0,1)$ such that $\lim _{n \rightarrow \infty} x_{n}=1$ and $\lim _{n \rightarrow \infty} T_{i=n}^{\infty} x_{i}=1$, then T is continuous at the point $(1,1)$. Indeed, let $\lambda \in(0,1)$ be given. Then there exists $n_{0}(\lambda) \in \mathbb{N}$ such that

$$
\prod_{i=n_{0}(\lambda)}^{\infty} x_{i}>1-\lambda
$$

Since $T\left(x_{n_{0}(\lambda)}, x_{n_{0}(\lambda)+1}\right) \geq \prod_{i=n_{0}(\lambda)}^{\infty} x_{i}>1-\lambda$ we obtain that $x, y \geq \max \left(x_{n_{0}(\lambda)}, x_{n_{0}(\lambda)+1}\right)$ implies $T(x, y)>1-\lambda$.

For some families of t-norms we shall characterize the sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ from $(0,1]$, which tend to 1 and for which (2) holds.

Lemma 14. Let T be a strict t-norm with an additive generator \mathbf{t}, and the corresponding multiplicative generator θ. Then we have

$$
T_{i=1}^{\infty} x_{i}=\mathrm{t}^{-1}\left(\sum_{i=1}^{\infty} \mathrm{t}\left(x_{i}\right)\right)
$$

or

$$
\prod_{i=1}^{\infty} x_{i}=\theta^{-1}\left(\prod_{i=1}^{\infty} \theta\left(x_{i}\right)\right)
$$

The preceding lemma and the continuity of the generators of strict t-norms imply the following proposition.

Proposition 15. Let T be a strict t-norm with an additive generator \mathbf{t}, and the corresponding multiplicative generator θ. For a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ from the interval $(0,1)$ such that $\lim _{n \rightarrow \infty} x_{n}=1$ the condition

$$
\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \mathrm{t}\left(x_{i}\right)=0
$$

or the condition

$$
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty} \theta\left(x_{i}\right)=1
$$

holds if and only if (2) is satisfied.

Example 16. Let $\left(T_{\lambda}^{\mathrm{D}}\right)_{\lambda \in(0, \infty)}$ be the Dombi family of t-norms and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of elements from $(0,1]$ such that $\lim _{n \rightarrow \infty} x_{n}=1$. Then we have the following equivalence:

$$
\sum_{i=1}^{\infty}\left(\frac{1-x_{i}}{x_{i}}\right)^{\lambda}<\infty \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty}\left(T_{\lambda}^{\mathbf{D}}\right)_{i=n}^{\infty} x_{i}=1
$$

For a t-norm $T_{\lambda}^{\mathbf{D}}, \lambda \in(0, \infty)$, the multiplicative generator $\theta_{\lambda}^{\mathbf{D}}$ is given by

$$
\theta_{\lambda}^{\mathbf{D}}(x)=e^{-\left(\frac{1-x}{x}\right)^{\lambda}}
$$

and therefore with the property $\theta_{\lambda}^{\mathbf{D}}(1)=1$. Hence

$$
\begin{aligned}
\prod_{i=n}^{\infty} \theta_{\lambda}^{\mathrm{D}}\left(x_{i}\right) & =\prod_{i=n}^{\infty} e^{-\left(\frac{1-x_{i}}{x_{i}}\right)^{\lambda}} \\
& =e^{-\sum_{i=n}^{\infty}\left(\frac{1-x_{i}}{x_{i}}\right)^{\lambda}}
\end{aligned}
$$

and therefore the above equivalence follows by Proposition 15. Since $\lim _{n \rightarrow \infty} x_{n}=1$, we have that

$$
\left(\frac{1-x_{n}}{x_{n}}\right)^{\lambda} \sim\left(1-x_{n}\right)^{\lambda} \text { as } n \rightarrow \infty
$$

Hence

$$
\sum_{n=1}^{\infty}\left(1-x_{n}\right)^{\lambda}<\infty \Leftrightarrow \sum_{n=1}^{\infty}\left(\frac{1-x_{n}}{x_{n}}\right)^{\lambda}<\infty
$$

which implies the equivalence

$$
\sum_{n=1}^{\infty}\left(1-x_{n}\right)^{\lambda}<\infty \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty}\left(T_{\lambda}^{\mathbf{D}}\right)_{i=n}^{\infty} x_{i}=1
$$

Example 17. Let $\left(T_{\lambda}^{\mathbf{A A}}\right)_{\lambda \in(0, \infty)}$ be the Aczél-Alsina family of t-norms given by

$$
T_{\lambda}^{\mathbf{A A}}(x, y)=e^{-\left(|\log x|^{\lambda}+|\log y|^{\lambda}\right)^{1 / \lambda}}
$$

and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of elements from $(0,1]$ such that $\lim _{n \rightarrow \infty} x_{n}=1$. Then we have the following equivalence

$$
\sum_{i=1}^{\infty}\left(1-x_{i}\right)^{\lambda}<\infty \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty}\left(T_{\lambda}^{\mathbf{A A}}\right)_{i=n}^{\infty} x_{i}=1
$$

