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VALIDATION SETS IN FUZZY LOGICS 1 

ROSTISLAV HOŘČÍK AND MlRKO NAVARA 

T h e validation set of a formula in a fuzzy logic is the set of all t r u t h values which this 
formula m a y achieve. We summarize characterizations of validation sets of S-fuzzy logics 
and extend t h e m t o t h e case of R-fuzzy logics. 

1. BASIC NOTIONS 

In order to express vagueness of information, we often enlarge the set {0,1} of truth 
values to the unit interval [0,1], obtaining fuzzy logic systems [1, 3, 8, 9, 20]. Fuzzy 
logics are naturally linked to the theory of fuzzy sets, where the membership of 
objects is described by "membership functions" the range of which is the interval 
[0,1], see [10, 24]. In this paper we study two approaches to fuzzy logics: R-fuzzy 
logics studied mainly by Hajek [10], and S-fuzzy logics introduced by Butnariu, 
Klement and Zafrany [1]. We ask which are the sets of possible truth values of 
formulas in these logics. 

Let us recall the basic notions used in the sequel. 

Definition 1.1. A (propositional) fuzzy logic is an ordered pair V — (£, Q) of a 
language (syntax) C and a structure (semantics) Q described as follows: 

(i) The language of V is a pair C = (A, C), where A is a nonempty at most count
able set of atomic symbols and C is a tuple of connectives. 

(ii) The structure of V is a pair Q = ([0,1],-M), where [0,1] is the set of truth 
values, and the tuple M consists of the interpretations (meanings) of the con
nectives in C. 

For simplicity, we fix the set A of atomic symbols throughout this paper. 

The tuple of connectives always will contain at least a conjunction which is in
terpreted by a triangular norm (t-norm for short), i.e., a commutative, associative, 
non-decreasing operation T: [0, l ]2 -> [0,1] with neutral element 1 (see [13, 23]). 
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Three basic t-norms are the minimum TG, the product Tp and the Lukasiewicz t-
norm T L given, respectively, by TG(x,y) = min(x,y), T?(xyy) = xy and TL(x,2/) = 
max(0,x + y — 1). 

A triangular conorm (t-conorm for short) is a commutative, associative, non-
decreasing operation S: [0, l ] 2 -» [0,1] with neutral element 0. 

There is an obvious duality between t-norms and t-conorms. Let Ns: [0,1] -» 
[0,1] be the standard negation defined by Ns(x) = 1 — x. For each t-norm T, the 
function ST: [0, l ] 2 -> [0,1] given by 

ST(x,y) = Ns(T(Ns(x),Ns(y))) 

is a t-conorm, called the dual ofT. The duals of the three important t-norms are the 
maximum SG, the probabilistic sum Sp and the bounded sum 5 L given, respectively, 
by SG(x,y) =max(x,2/), Sr(x,y) = x + y-xy and 5L(x,i/) = min(l,x + y). 

The class Tv of well-formed formulas in a fuzzy logic V (V-formulas for short) 
is defined in the standard way, starting from the atomic symbols and constructing 
new formulas using the connectives. For each function t: A —> [0,1] which assigns a 
truth value to each atomic formula, there exists a unique natural extension of t to a 
truth assignment (evaluation) t: T-p —> [0,1]. 

All logics studied in this paper have their axiomatizations allowing to define 
provable formulas (theorems) and formulate and prove completeness theorems (see 
[1, 10] for more details). Here we concentrate on the properties of validations sets. 
The V-validation set of a P-formula cp is defined as 

Vp(<p) = {t(v)\te[o,i]A}. 

This paper deals with the question of which validation sets may occur in various 
fuzzy logics. The section dealing with S-fuzzy logics summarizes the results of [12] 
for comparison, while the section on R-fuzzy logics is new. Prior to this, let us clarify 
the situation in classical logic. 

Propos i t ion 1.2. Let C be classical logic. Each C-validation set is of one of the 
following forms: 

- {1} iff the formula is a tautology, 

- {0} iff the negation of the formula is a tautology, 

- {0,1} otherwise. 

