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ON THE DESCRIPTION AND ANALYSIS 
OF MEASUREMENTS OF CONTINUOUS QUANTITIES 

REINHARD VlERTL 

The measurement of continuous quantities is the basis for all mathematical and statis
tical analysis of phenomena in engineering and science .Therefore a suitable mathematical 
description of measurement results is basic for realistic analysis methods for such data. 
Since the result of a measurement of a continuous quantity is not a precise real number 
but more or less non-precise, it is necessary to use an appropriate mathematical concept 
to describe measurements. This is possible by the description of a measurement result by 
a so-called non-precise number. A non-precise number is a generalization of a real number 
and is defined by a so-called characterizing function. In case of vector valued quantities 
the concept of so-called non-precise vectors can be used. Based on these concepts more 
realistic data analysis methods for measurement data are possible. 

1. INTRODUCTION 

The result of the measurement of a physical quantity is usually thought to be a 
real number x G M times a measurement unit. Of course engineers know that 
these numbers are uncertain in applications. Therefore stochastic models are used 
to describe data uncertainty by assuming that the results of repeated measurements 
of the same quantity are realisations of a stochastic quantity X. Prom a sample 
£1, • • •, xn of measurements different probability statements are made about the 
quantity of interest. 

But there is a basic problem with this because the result of one measurement 
of a one-dimensional continuous quantity is not a precise real number but more 
or less non-precise. This imprecision is unavoidable also on the macroscopic level. 
Therefore it has to be taken into account before analysing measurement data. It 
should be noted that this kind of uncertainty is different from stochastic uncertainty 
and errors. 

Historically a concept to describe real measurement data is the description of 
data in form of intervals and the related mathematical concept is the concept of 
interval mathematics. But in many situations the boundaries of such intervals are 
not precise and therefore a more general concept is necessary. Since intervals are 
subsets of the set 1R of real numbers a generalization of subsets of 1R is useful. 

In the year 1951 K. Menger published the idea of so-called ensembles flous which 
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are generalizations of classical subsets in the following way. A classical subset A of 
a given set M is characterized by its indicator function IA('), where the possible 
values of an indicator function is the binary set {0,1}: 

I*W = { I Lr T/A } forallieM' 
K. Menger allowed a generalization of this to take care of uncertainty and non-

precise boundaries of A. Therefore he defined a so-called ensemble flou by a real 
valued function defined on the set M which is allowed to assume any value from the 
interval [0,1]. Such functions where later called membership functions //(•) by L. 
Zadeh who made the topic popular in the 1960's, 

/ x : M - > [ 0 , l ] . 

The generalized subset A* defined by /i(-) is called fuzzy set in English. 
Now the idea of K. Menger and L. Zadeh can be used to describe non-precise 

measurements by non-precise numbers. 

2. NON-PRECISE NUMBERS 

A non-precise number x* is defined by its so-called characterizing function £(•) which 
is a real function of one real variable x fulfilling the following: 

(1) 0 < f (x) < 1 for all xeM. 

(2) There exists at least one x G M with £(x) = 1. 

(3) For all 6 G (0,1] the so-called 5-cut C6 U(-)) defined by 

Csfa)) ~{xeM: «*)><*} 

is a closed finite interval [a$, bs]. 

Precise real numbers as well as intervals are special cases of non-precise numbers. 
The characterizing function of a precise real number xn is the one point indicator 
function I{Xo}(m) and the characterizing function of an interval [a, b] is the indicator 
function I[atb](')- Therefore the concept of non-precise numbers is a suitable con
cept for real measurement data. The area under the characterizing function of a 
non-precise number x* is the amount of measurement uncertainty of x* concerning 
imprecision. 

3. CONSTRUCTION OF CHARACTERIZING FUNCTIONS 

A crucial point is how to obtain the characterizing function of a measurement result. 
This depends on the application area but some general remarks can be given. 

Classical measurement instruments with pointers - also precision measurement 
instruments - don't produce precise numbers as measurement result. Important 
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examples are strength measurements of materials. Looking realistically at the mea
surement process a non-precise number is obtained as individual measurement result. 

To obtain the characterizing function of a single measurement a precise look at the 
pointer shows a vibration of it and from recording this the characterizing function 
can be obtained. 

For digital measurement equipments the resulting data x* are "numbers" with 
finitely many digits, i. e. they are data in form of intervals 

\X-ii X%\ , 

where x{ is the reading on the instrument completed by zeros for all digits after the 
last reported decimal, and Xi is the reading of the instrument completed by 9's for 
all digits after the last reported decimal. The characterizing function is the indicator 
function I^ &]('). 