For a t-norm $T_{\lambda}^{\mathbf{A A}}, \lambda \in(0, \infty)$, the multiplicative generator $\theta_{\lambda}^{\mathbf{A} \mathbf{A}}$ is given by

$$
\theta_{\lambda}^{\mathbf{A} \mathbf{A}}(x)=e^{-(-\log x)^{\lambda}}
$$

and therefore with the property $\theta_{\lambda}^{\mathbf{A A}}(1)=1$. Hence

$$
\begin{aligned}
\prod_{i=n}^{\infty} \theta_{\lambda}^{\mathbf{A A}}\left(x_{i}\right) & =\prod_{i=n}^{\infty} e^{-\left(-\log x_{i}\right)^{\lambda}} \\
& =e^{-\sum_{i=n}^{\infty}\left(-\log x_{i}\right)^{\lambda}}
\end{aligned}
$$

Since $\lim _{i \rightarrow \infty} x_{i}=1$ and $\log x_{i} \sim x_{i}-1$ as $i \rightarrow \infty$ by Proposition 15. the above equivalence follows.

For t-norms $T_{\lambda}^{\mathrm{SW}}, \lambda \in(-1, \infty]$ we have the following proposition.
Proposition 18. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence from $(0,1)$ such that the series $\sum_{n=1}^{\infty}\left(1-x_{n}\right)$ is convergent. Then for every $\lambda \in(-1, \infty]$

$$
\lim _{n \rightarrow \infty}\left(T_{\lambda}^{S W}\right)_{i=n}^{\infty} x_{i}=1
$$

Proof. An additive generator of $T_{\lambda}^{\mathbf{S W}}$ for $\lambda \in(-1,0)$ is given by

$$
\mathbf{t}_{\lambda}^{\mathbf{S W}}(x)=-\log \left(\frac{1+\lambda x}{1+\lambda}\right) \cdot \frac{1}{\log (1+\lambda)}
$$

We shall prove that for some $n_{1} \in \mathbb{N}$ and every $p \in \mathbb{N}$

$$
\begin{equation*}
\prod_{i=1}^{p} \theta_{\lambda}^{\mathbf{S W}}\left(x_{n+i-1}\right)=\exp \left(\sum_{i=1}^{p} \log \left(\frac{1+\lambda x_{n+i-1}}{1+\lambda}\right) \cdot \frac{1}{\log (1+\lambda)}\right)>e^{-1} \tag{4}
\end{equation*}
$$

for every $n \geq n_{1}$ since in this case

$$
\begin{equation*}
\left(T_{\lambda}^{\mathbf{S W}}\right)_{i=1}^{p} x_{n+i-1}=\left(\theta_{\lambda}^{\mathbf{S W}}\right)^{-1}\left(\prod_{i=1}^{p} \theta_{\lambda}^{\mathbf{S W}}\left(x_{n+i-1}\right)\right) \tag{5}
\end{equation*}
$$

We have to prove that for some $n_{1} \in \mathbb{N}$ and every $p \in \mathbb{N}$

$$
\begin{equation*}
-\frac{1}{\log (1+\lambda)} \sum_{i=0}^{p} \log \left(\frac{1+\lambda x_{n+i-1}}{1+\lambda}\right)<1 \text { for every } n>n_{1} \tag{6}
\end{equation*}
$$

since (6) implies (4). From $\lim _{n \rightarrow \infty}\left(1-x_{n}\right)=0$ it follows that

$$
\log \left(1+\frac{\lambda}{1+\lambda}\left(x_{n}-1\right)\right) \sim \frac{\lambda}{1+\lambda}\left(x_{n}-1\right)
$$

and therefore the series

$$
-\frac{1}{\log (1+\lambda)} \sum_{n=1}^{\infty} \log \left(1+\frac{\lambda}{1+\lambda}\left(x_{n}-1\right)\right)
$$

is convergent. Hence it follows that there exists $n_{1} \in \mathbb{N}$ such that (4) holds for every $n \geq n_{1}$ and every $p \in \mathbb{N}$, and this implies (5).

The above proposition holds also for $\lambda \geq 0$ since in this case $T_{\lambda}^{\mathbf{S W}} \geq T_{\mathbf{L}}$.
It is of special interest for the fixed point theory in probabilistic metric spaces to investigate condition (2) for a special sequence ($\left.1-q^{n}\right)_{n \in \mathbb{N}}$ for $q \in(0,1)$.

Proposition 19. If for a t -norm T there exists $q_{0} \in(0,1)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty}\left(1-q_{0}^{i}\right)=1 \tag{7}
\end{equation*}
$$

then

$$
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty}\left(1-q^{i}\right)=1
$$

for every $q \in(0,1)$.