As all fuzzy logics considered here extend classical logic (in the sense that all logi
cal operations work on crisp values {0,1} classically), each validation set necessarily 
contains 0 or 1. 

2. S-FUZZY LOGICS 

The following construction of propositiona! fuzzy logics was presented in [1]: 
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Definition 2.1. A t-norm-based propositional fuzzy logic (S-fuzzy logic) ST is a 
fuzzy logic (in the sense of Definition 1.1) in which the basic connectives are unary 
-i (negation) and binary A (conjunction), interpreted respectively by the standard 
fuzzy negation Ns and a t-norm T. 

All S-fuzzy logics ST have the same syntax, they differ only by their semantics. 
The logics corresponding to the basic t-norms TG , TL and Tp are Godel S-fuzzy logic 
SQ, Lukasiewicz S-fuzzy logic Si, and product S-fuzzy logic Sp. 

Starting with the basic logical connectives -> and A, we can define additional 
logical connectives in an S-fuzzy logic ST- The disjunction V is defined by (p V t/> = 
-«(-i</? A -T0); it is interpreted by the t-conorm ST dual to T. 

The implication -> in ST is defined as ip -> ip = -i(</? A -"VOi ^ is interpreted by 
the binary operation IT* [0, l ]2 —r [0,1] given by Fr(-C,2/) = ST(Ns(x),y), which is 
often called the S-implication induced by the t-norm T. 

In S-fuzzy logics different from Lukasiewicz S-fuzzy logic, the false statement can
not be obtained as a (miliary) derived connective, i. e., there is no formula evaluated 
by the constant function 0 (of course, it may be added to the definition). 

Let us summarize results on <!>r-validation sets from [1] and [12]: 

Theorem 2.2. The validation sets in Godel S-fuzzy logic So are of one of the 
Mowing forms: ^ ^ _ . ^ ^ 

The validation sets in product S-fuzzy logic Sp are of one of the following forms: 

[0,a], [6,1], [0,1], 

where a, b G ]0,1[. The validation sets in Lukasiewicz S-fuzzy logic <SL are of one of 
the following forms: 

{0} , {1}, [0,a], [6,1], [0,1], 

where a,& £ ]0,1[. The possible values of the bounds a, b form a countable dense 
subset of [0,1]. 

3. R-FUZZY LOGICS 

A reasonable way of constructing connectives in fuzzy logics is to start with a con
tinuous t-norm T and to use the residuum (R-implication, see [4, 22]) defined by 

RT(x, y) = sup{z e [0,1] | T(x, z) < y} . (1) 

as the interpretation of the implication. It is immediate that we have 

RT(X, y) = 1 if and only if x < y . 

The following approach to fuzzy logics with residual implications is described in 
detail in [10]. 
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Definition 3.1. A residuum-based propositional fuzzy logic (R-fuzzy logic) IZT is 
a fuzzy logic (in the sense of Definition 1.1) in which the basic connectives are the 
miliary connective 0 (false statement) and the binary connectives A (conjunction) 
and —» (implication) with respective interpretations 0, T, RT, where T is a t-norm 
and RT is the corresponding residuum. 

Well-formed formulas in an R-fuzzy logic will be called IZ-formulas. Since their 
definition is independent of T, we omit this index. 

The R-fuzzy logics corresponding to the basic t-norms T G , 3 L , and rfp are Godel 
R-fuzzy logic 7^G, Lukasiewicz R-fuzzy logic 1Z\^ and product R-fuzzy logic IZp. 

Using the basic logical connectives A, -r and 0, we can define derived logical 
connectives in an R-fuzzy logic TZT-

The negation -» in IZT vis defined as an implication with consequence 0, i.e., 
-up = <p —> 0. Its interpretation is the negation NT given by NT(X) = RT(X,0). For 
T = TL, i. e., in Lukasiewicz R-fuzzy logic 7^L, we obtain the standard negation iVs. 
For T G and for all strict t-norms T, we obtain the Godel negation, 

N<zW = \n -f ^ n 2 ) 
10 if x > 0. 

