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DISCRETE-TIME SYMMETRIC POLYNOMIAL 
EQUATIONS WITH COMPLEX COEFFICIENTS1 

D I D I E R H E N R I O N 2 , J A N J E Ž E K A N D M I C H A E L Š E B E K 

Discrete-time symmetric polynomial equations with complex coefficients are studied in 
the scalar and matrix case. New theoretical results are derived and several algorithms 
are proposed and evaluated. Polynomial reduction algorithms are first described to study 
theoretical properties of the equations. Sylvester matrix algorithms are then developed 
to solve numerically the equations. The algorithms are implemented in the Polynomial 
Toolbox for MATLAB. 

1. INTRODUCTION 

Polynomial equations are at the core of the study of dynamical systems, especially 
when pursuing the polynomial approach to control system analysis and design [14, 
15]. Throughout the last two decades, several algorithms were developed to handle 
scalar or matrix polynomial equations stemming from practical control problems, see 
[5] for a recent overview. A MATLAB3 toolbox including several of these algorithms 
was recently developed [19]. 

In several problems of signal processing or control design with quadratic criteria, 
one non-standard operation comes into play in the ring of polynomials, in addition 
to standard operations such as addition and multiplication. This operation is the 
conjugation. It is usually associated to the concept of symmetry and gives rise to 
symmetric polynomial equations. For continuous-time systems, the conjugate of a 
polynomial is also a polynomial. For discrete-time systems, in order to accomodate 
the conjugacy and the symmetry, a slightly modified algebra must be introduced: 
the ring of two-sided polynomials, with both positive and negative powers of the 
indeterminate. One objective of this paper is precisely to give new insights into this 
algebra of two-sided discrete-time polynomials. 

It must be underlined that polynomial or polynomial matrix coefficients involved 
in the above mentioned equations are generally supposed to be real, whereas complex 
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numbers may naturally arise when studying real-world problems. Indeed, it is com
mon in communication applications of signal processing to work with complex-valued 
signals [17, 18]. Such a representation carries information about both amplitude and 
phase. For example, several mobile radio communication filtering algorithms hinge 
upon complex Diophantine equations [16]. Polynomials with complex coefficients 
also occur in the Kharitonov's theorem, a fundamental tool for studying robust sta
bility of linear systems [1, §6.9]. Whirling shafts, vibrational systems and filters are 
additional examples of systems whose models involve complex coefficients [2]. In the 
sequel, we describe some problems in mechanics and signal processing that get sim
plified when complex coefficients come into play. Obviously, no practical extension 
to complex coefficients of the currently available polynomial equation solvers can 
be achieved without proper theoretical justification. Up to the authors' knowledge, 
nothing is available in the linear algebra literature that covers such an extension. 

This paper is an attempt to partly fill this gap. It aims at providing a thorough 
study of a special kind of two-sided discrete-time polynomial equations for which the 
extension to complex coefficients is by no way straightforward, namely the bilateral 
symmetric matrix polynomial equation. The problematic feature is mainly the pres
ence of unknown terms at both sides of the equation, some of which are transpose 
conjugated. As will be shown, this requires a special machinery and new theoretical 
notions coming from the algebra of complex polynomial matrices. 

Previous works on real instances of the symmetric matrix polynomial equation 
can be traced back to [9], where theoretical properties are investigated in the scalar 
case. This study is deepened and extended to the matrix case in [10, 11], where some 
applications to spectral factorization and computation of the covariance matrix of an 
ARMA process are proposed. Signal processing applications are also to be found in 
the recent publication [20]. The resolution algorithms described in these references 
strongly rely upon elementary polynomial operations that have bad reputation as 
far as numerical properties are concerned. For this reason, the symmetric matrix 
polynomial equation was recently revisited in discrete-time [4] and continuous-time 
[6] with the objective of designing numerically reliable algorithms based on Sylvester 
matrices and interpolation. In the present paper, we extend several of these results 
to the case of complex coefficients. Polynomial reduction algorithms [9, 10, 11] will 
be shown to provide constructive proofs of several new theoretical results, whereas 
Sylvester matrix algorithms [4, 6] will prove to be efficient and numerically reliable 
alternatives. 

The outline of the paper is as follows. Notations and concepts used throughout the 
paper are collected in Section 2. Systems with complex coefficients naturally arising 
in mechanics and signal processing are described in Section 3, hence illustrating the 
point in studying equations with complex coefficients. The symmetric polynomial 
equation is then first studied in the scalar case (Section 4), then in the matrix case 
(Section 5). In both sections, two types of algorithms are systematically developed, 
respectively based on polynomial reductions and Sylvester matrices. Polynomial 
reduction algorithms are aimed at studying theoretical properties of the equation, 
namely the existence and the uniqueness of solutions. Sylvester matrix algorithms 
are aimed at overcoming numerical difficulties that may be faced with polynomial 
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reduction algorithms. They are based on efficient and reliable numerical routines. 
Both kind of algorithms are illustrated on simple numerical examples. In Section 6, 
numerical considerations are pointed out. Finally, Section 7 collects some concluding 
remarks. 