Proof. If $q<q_{0}$ then $1-q^{n}>1-q_{0}^{n}$ for every $n \in \mathbb{N}$ and therefore (7) implies

$$
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty}\left(1-q^{i}\right) \geq \lim _{n \rightarrow \infty} \prod_{i=n}^{\infty}\left(1-q_{0}^{i}\right)=1
$$

Now suppose that $q>q_{0}$. First, we consider the special case when $q^{2}=q_{0}$, i.e., $\sqrt{q_{0}}=q>q_{0}$. Then

$$
\begin{aligned}
\prod_{i=2 m}^{\infty}\left(1-q^{i}\right) & \geq T\left(\prod_{i=m}^{\infty}\left(1-q^{2 i}\right), \prod_{i=m}^{\infty}\left(1-q^{2 i+1}\right)\right) \\
& \geq T\left(\prod_{i=m}^{\infty}\left(1-q_{0}^{i}\right), \prod_{i=m}^{\infty}\left(1-q_{0}^{i}\right)\right)
\end{aligned}
$$

and since T by Remark 13 is continuous at $(1,1)$ it follows that

$$
\lim _{m \rightarrow \infty} \prod_{i=2 m}^{\infty}\left(1-q^{i}\right) \geq T(1,1)=1
$$

Therefore

$$
\lim _{m \rightarrow \infty} \prod_{i=2 m+1}^{\infty}\left(1-q^{i}\right) \geq \lim _{m \rightarrow \infty} \prod_{i=2 m}^{\infty}\left(1-q^{i}\right)=1
$$

Now we consider an arbitrary $q>q_{0}$ from the interval (0,1). Since for $q>q_{0}$ there exists $m \in \mathbb{N}$ such that $q_{0}^{2^{-m}}>q$ we reduce this situation on the case of the m iterations of the preceding procedure.

Definition 20. We say that a t-norm T is geometrically convergent (briefly g convergent, in [4] called q-convergent for some $q \in(0,1)$) if

$$
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty}\left(1-q^{i}\right)=1
$$

for every $q \in(0,1)$.
Since $\lim _{n \rightarrow \infty}\left(1-q^{n}\right)=1$ and $\sum_{n=1}^{\infty}\left(1-\left(1-q^{n}\right)\right)^{s}<\infty$ for every $s>0$ it follows that all t-norms from the family

$$
\bigcup_{\lambda \in(0, \infty)}\left\{T_{\lambda}^{\mathbf{D}}\right\} \bigcup \bigcup_{\lambda \in(0, \infty)}\left\{T_{\lambda}^{\mathbf{A} \mathbf{A}}\right\} \bigcup \mathcal{T}^{H} \bigcup_{\lambda \in(-1, \infty]}\left\{T_{\lambda}^{\mathrm{SW}}\right\}
$$

are g-convergent, where \mathcal{T}^{H} is the class of all t-norms of H-type.
The following example shows that not every strict t-norm is g-convergent.

Example 21. Let T be the strict t-norm with an additive generator $\mathbf{t}(x)=$ $-\frac{1}{\log (1-x)}$. In this case the series $\sum_{i=1}^{\infty} \mathbf{t}\left(1-q^{i}\right)$ for any $q \in(0,1)$ is not convergent since

$$
\sum_{i=1}^{\infty} \mathrm{t}\left(1-q^{i}\right)=-\sum_{i=1}^{\infty} \frac{1}{\log \left(q^{i}\right)}=-\sum_{i=1}^{\infty} \frac{1}{i \log q}
$$

In the following two propositions we shall give sufficient conditions for a t-norm T to be g-convergent.

Proposition 22. Let T and T_{1} be strict t-norms and \mathbf{t} and \mathbf{t}_{1} their additive generators, respectively, and there exists $b \in(0,1)$ such that $\mathbf{t}(x) \leq \mathbf{t}_{1}(x)$ for every $x \in(b, 1]$. If T_{1} is g-convergent, then T is g-convergent.

Proof. Since T_{1} is g-convergent we have $\lim _{n \rightarrow \infty}\left(T_{1}\right)_{i=n}^{\infty}\left(1-q^{i}\right)=1$. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \mathrm{t}_{1}\left(1-q^{i}\right)=0 \tag{8}
\end{equation*}
$$

Since there exists $n_{0} \in \mathbb{N}$ such that $1-q^{n_{0}} \in(b, 1]$ we have by the condition of the proposition that

$$
\mathbf{t}\left(1-q^{n}\right) \leq \mathbf{t}_{\mathbf{1}}\left(1-q^{n}\right) \text { for every } n \geq n_{0}
$$

Therefore, by (8) $\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \mathbf{t}\left(1-q^{i}\right)=0$, i.e., T is g-convergent.

Proposition 23. Let T be a strict t-norm with a generator \mathbf{t} which has a bounded derivative on an interval $(b, 1)$ for some $b \in(0,1)$. Then T is g-convergent.