In case of analog equipments with a screen the result can be a light point on an 
oscillograph. The light intensity of this "point" can be used to obtain the charac
terizing function £(•) from the light intensity function (/?(•). In applications the light 
intensity is bounded for all x G M and the values £(x) of the characterizing function 
are obtained by 

£(x) = ^ / x for all xeM. 
maxxeffnp(x) 

If the light intensity is increasing up to a certain value and decreasing afterwards, 
then the resulting function £(•) is a characterizing function as defined above. 

More generally often color intensity pictures are obtained as results of measure
ment processes. For example hardness measurements of materials or results of re
mote sensing. Here the color intensity can be used to obtain the characterizing 
function. 

4. NON-PRECISE VECTORS 

Measurements of observations of vector valued continuous quantities x = (#i, • • •, xk) 
are also not precise. Therefore a generalization of the concept of a vector, whose 
components are thought to be real numbers, is necessary. 

For continuous vector quantities with dimension k non-precise vectors x* are 
defined by so-called vector-characterizing functions. 

The vector-characterizing function C(*, * *",') of a non-precise vector is a real val
ued function of k real variables x\, • • •, xk obeying the following: 

(1) 0 < C ( * i , ••-,**) < 1 for all (xir-,xk)eMk. 

(2) There exists at least one fc-tuple (x\, • • •, xk) G Mk with C(^i, • * *, xk) = 1. 

(3) For all 5 G (0,1] the so-called 5-cut Cs (c(-, ••',•))> defined by 

C*(C(', • • ' , • ) ) := {(xw-,xk)eMk : C(^i, ••• ,Xit) > 5} is a closed com

pact and convex subset of Mk. 
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For a classical precise fc-dimensional vector x = (xi, • • •, x^) the vector-characterizing 
function is the one-point indicator function Io o ,(-,•••,-) and for a k-dimensional 

interval 
[ai,bi] x [02,62] x ••• x [ak,bk] = xjLja^&i] 

the vector-characterizing function is the indicator function 

^x J=1[o.i,6i] ( ' > • " • > • ) • 

General vector-characterizing functions are obtained for data given as color in
tensity pictures. In case of a 2-dimensional point on a radar screen the position of 
an equipment is represented by a light "point" on the radar screen. The light inten
sity determines the vector-characterizing function of the non-precise 2-dimensional 
vector x*. Let 0(xi ,x2) denote the light intensity in the plane M2. Then the 
vector-characterizing function C(*, *) is given by its values 

C(XUX2) = ^XUX2) forall {xuX2)e]R2 
max <p(xi,x2) 

5. FUNCTIONS OF NON-PRECISE VALUES 

In analysing measurements, functions of the obtained measurements are essential. 
Based on classical assumptions functions g(x\, • • • ,x n) of n real numbers xi , • • • , x n 

are considered. 
For the realistic situation of non-precise measurement results x*, • • • , x* of one-

dimensional quantities, functions g(x*, • • •, x*) have to be considered where #(•, • • •, •) 
is a real valued function. For non-precise argument values x*, • • •, x*n the resulting 
value g(x*, • • •, x*) naturally is non-precise, i. e. 

V* = 0 ( * i r - - . * n ) » 

where y* is a non-precise number under certain conditions for </(-, • • • , • ) . 
In order to obtain the characterizing function f](-) of y* the so-called extension 

principle developed by L. Zadeh in the 1970's can be applied, compare [1] and 
[10]. Before applying the extension principle the non-precise values x*, • • • ,#* with 
corresponding characterizing functions f 1 (•),••• ,£n(0 h a v e to be combined into a 
non-precise vector x* in Mn. This can be done in the following way: 

The vector-characterizing function ((•, • • •, •) of x* is obtained from the charac
terizing functions £i(')> • • • ,fn(*) by its values 

C(xi , - -- ,x n) =min[f i(xi) , - -- , fn(zn)] forall (xi, • • • ,x n ) G Mn . 

R e m a r k 5 .1 . By this definition C(*, •••,•) is a vector-characterizing function. The 
J-cuts Cs(x*) of the corresponding non-precise vector x* are related to the 5-cuts 
C<s(x*) in the following way: 

Cs(x*) = Xn
=1Cs(x*) for all 5 G (0,1] , 



On the Description and Analysis of Measurements of Continuous Quantities 357 

i. e. they are the Cartesian products of the 5-cuts of the n non-precise numbers 
r * • • • X * 

Based on the so-called combined non-precise vector x* the characterizing function 
of the non-precise value of a function can be calculated. 

Let g(xi, • • • , x n ) be a real valued continuous function. Then for non-precise 
argument values x*, • • • ,x* with combined non-precise vector x* the values rj(y) of 
the characterizing function r/(-) of the non-precise value y* = #(x*, • • •, x*) are given 
by the extension principle, and using the notation x = (xi, • • •, xn) E Mn by 

л(y) -{ 
sup {Ç(x): g(x) = y} if 

0 if 
9-ЧІУ)) 
9~Ч{У}) 

ЃØ ì 
= 0 / for all y Є Ш. 