2. NOTATIONS AND PRELIMINARIES 

In the paper, we use the following standard notations. 

- C is the field of complex numbers. 

- j is the basic imaginary unit in C. 

- Re A is the real part of a complex matrix A. 

- Im A is the imaginary part of a complex matrix A. 

- A is the complex conjugate of a complex matrix A, i.e. A = Re A — j Im A. 

- AT is the non-conjugate transpose of a complex matrix A. 

- I n is the identity matrix of dimension n. 

- 0 is a matrix with zero elements, whose dimension can be guessed from the 
context. 

Some definitions are also in order. 

- A matrix 
n 

A(x) = J ] AiZ\ 
i=—m 

considered as a function from C to Cp X g , is referred to as a two-sided polyno
mial matrix. 

- A two-sided polynomial matrix A(z) is one-sided, or simply polynomial, if it 
does not feature negative powers of z, i. e. A-m = A-m+i = • • • = A-\ = 0. 

- The degree of a polynomial matrix A(z) is the highest power of z occurring in 
A(z). It is denoted by 5A. For a two-sided polynomial matrix, 5A means the 
same. 

- A square polynomial matrix A(z) is Schur, or stable in the discrete-time sense, 
if it has no zero within the closed unit disc, i.e. det.A(z) ^ 0 for all z G C 
such that |z| < 1. 

- The complex conjugate of a two-sided polynomial matrix A(z) is 

n 

A(z)= £ A~&. 
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The latter matrix is not to be confused with the transpose conjugate of a 
two-sided polynomial matrix 

A*(z) = ^(ž"1) = ]T AiV\ 

- A square two-sided polynomial matrix A(z) is symmetric if it satisfies A(z) 

A*(z). Its coefficients satisfy A-i = A{ . 

In relation to the above definitions, some clarifying remarks are in order. 

- For z on the unit circle, i.e. z = z *, it holds A*(z) = AT(z). 

- One can check that a two-sided polynomial matrix A(z) with reai coefficients 
satisfies A(z) = A(z). vAs a consequence, we have A*(z) = AT(z~1), thus 
matching the definition found in [10] for real polynomial matrices. However, 
we underline the fact that this formula does not hold for two-sided polynomial 
matrices with complex coefficients. 

Finally, we recall a simple and systematic way for converting the complex equation 

A1X + A2X = B (1) 

where Ai,A2,B are given complex matrices of compatible dimensions and X is a 
complex matrix to be found, into an equation over the field of reai numbers. Just 
write equation (1) as 

(ReAi - j ImAi ) (ReX-F j ImX)- r - (ReA 2 -F j ImA 2 ) (ReX- j ImX) = ReB-FjImB. 

By separating real and complex parts, the above equation reads 

ReAiReX-F ImAiImX-F ReA 2ReX-F ImA 2 ImX = ReB 

- I m A i R e X - h ReAiImX-F I m A 2 R e X - ReA 2 ImX = ImB. 

Now defining 

A = 
Re Ai 

- I m A i 
ImAi 
ReAi + 

ReA2 ImA2 

Im A2 - Re A2 
X = 

ReX 
ImX 

B 

we obtain the equivalent real matrix equation 

AX = B . 

ReB 
ImB 

(2) 

Fact 1. Complex matrix equation (1) and real matrix equation (2) are equivalent. 

3. DYNAMICAL SYSTEMS WITH COMPLEX COEFFICIENTS 

Usually, dynamical systems are described by differential equations or transfer func
tions with real coefficients. Sometimes the complex coefficients may prove useful. 
Two real variables x,y may be replaced by z = x + jy, some operations getting 
simplified. 
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3.1- Complex coefficients in mechanics 

Let us first consider the Coriolis force in mechanics. In the 2-dimensional plane x, y, 
the law of motion can be written 

d2Z 
m d ^ = / 

with complex z,f. Suppose the plane xf,y' rotates with constant angular velocity 
UJ. Let us derive the law of motion in this plane. The substitution is 

z'(jut, f = f'éwt. 

Differentiating 

-c 
dt 

d2z fd2z' „. dz' 
+ 2jш- w V e1' 1J \ ^Ut 

dt2 V dt2 J dt 

yields the required law 

d V ±, n . dz' 2 , 
m—r- = f - ra2ja;—- + mu z . 

dtz dt 

In the right-hand side, the second term is the Coriolis force, the third one is the 
centrifugal force. 