Proof. By the Lagrange mean value theorem we have for every $x \in(b, 1)$ that

$$
\mathbf{t}(x)-\mathbf{t}(1)=\mathbf{t}(x)=\mathbf{t}^{\prime}(\xi)(x-1)
$$

for some $\xi \in(x, 1)$, and therefore

$$
\sum_{i=i_{0}}^{\infty} \mathrm{t}\left(1-q^{i}\right) \leq M \sum_{i=i_{0}}^{\infty} q^{i}
$$

where $M=\sup _{x \in(b, 1)}\left|t^{\prime}(x)\right|$, and $1-q^{i_{0}} \in(b, 1)$.
Proposition 24. Let T be a t-norm and $\psi:(0,1] \rightarrow[0, \infty)$. If for some $\delta \in(0,1)$ and every $x \in[0,1], y \in[1-\delta, 1]$

$$
\begin{equation*}
|T(x, y)-T(x, 1)| \leq \psi(y) \tag{9}
\end{equation*}
$$

then for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ from the interval $[0,1]$ such that $\lim _{n \rightarrow \infty} x_{n}=1$ and $\sum_{n=1}^{\infty} \psi\left(x_{n}\right)<\infty$, relation (2) holds.

For the proof see [4].
Corollary 25. Let T and ψ be as in Proposition 25. If for some $q \in(0,1)$,

$$
\sum_{n=1}^{\infty} \psi\left(1-q^{n}\right)<\infty
$$

then T is g-convergent.
Proof. Since $\lim _{n \rightarrow \infty}\left(1-q^{n}\right)=1$ by Proposition 25 we obtain that $\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty}\left(1-q^{n}\right)=1$.

Example 26. Let $\alpha>0, p>1$ and $z_{\alpha, p}:(0,1] \times[0,1] \rightarrow[0, \infty)$ be defined in the following way:

$$
z_{\alpha, p}(x, y)=\left\{\begin{array}{ccc}
y-\frac{\alpha}{|\ln (1-x)|^{p}} & \text { if } \quad(x, y) \in(0,1) \times[0,1] \\
y & \text { if } \quad(x, y) \in\{1\} \times[0,1]
\end{array}\right.
$$

In this case the function $z_{\alpha, p}$ is equal to zero on the curve which connects the points $(1,0)$ and $\left(1-e^{-\alpha^{1 / p}}, 1\right)$, where $1-e^{-\alpha^{1 / p}}<1$.

Let T be a t-norm such that $T(x, y) \geq z_{\alpha, p}(x, y)$ for every $(x, y) \in[1-\delta, 1] \times$ $[0,1]$. Then for every $(x, y) \in[0,1] \times[1-\delta, 1)$

$$
\begin{aligned}
|T(x, y)-T(x, 1)| & =|T(y, x)-T(1, x)| \\
& \leq\left|z_{\alpha, p}(y, x)-z_{\alpha, p}(1, x)\right| \\
& \leq \frac{\alpha}{|\ln (1-y)|^{p}}
\end{aligned}
$$

i.e., (9) holds for

$$
\psi(y)= \begin{cases}\frac{\alpha}{|\ln (1-y)|^{p}} & \text { if } y \in[1-\delta, 1) \\ 0 & \text { if } y=1\end{cases}
$$

Since

$$
\begin{aligned}
\sum_{n=1}^{\infty} \psi\left(1-q^{n}\right) & =\sum_{n=1}^{\infty} \frac{\alpha}{\left|\ln \left(q^{n}\right)\right|^{p}} \\
& =\sum_{n=1}^{\infty} \frac{\alpha}{n^{p}|\ln (q)|^{p}}<\infty
\end{aligned}
$$

T is g-convergent.

4. FIXED POINT THEORY IN PROBABILISTIC METRIC SPACES

Let Δ^{+}be the set of all distribution functions F such that $F(0)=0 \quad(F$ is a nondecreasing, left continuous mapping from \mathbb{R} into $[0,1]$ such that $\left.\sup _{x \in \mathbb{R}} F(x)=1\right)$.

The ordered pair (S, \mathcal{F}) is said to be a probabilistic metric space if S is a nonempty set and $\mathcal{F}: S \times S \rightarrow \Delta^{+}\left(\mathcal{F}(p, q)\right.$ is written by $F_{p, q}$ for every $\left.(p, q) \in S \times S\right)$ satisfies the following conditions:

1. $F_{u, v}(x)=1$ for every $x>0 \Rightarrow u=v(u, v \in S)$.
2. $F_{u, v}=F_{v, u}$ for every $u, v \in S$.
3. $F_{u, v}(x)=1$ and $F_{v, w}(y)=1 \Rightarrow F_{u, w}(x+y)=1$ for $u, v, w \in S$ and $x, y \in$ $\mathbb{R}_{+}=[0, \infty)$.