In each R-fuzzy logic 1ZT, the derived binary connective VM defined by 

<P VM </> = [(<P -> </0 -> </>] A [[(<p ->ip)->ip]^ [(</> ->¥>)-• V>]] (3) 

is evaluated by the maximum, i.e. by SQ (see [10]), 

t(cp VM VO = max(%) , t(i/j)). 

Observe that the S-implication FpL coincides with the R-implication it/pL • So the 
interpretation of logical connectives in Lukasiewicz S-fuzzy logic S L and Lukasiewicz 
R-fuzzy logic 7^L is identical (although not the same connectives are considered as 
the basic ones). One difference between Lukasiewicz fuzzy logics 7£L and <?L is that 
the miliary connective 0 is not considered an 5-formula. Nevertheless, it can be 
introduced as a derived logical connective putting, e.g., 0 = ->cp A (p for a fixed 
5-formula <p. 

In Godel R-fuzzy logic 7^G , the interpretation RG of the implication is defined 

jl iix<y, 
RG(x,y) = < . 

\y otherwise. 

The R-implication RG (called the Godel implication) is not continuous in the points 
(x,x) with x G [0,1[. 

In product R-fuzzy logic TZp, we obtain the interpretation i?p of the implication 
defined by 

{1 if x < y, 
y- otherwise. 

X 

The R-implication Rp (also called the Goguen implication) is not continuous in the 
point (0,0). 
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The notion of /^-validation set depends on the choice of T. In contrast to the 
situation of S-fuzzy logics (see Section 2), the validation set VnT(^p) of an 7^-formula 
\p in TZT is not necessarily an interval. 

In view of the equivalence of the semantics of Lukasiewicz S- and R-fuzzy logics, 
we have: 

T h e o r e m 3.2. The validation sets in Lukasiewicz R-fuzzy logic TZi, are of one of 
the following forms: 

{0}, {1}, [0,o], [6,1], [0,1], 

where a,b G ]0,1[. The possible values of the bounds a,b form a countable dense 
subset of [0,1]. 

In Godel R-fuzzy logic, the situation becomes different because of the lack of an 
operation interpreted by the standard fuzzy negation. 

T h e o r e m 3.3. The validation sets in Godel R-fuzzy logic 7^G are of one of the 
following forms: { Q } ^ { 1 } ^ { Q 1 } ) ] ( ) > 1 ] > [ 0 1 ] 

P r o o f . First, we prove that all the above-mentioned cases occur. Let p be an 
atomic symbol. Then 

^тгo(O) = {0}, 
KтгG(0->0) = {1}, 

Vкв(p-*0) = {0,1}, 

0) -> 0) -> p) = ]0,1] , 

VnG(p) = [0,1]. 

VnG{{(p 

Second, we have to prove that all 1ZG-validation sets are of one of the above 
forms. For this, it is sufficient to prove the following implication: 
If (f is an 7Z-formula and t an 1ZG-evaluation such that t((p) G ]0,1[, then for each 
b G ]0,1] there is an TZG-evaluation £& such that tb(y) — b. 

The proof will be done separately for b G ]0,1[ and for b = 1. 
First, assume that b G ]0,1[ and t((p) = a G ]0,1[. We may find an order 

automorphism (i.e., an increasing bijection) h: [0,1] —> [0,1] such .that h(a) = b. 
A routine verification shows that h commutes with the interpretations of all basic 
connectives, i.e., 

h(0) = 0 , 

h(TG(a,b)) = TG(h(a),h(b)) , 

h(RG(a,b)) = RG(h(a),h(b)) . 

We define the evaluation U of atomic formulas 

tb(p) = h(t(p)) . (4) 
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The formula 

tb(p) = h(i(p)) (5) 

holds for all atomic formulas and also for 0, because 

tb(0) = 0 = h(0) = h(i(0)) . 