As an example of a dynamical system, consider a pendulum under the Coriolis 
force (Foucault pendulum). In presenting the (linearized) equations of 2-dimensional 
motion and its solution, begin with the usual pendulum (without the Coriolis force): 

d 2 z / 0 2 ra—- = f -mllzz. 
dtz 

Here fi = \J~gjl is the angular frequency of pendulum oscillations, determined by 
length I and gravity g. The external force is /. Laplace transform yields the solution 

z(p) = 
pzo + v0 + ғ(p) 

m 
p2 + Ü2 

responding to initial zn, vo and to external F(p). The response to initial conditions 
is 

z(t) = zo cos Clt + — sin Qt. 

In the simplest case with itn = 0, the pendulum oscillations run (forth and back) 
permanently in the same direction, see Figure 1. 

Now introduce the Coriolis force. Denote u = UE sin 9 where UJE is the rotation 
of planet Earth and 9 is the geographical latitude. The motion equation is 

d2^ ,. ^o „ . dz 
ra—-r = f — mil z — 2raja;— 

dtz at 
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Fig. 1. Pendulum oscillations without Coriolis force. 

with assumption Q, ^> u. The Laplace transform yields 

, . (p + 2j-)zb + «tt + -%-
KP> p2 + 2jujp + n2 

Assumption fl ;» u makes it possible to replace the denominator by 

(p+jojf + n2 = (P+&+jn) (P+& - in). 

With a simplification also in the numerator, the response to initial conditions is 

Z(p) = 
p + }ш 

;Zo + 
(p + jш)2 + П2 (p + ]ш)2 + ӣ2 vo 

z(t) = zoe-i"1 cos ilt + 7 y e - j ^ sin Sit. 

When vo = 0 the direction of pendulum oscillations (angular frequency ft) slowly 
rotates with angular frequency CO, see Figure 2. This is a well-known result obtained 
by Foucault. 

Even in the simpler case of the usual pendulum with equations 

dx dv _ 2 

_ = l), - = - n _ 
and with solution 

x = xo cos ílt+ — sin Qt 

v = —flxo sin Qt + VQ cos ílt, 
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Fig. 2. Pendulum oscillations with Coriolis force. 

the complex variable can be used advantageously. First, by substitution 

x' , t' 
x = li'v = v ' t = n 

the equations get normalized 

dxl . dv' , 
ďť=v'ďť=~x-

Second, by introducing the complex variable z' — x' +)v', z'0 — x'0 +jv'0, we obtain 
equation 

dz' . , 
M=~iZ 

with solution 

By back substitutions, the original solution is easily recovered. 
Note how the device of complex variables made all the derivations simple and 

transparent. Similar cases can occur in satellite and cosmic vehicles control, and 
also in electrodynamics: motion of electrons or rigid bodies in magnetic fields. 

3.2. Complex coefficients in signal processing 

Transferring of an amplitude-modulated signal is a next example of a dynamical sys
tem with complex coefficients. The scheme is standard and consists of a modulator, 
a channel and a demodulator. 
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The carrier frequency 0, is capable of transferring two input signals u\(t),u2(t). 
The first one is multiplied by cos fit, the second one by —sin fit and the results 
are added. The signal v(t) = ui(t) cos Fit — u2(t) sin fit is the input to the channel. 
The output of the channel has the form x(t) = yi(t)cos(lt — y2(t)sm(lt. The 
demodulator recovers yi(t),y2(t) by respective multiplication by 2cos(It, —2sin(It 
and by low frequency filtering: 

2[yi (t) cos tit - y2(t) sin Sit] cos (It = yx (t) (1 + cos 2(lt) - y2(t) sin 2(lt 

-2[yi (t) cos (It - y2(t) sin (It] sin fit = -yi (t) sin 2(lt + y2(t)(l- cos 2(lt). 

The filter absorbs the frequency 2d. 
Now, given (I and F, what are the transfer functions from ui(t), u2(t) to yi(t),y2(t)l 

By Fourier transform analysis, we finally arrive at 

Yi(u) = Hi(u) Ui(u) - H2(u) U2(u) 

Y2(u) = H2(u) Ui(u) + HI(LJ) U2(u) 

where 
F(ӣ + u) + F(ӣ-u>) 

II i M = Õ 

F(il + u,)-F{Sl-u>) 
H2(u>) = • 

Here the 2x2 transfer function system has a special form. Instead of 4 transfer 
functions, only 2 are present: the "synphase" Hi(u), given by the ^-symmetric part 
of F(LJ), and the "quadrature" H2(u), given by the ^antisymmetric part. These 
terms have the following meaning: Hi describes the transfer where carrier frequencies 
in the input and in the output have the same phase, whereas H2 describes the transfer 
where the phases differ by a right angle. 