Proposition 5.1. Under the conditions above the function r](-) of y* is a charac
terizing function as defined in Section 2 whose 5-cuts are 

Cs(y*) 

The proof is given in [5]. 

min g(x) , mæc g(x) 
xєcs(x*) xєcs(x*) 

for all (5 6(0,1]. 

Remark 5.2. The resulting characterizing function rj(-) need not be continuous. 
An example for one-dimensional non-precise argument x* is given in Figure 1. 

1 0 
Fig. 1. Characterizing function of a derived non-precise value y* = g(x*). 
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6. ANALYSING MEASUREMENT RESULTS 

For repeated measurements of a quantity, for example a geodetic length or angle, 
the results are usually used to calculate the arithmetic mean or some weighted 
mean value. For n measurements x*, • • • ,x* these are n non-precise numbers. The 
arithmetic mean of n precise numbers xi , • • •, x n , 

1 n 

c n : = > X{ 

i=l 

has to be adapted to the situation of non-precise numbers. This is possible using 
the concept from Section 5. Here the function g(-, • • •, •) is 

1 n 

g(xïr--,xn) = -Y]XІ . 
n t—' 

i=l 

Let the n non-precise measurements x* have characterizing functions &(•)> these 
have to be combined to a non-precise vector # * with vector-characterizing function 

CO, •••,•)• 
Based on £(-, •••,•) the value g(x\, • • •, x*) = £ 5^=1 #* is a non-precise num

ber whose characterizing function rj(-) is obtained via the extension principle from 
Section 5. 

An example of non-precise measurements is given in Figure 2. 

% 

I I I II IIMIlllllll \ \ I l 
Fig. 2. Characterizing functions of 12 non-precise numbers. 

In Figure 3 the characterizing function of the non-precise arithmetic mean xx*2 of 
the 12 non-precise measurements from Figure 2 is depicted. 
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Fig. 3 . Non-precise sample mean x*2. 

The resulting characterizing function is the optimal realistic information which 
can be obtained from the non-precise measurements. 

7. STATISTICAL TESTING OF HYPOTHESES 

One of the main points in model building is the formulation of hypotheses. In 
order to decide if a model (hypothesis) is acceptable, so-called statistical tests are 
performed. 

Statistical tests are decision rules which are usually depending on a test statistic 
g(xi, • • •, xn) which is a function of the observations X\, • • •, xn. 

In standard statistics the data are assumed to be generated by a random sample 
Xi, • • • ,Xn of the considered model X ~ Po\ 0 e Q. The decision is based on the 
value t which a function of the sample, i. e. 

T = g(Xi,---,Xn) 

assumes. 
Usually the space of possible values of the test statistic T is decomposed into an 

acceptance region A and its complement, the rejection region Ac. For precise data 
#i, • • • ,-En the value t -= g(xi, • • • ,x n ) of the test statistic is precise also. Therefore 
it is possible to decide whether the value t is in the acceptance region or not. 

In case of non-precise data a;*,---,x* the value t* = g(x*,-" ,x*) of a test 
statistic, obtained by the method from Section 5, becomes non-precise. This makes 
a major problem in the usual setting of testing models, because it is not always 
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possible to decide whether the non-precise value t* with characterizing function £(•) 
belongs to the acceptance region or not. An example is given in Figure 4. 

Ш 

A Ac 

Fig. 4. Non-precise value of a test statistic. 

In order to find a solution for this problem the concept of p-values is useful. 

Based on a non-precise value t* of a test statistic in form of a fuzzy number it is 
still possible to find a precise p-value. Then the decision can be found in the same 
way as for precise data where a precise value t of the test statistic is obtained. 

The p-value for a non-precise value t* with characterizing function £(•) is the 
smallest significance level a at which the hypothesis would be rejected. This signif
icance level can be obtained from the characterizing function £(•) which is assumed 
to have finite support supp(£(-)). For non-precise data re*, • • • ,x* the p-value is the 
smallest significance level a(x*, • • • ,x*) for which supp(£(-)) is included in the re
jection region Ac. In Figure 5 this is explained by an example of a one-sided test 
problem, where the precise number to determines the p-value. 

By this construction the test decision can be made in the same way as in case of 
precise data. 
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Fig. 5. p-value for a non-precise value of a test statistic. 

8. CONCLUSION 

In order to obtain realistic results from the analysis of measurements of continuous 
quantit ies, the single observations, which are always more or less non-precise, have 
to be described quantitatively with a suitable mathematical model. This is possible 
using so-called non-precise numbers and non-precise vectors. The results of such 
analyses are non-precise numbers which describe adequately the information from 
measurements. Moreover using the p-value approach to statistical tests allows to test 
hypotheses concerning mathematical models also for non-precise measurements. 

(Received January 30, 2002.) 
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