A Menger space is a triple (S, \mathcal{F}, T), where (S, \mathcal{F}) is a probabilistic metric space, T is a t-norm and the following inequality holds

$$
F_{u, v}(x+y) \geq T\left(F_{u, w}(x), F_{w, v}(y)\right) \text { for every } u, v, w \in S \text { and every } x>0, y>0
$$

The (ε, λ)-topology in S is introduced by the family of neighbourhoods

$$
\mathcal{U}=\left\{U_{v}(\varepsilon, \lambda)\right\}_{(v, \varepsilon, \lambda) \in S \times \mathbb{R}_{+} \times(0,1)}
$$

where

$$
U_{v}(\varepsilon, \lambda)=\left\{u \mid u \in S, F_{u, v}(\varepsilon)>1-\lambda\right\}
$$

4.1. Probabilistic q-contraction and g-convergent t-norms

Definition 27. ([15]) Let (S, \mathcal{F}) be a probabilistic metric space. A mapping f : $S \rightarrow S$ is a probabilistic q-contraction $(q \in(0,1)$) if

$$
\begin{equation*}
F_{f p_{1}, f p_{2}}(x) \geq F_{p_{1}, p_{2}}\left(\frac{x}{q}\right) \tag{10}
\end{equation*}
$$

for every $p_{1}, p_{2} \in S$ and every $x \in \mathbb{R}$.
By Remark 13 each g-convergent t-norm T satisfies the condition $\sup _{x<1} T(x, x)=$ 1 , which ensures the metrizability of the (ε, λ)-topology.

Theorem 28. Let (S, \mathcal{F}, T) be a complete Menger space and $f: S \rightarrow S$ a probabilistic q-contraction such that for some $p \in S$ and $k>0$

$$
\begin{equation*}
\sup _{x>0} x^{k}\left(1-F_{p, f p}(x)\right)<\infty \tag{11}
\end{equation*}
$$

If t-norm T is g-convergent, then there exists a unique fixed point z of the mapping f and $z=\lim _{n \rightarrow \infty} f^{n} p$.

Proof. Let $\mu \in(q, 1)$ and $\delta=q / \mu<1$. We shall prove that $\left(f^{n} p\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Choose $\varepsilon>0$ and $\lambda \in(0,1)$ and prove that there exists $n_{0}(\varepsilon, \lambda) \in \mathbb{N}$ such that

$$
F_{f^{n} p, f^{n+m} p}(\varepsilon)>1-\lambda \text { for every } n \geq n_{0}(\varepsilon, \lambda) \text { and every } m \in \mathbb{N}
$$

Since the series $\sum_{i=1}^{\infty} \delta^{i}$ is convergent, there exists $n_{1}=n_{1}(\varepsilon) \in \mathbb{N}$ such that $\sum_{i=n_{1}}^{\infty} \delta^{i} \leq \varepsilon$. Let $n>n_{1}$. Then we have

$$
\begin{aligned}
F_{f^{n} p, f^{n+m} p}(\varepsilon) & \geq F_{f^{n} p, f^{n+m} p}\left(\sum_{i=n}^{\infty} \delta^{i}\right) \\
& \geq F_{f^{n} p, f^{n+m} p}\left(\sum_{i=n}^{n+m-1} \delta^{i}\right) \\
& \geq \underbrace{T(T(\cdots(T}_{(m-1) \text {-times }}\left(F_{f^{n} p, f^{n+1} p}\left(\delta^{n}\right), F_{f^{n+1} p, f^{n+2} p}\left(\delta^{n+1}\right)\right) \\
& \geq \underbrace{T(T(\cdots(T}_{(m-1)-\text { times }}\left(F_{p, f p}\left(\frac{1}{\mu^{n}}\right), F_{p, f p}\left(\frac{1}{\mu^{n+1}}\right)\right), \ldots, F_{p, f p}\left(\frac{1}{\mu^{n+m-1}}\right))
\end{aligned}
$$

Let $M>0$ be such that

$$
\begin{equation*}
x^{k}\left(1-F_{p, f p}(x)\right) \leq M \text { for every } x>0 \tag{12}
\end{equation*}
$$

Suppose that n_{2} is such that

$$
\begin{equation*}
1-M\left(\mu^{k}\right)^{n} \in[0,1) \text { for every } n \geq n_{2} \tag{13}
\end{equation*}
$$

From (12) it follows that

$$
F_{p, f p}\left(\frac{1}{\mu^{n}}\right)>1-M\left(\mu^{k}\right)^{n} \text { for every } n \in \mathbb{N}
$$

and by (13) for $n \geq \max \left(n_{1}, n_{2}\right)$

$$
F_{f^{n} p, f^{n+m} p}(\varepsilon) \geq \underbrace{T(T(\cdots(T}_{(m-1) \text {-times }}\left(1-M\left(\mu^{k}\right)^{n}, 1-M\left(\mu^{k}\right)^{n+1}\right), \ldots, 1-M\left(\mu^{k}\right)^{n+m-1})
$$