Suppose that p, tp are formulas for which (5) holds. Then 

tb(pA*l>) = TG(ib(p),tb(i>))=TG(h(i(p)),h(t(4>))) 
= h(TG(t(p),t(^))) = h(t(pM>)), 

h(p^ip) = RG(tb(p),ib(il>)) = RG(h(t(p)),h(i(i>))) 
= h(RG(t(p),i(4,))) = h(i(p-*il>)), 

thus also p Axp and p -> ij) satisfy (5). The latter two equalities are inductive steps 
which allow us to prove (by induction over the complexity of formulas) that (5) holds 
for all 7^-formulas. In particular, 

tb(ip) = h(t(<p)) = h(a) = 6 . 

Second, assume that 6 = 1 and t((p) = a G ]0,1[. We proceed analogously to the 
previous case. We define an order preserving mapping (now not a bijection) 

f 0 if a = 0 , 
h(a) = \ 

{ 1 if a G ]0,1] . 

Again, h commutes with the interpretations of all basic connectives. 
We define an evaluation tb by (4) and by induction over the complexity of formulas 

we obtain (5) for all 7^-formulas. In particular, 

*&(¥>) = h(t(<p)) = h(a) = 6 = 1 . 

We have proved that whenever an 7£G-validation set contains a number from 
]0,1[, it contains the whole ]0,1], thus it can be only ]0,1] or [0,1]. This finishes the 
proof of the theorem. • 

Theo rem 3.4. The validation sets in product R-fuzzy logic 11? are of one of the 
following forms: {0} , {1} , {0,1} , ]0,1] , [0,1] . 

P r o o f . The proof follows the method from Theorem 3.3; the only difference is 
that not all order automorphisms commute with the product t-norm Tp. Neverthe
less, there are such automorphisms, namely 

h(a) = ar , 

where r G ]0, oof. Then 

h(TP(a,b)) = (a • 6)r = ar • br = TP(h(a),h(b)) . 
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(These are the only automorphisms with this property, see [6].) Moreover, these 
automorphisms commute also with the Goguen implication i?p. Indeed, iZp(a, b) = 
1 iff a < b. This condition is equivalent to h(a) < h(b) and in this case we obtain 

h(RP(a,b)) = h(l) = 1 = RP(h(a),h(b)) . 

In the remaining case, a > b} we have h(a) > h(b) and 

h(RP(a,b)) = h (-) = -T = M = RP(h(a),h(b)) . 
\aj ar h\a) 

Thus it suffices to take r = |^--^ for 6 G ]0,1[; the case of b = 1 remains unchanged . 
Arguments analogous to those of Theorem 3.3 show that the characterization of 
7^P-validation sets is the same as that of 1ZQ-validation sets . • 

4 . CONCLUDING REMARKS 

We gave a characterization of validation sets for the most frequently studied fuzzy 
logics. Still there are open questions for further study. There are many other fuzzy 
logics for which characterizations of validation sets are yet unknown . In particular, 
one might consider logics in which conjunction is interpreted by a t-norm different 
from the three basic ones used in this paper. We already know tha t the charac
terizations of validations sets in logics using a strict t-norm instead of the product 
remain basically the same. (This is trivial in case of R-fuzzy logics because they 
are isomorphic to product logic. In S-fuzzy logics, the situation is different as the 
isomorphism need not preserve the standard negation; still the same results con
cerning validation sets are obtained.) Recently R-fuzzy logics were studied in which 
conjunction is interpreted by a continuous t-norm which is an ordinal sum of the 
basic t-norms (Lukasiewicz and product) . Also the case of discontinuous t-norms 
might be of interest. 

Following [18], vector-valued evaluations of series of formulas may be introduced, 
leading to validation sets tha t are subsets of vector spaces. This might lead to a sub
stantial generalization related to other questions of satisfiability, compactness, etc. 
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