Let s_{0} be such that $M\left(\mu^{k}\right)^{s_{0}}<\mu^{k}$. Then for every $n \in \mathbb{N}$

$$
1-M\left(\mu^{k}\right)^{n+s_{0}} \geq 1-\left(\mu^{k}\right)^{n+1}
$$

and therefore for $n \geq \max \left(n_{1}, n_{2}\right)$ and $m \in \mathbb{N}$

$$
\begin{aligned}
& F_{f^{n+s_{0} p, f^{n+s_{0}+m_{p}} p}}(\varepsilon) \geq \underbrace{T\left(T \left(\cdots \left(T\left(1-M\left(\mu^{k}\right)^{n+s_{0}}, 1-M\left(\mu^{k}\right)^{n+s_{0}+1}\right)\right.\right.\right.}_{(m-1) \text {-times }} \\
&\left.\cdots, 1-M\left(\mu^{k}\right)^{n+s_{0}+m-1}\right) \\
& \geq \prod_{i=n+1}^{\infty}\left(1-\left(\mu^{k}\right)^{i}\right)
\end{aligned}
$$

Since T is g-convergent we conclude that $\left(f^{n} p\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Let $z=$ $\lim _{n \rightarrow \infty} f^{n} p$. By the continuity of the mapping f it follows that $f z=z$.

Corollary 29. Let (S, \mathcal{F}, T) be a complete Menger space such that T is a strict t-norm with a multiplicative generator θ, and $f: S \rightarrow S$ a probabilistic q-contraction such that for some $k>0$ and $p \in S$ (11) holds. If there exists $\mu \in(0,1)$ such that

$$
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty} \theta\left(1-\mu^{i}\right)=1
$$

then there exists a unique fixed point x of the mapping f and $x=\lim _{n \rightarrow \infty} f^{n} p$.
Let

Corollary 30. Let (S, \mathcal{F}, T) be a complete Menger space such that $T \geq T_{1}$ for some $T_{1} \in \mathcal{T}$ and $f: S \rightarrow S$ a probabilistic q-contraction such that for some $k>0$ and $p \in S$ (11) holds. Then there exists a unique fixed point x of the mapping f and $x=\lim _{n \rightarrow \infty} f^{n} p$.

From the proof of Theorem 28 it follows that $f: S \rightarrow S$ has a unique fixed point if (11) and the condition that T is g-convergent is replaced by the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty} F_{p, f p}\left(\frac{1}{\mu^{i}}\right)=1 \quad(\mu \in(0,1)) \tag{14}
\end{equation*}
$$

Using Examples 16 and 17 and Proposition 18 we obtain a fixed point theorem, where the condition (11) is replaced by the condition

$$
\begin{equation*}
\sup _{x>1} \ln ^{k} x\left(1-F_{p, f p}(x)\right)<\infty, \tag{15}
\end{equation*}
$$

for some $k>0$, which under some additional conditions implies (14).
Theorem 31. Let (S, \mathcal{F}, T) be a complete Menger space and $f: S \rightarrow S$ a probabilistic q-contraction. Suppose that one of the following two conditions is satisfied:
(i) $T \in\left\{T_{\lambda}^{\mathbf{D}}, T_{\lambda}^{\mathbf{A A}}\right\}$ for some $\lambda>0$ and there exists $p \in S$ such that (15) holds, where $k \lambda>1$.
(ii) $T=T_{\lambda}^{S W}$ for some $\lambda \in(-1, \infty]$ and there exists $p \in S$ such that (15) holds, where $k>1$.

Then there exists a unique fixed point z of the mapping f and $z=\lim _{n \rightarrow \infty} f^{n} p$.
Proof. (i) Suppose that $\sup _{x>1} \ln ^{k} x\left(1-F_{p, f p}(x)\right)<\infty$, i.e., that there exists $M>0$ such that

$$
\begin{equation*}
\ln ^{k} x\left(1-F_{p, f p}(x)\right)<M \text { for every } x>1 . \tag{16}
\end{equation*}
$$

Relation (16) implies that

$$
\begin{aligned}
F_{p, f p}\left(\frac{1}{\mu^{n}}\right) & \geq 1-\frac{M}{\ln ^{k}\left(\frac{1}{\mu^{n}}\right)} \\
& =1-\frac{M}{n^{k}|\ln \mu|^{k}} \quad(\mu \in(0,1))
\end{aligned}
$$

Suppose that $1-\frac{M}{n^{k}|\ln \mu|^{k}}>0$ for every $n \geq n_{0}$. Then

$$
\prod_{i=n}^{\infty} F_{p, f p}\left(\frac{1}{\mu^{i}}\right) \geq \prod_{i=n}^{\infty}\left(1-\frac{M}{n^{k}|\ln \mu|^{k}}\right) \text { for every } n \geq n_{0}
$$

By Examples 16 and 17

$$
\lim _{n \rightarrow \infty} \prod_{i=n}^{\infty}\left(1-\frac{M}{n^{k}|\ln \mu|^{k}}\right)=1
$$

since for $k \lambda>1$

$$
\sum_{i=1}^{\infty} \frac{M^{\lambda}}{i^{k \lambda}|\ln \mu|^{k \lambda}}<\infty
$$

Hence (14) holds.
(ii) If $T=T_{\lambda}^{\mathrm{SW}}$ for some $\lambda \in(-1, \infty]$ and (16) holds for some $k>1$ then (14) holds, since by Proposition 18, $\sum_{i=1}^{\infty} \frac{M}{i^{k}|\ln \mu|^{k}}<\infty$ implies (14).

Remark 32. It is obvious by Proposition 18 that in the case (ii) the condition (15) can be replaced by the Tardiff's condition (see [16])

$$
\int_{1}^{\infty} \ln u \mathrm{~d} F_{p, f p}(u)<\infty
$$

4.2. An application to random operator equations

Special non-additive measures, so called decomposable measures, see [11], generate a probabilistic metric space ([4]) on which Theorem 28 implies a random fixed point theorem.

Definition 33. Let \mathbf{S} be a t-conorm. An S-decomposable measure m is a set function $m: \mathcal{A} \rightarrow[0,1]$ such that $m(\emptyset)=0$ and

$$
m(A \cup B)=\mathbf{S}(m(A), m(B))
$$

whenever $A, B \in \mathcal{A}$ and $A \cap B=\emptyset$.
Example 34. Taking $\mathbf{S}_{\mathbf{L}}$ t-conorm, $\Omega=\mathbb{N}, \mathcal{A}=2^{\mathbb{N}}$ and $m(E)=\min (|E| / N, 1)$ for a fixed natural number N, where $|E|$ is the cardinal number of E, we obtain that m is $\mathbf{S}_{\mathbf{L}}$-decomposable measure.

Definition 35. Let \mathbf{S} be a left-continuous t-conorm. A set function $m: \mathcal{A} \rightarrow[0,1]$ is σ-S-decomposable measure if $m(\emptyset)=0$ and

$$
m\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\bigcup_{i=1}^{\infty} m\left(A_{i}\right)
$$

for every sequence $\left(A_{i}\right)_{i \in \mathbb{N}}$ from \mathcal{A} whose elements are pairwise disjoint set.
The set function considered in Example 34 is σ - $\mathbf{S}_{\mathbf{L}}$-decomposable.
An S -decomposable measure m is monotone, which means that $A, B \in \mathcal{A}, A \subseteq B$ implies $m(A) \leq m(B)$. A measure m is of (NSA)-type (see [17]) if and only if $s \circ m$ is a finite additive measure, where \mathbf{s} is an additive generator of the t-conorm \mathbf{S} (see [17]), which is continuous, non-strict, and Archimedean, and with respect to which m is decomposable $(s(1)=1)$. If (Ω, \mathcal{A}, m) is a measure space and (M, d) is a separable metric space, by S we shall denote the set of all the equivalence classes of measurable mappings $X: \Omega \rightarrow M$. An element from S will be denoted by \widehat{X} if $\{X(\omega)\} \in \widehat{X}$. The following proposition is proved in [14].

Proposition 36. Let (Ω, \mathcal{A}, m) be a measure space, where m is a continuous \mathbf{S} decomposable measure of (NSA)-type with monotone increasing generator s. Then (S, \mathcal{F}, T) is a Menger space, where \mathcal{F} and t-norm T are given in the following way $\left(\mathcal{F}(\widehat{X}, \widehat{Y})=F_{\widehat{X}, \widehat{Y}}\right):$

$$
F_{\widehat{X}, \widehat{Y}}(u)=m(\{\omega \mid \omega \in \Omega, d(X(\omega), Y(\omega))<u\})=m(\{d(X, Y)<u\})
$$

(for every $\widehat{X}, \widehat{Y} \in S, u \in \mathbb{R}$),

$$
T(x, y)=\mathbf{s}^{-1}(\max (0, \mathbf{s}(x)+\mathbf{s}(y)-1)), \text { for every } x, y \in[0,1]
$$

Let $f: \Omega \times M \rightarrow M$ be a continuous random operator. Then for every measurable mapping $X: \Omega \rightarrow M$, the mapping $\omega \mapsto f(\omega, X(\omega))(\omega \in \Omega)$ is measurable. If $X: \Omega \rightarrow M$ is a measurable mapping let $(\hat{f} \hat{X})(\omega)=f(\omega, X(\omega)), \omega \in \Omega, X \in \widehat{X}$. Hence $\hat{f}: S \rightarrow S$.

Corollary 37. Let (Ω, \mathcal{A}, m) be a measure space, where m is a continuous S decomposable measure of (NSA)-type, s is a monotone increasing additive generator of $\mathbf{S},(M, d)$ a complete separable metric space and $f: \Omega \times M \rightarrow M$ a continuous random operator such that for some $q \in(0,1)$

$$
\begin{align*}
& m(\{\omega \mid \omega \in \Omega, d((\hat{f} \widehat{X})(\omega),(\hat{f} \widehat{Y})(\omega))<u\}) \\
& \geq m\left(\left\{\omega \mid \omega \in \Omega, d(X(\omega), Y(\omega))<\frac{u}{q}\right\}\right) \tag{17}
\end{align*}
$$

for every measurable mappings $X, Y: \Omega \rightarrow M$ and every $u>0$. If there exists a measurable mapping $U: \Omega \rightarrow M$ such that for some $k>0$

$$
\sup _{x>0} x^{k}(1-m(\{d(\widehat{U}, \hat{f} \widehat{U})<x\}))<\infty
$$

and t-norm T defined by

$$
T(x, y)=\mathbf{s}^{-1}(\max (0, \mathbf{s}(x)+\mathbf{s}(y)-1), x, y \in[0,1]
$$

is g-convergent, then there exists a random fixed point of the operator f.
Corollary 38. Let (Ω, \mathcal{A}, m) be a measure space, where m is a continuous $\mathbf{S}_{\lambda}^{\text {SW }}$ decomposable measure of (NSA)-type for some $\lambda \in(-1, \infty],(M, d)$ a complete separable metric space and $f: \Omega \times M \rightarrow M$ a continuous random operator such that for some $q \in(0,1)(17)$ holds for every measurable mappings $X, Y: \Omega \rightarrow M$ and every $u>0$. If there exists a measurable mapping $U: \Omega \rightarrow M$ such that for some $k>1$

$$
\sup _{x>1} \ln ^{k} x(1-m(\{d(\widehat{U}, \hat{f} \widehat{U})<x\}))<\infty
$$

then there exists a random fixed point of the operator f.

ACKNOWLEDGEMENT

The work of the first and second authors were supported by Grant MNTRS-1866 and the project "Nonlinear analysis on fuzzy structures" supported by Serbian Academy of Sciences and Arts, and the work of the third author was supported by the grant MNTRS-1835.
(Received January 30, 2002.)

REFERENCES

[1] J. Aczél: Lectures on Functional Equations and their Applications. Academic Press, New York 1969.
[2] O. Hadžić and E. Pap: On some classes of t -norms important in the fixed point theory. Bull. Acad. Serbe Sci. Art. Sci. Math. 25 (2000), 15-28.
[3] O. Hadžić and E. Pap: A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets and Systems 127 (2002), 333-344.
[4] O. Hadžić and E. Pap: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht 2001.
[5] T. L. Hicks: Fixed point theory in probabilistic metric spaces. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72.
[6] O. Kaleva and S. Seikalla: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215-229.
[7] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. (Trends in Logic 8.) Kluwer Academic Publishers, Dordrecht 2000.
[8] E. P. Klement, R. Mesiar, and E. Pap: Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. 45 (2001), 4, 1393-1400.
[9] K. Menger: Statistical metric. Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537.
[10] R. Mesiar and H. Thiele: On T-quantifiers and S-quantifiers: Discovering the World with Fuzzy Logic (V. Novák and I. Perfilieva, eds., Studies in Fuzziness and Soft Computing vol. 57), Physica-Verlag, Heidelberg 2000, pp. 310-326.
[11] E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1995.
[12] E. Pap, O. Hadžić, and R. Mesiar: A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory. J. Math. Anal. Appl. 202 (1996), 433-449.
[13] V. Radu: Lectures on probabilistic analysis. Surveys. (Lectures Notes and Monographs Series on Probability, Statistics \& Applied Mathematics 2), Universitatea de Vest din Timişoara 1994.
[14] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983.
[15] V. M. Sehgal and A.T. Bharucha-Reid: Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory 6 (1972), 97-102.
[16] R. M. Tardiff: Contraction maps on probabilistic metric spaces. J. Math. Anal. Appl. 165 (1992), 517-523.
[17] S. Weber: \perp-decomposable measures and integrals for Archimedean t-conorm \perp. J. Math. Anal. Appl. 101 (1984), 114-138.

Prof. Dr. Endre Pap, Institute of Mathematics, 21000 Novi Sad, Trg Dositeja Obradovića 4. Yugoslavia.
e-mail: pape@eunet.yu, pap@im.ns.ac.yu
Prof. Dr. Olga Hadžić, Institute of Mathematics, 21000 Novi Sad, Trg Dositeja Obradovića 4. Yugoslavia.

Prof. Dr. Mirko Budinčević, Institute of Mathematics, 21000 Novi Sad, Trg Dositeja Obradovića 4. Yugoslavia.
e-mail: mirkob@im.ns.ac.yu