Due to this speciality, the complex coefficients can nicely come into play here. 
Two real equations can be equivalently written as one complex equation: 

YiM + j Y 2 M = [ t f i M + j H 2 M ] [ t t i M + W w ) ] 

YM = tf M u(u>) 

where tf M = F(U + u>). This is a great simplification. 
As an example, consider the delay T: 

F(u>) = e-*«T, H(u>) = e-J<n+w>T 

tfiM = cosQTe- j u , : r , tf2M = - s i n O r e - j a , r . 

One simplification more is possible. Suppose the transfer function F(u>) can 
be expressed as F(u>) = G(u>) + G(—u>) where the spectrum G(u>) is concentrated 
mainly on 0 < u> < +00. Then G(u>) can be used instead of F(u>). The result is 
tf M = G(n + u>). 
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As an illustrating example, consider the RLC circuit whose resonant frequency is 
just Q: 

F{u) ~ (6+jw)- + n - ' GH~ 2b+i(u-n) 

H(u,) = ffl(u,) = I - L - , H2(u,) = 0 
I 0 + ](J 

Here G(UJ) is fi-symmetric (F(u) is approximately ^-symmetric) and only the syn-
phase component is present, so H(u) has real coefficients. 

With a different resonant frequency fi', it holds 

# M = ll—^ 7T, v = n - n' 
v ; 2b+j(cj + A) ' 

1 b + )u 1 - A 
# l M = Htu • :.A2 • A2> ^ 2 M = o^ 2(b + jo;)2 + A 2 ' zv y 2(b + ja;)2 + A2 

Here both the synphase and the quadrature component are present, H(u) having 
complex coefficients. 

All the examples presented above illustrate the relevance of complex coefficients 
in the study of real-world systems. Note that the examples were described in 
continuous-time, but that discrete-time systems with complex coefficients naturally 
arise after discretization. When approaching signal processing or system control 
through polynomial techniques [14, 15], complex coefficients in mathematical repre
sentations naturally entails solving complex matrix polynomial equations. 

More specifically, when solving spectral factorization problems with the iterative 
linearization scheme described in [10], at each step of the algorithm a two-sided 
matrix equation 

A*(z)X(z) + X*(z)A(z) = B(z) 

with complex coefficients must be solved. When studying stability of dynamical sys
tems described by higher order differential equations, the above two-sided equation 
is also sometimes referred to as the polynomial Lyapunov equation, see Section 4 in 
[21]. 

4. SCALAR CASE 

First, we study the discrete-time symmetric polynomial equation 

a*(z) x(z) + x*(z) o(z) = b(z) (3) 

when the following assumptions are made. 

Assumption 1. 

- a(z) is a given Schur complex polynomial, 

- b(z) = b*(z) is a given two-sided symmetric complex polynomial, and 

- x(z) is a complex polynomial to be found. 

We also assume that 
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Assumption 2. 

- Re a(0) ± 0. 

Note that Assumption 2 is made without loss of generality since if Re a(0) = 0 
then necessarily Im a(0) ^ 0 as a(z) is assumed to be Schur. Then we can work on 
the transformed equation 

a*(z)5(z) + x*(z)a(z) = b(z) 

where a(z) = ja(z), x(z) = ]x(z) and Re a(0) ^ 0. 
Typically, polynomial equations have general solutions and particular solutions. 

Usually the general solution is parametrized by some parameter, and a particular 
solution is obtained by fixiilg this parameter. This particular solution may or may 
not be unique. The situation is somewhat similar to differential equations, where 
under proper requirements (e.g. boundary conditions), a particular solution can be 
selected. 

In Section 4.1, we will show that, provided one additional requirement, equation 
(3) admits a unique particular solution x(z). Our proof is constructive and consists 
in a first technique for solving equation (3), referred to as the complex reduction al
gorithm. In Section 4.2, we propose a second numerical method for solving equation 
(3), this time relying upon Sylvester matrices. 

4.1. Complex reduction algor ithm 

Theorem 1. Under Assumptions 1 and 2, a polynomial solution x(z) to equa
tion (3) such that 5x < max(5a, 5b) always exists. Moreover, under the additional 
requirement that Im x(0) = 0, the solution is unique. 

P r o o f of T h e o r e m 1 (Algorithm SCALRED) . The principle lying behind 
the proof of existence of a polynomial solution to equation (3) under the assump
tions that a(z) is stable can be found in [9, 10, 11, 12]. This proof is constructive 
and consists in the complex polynomial reduction algorithm, an extension of the 
Euclidean division algorithm for polynomials with complex coefficients. Let 

a(z) = an + aizH h a^az
b0t 

b(z) = b6bz-Sb + - • • + biz"1 + 60 + hz + - • - + bSbz
Sb = b*(z) 

with bo real. 

- If 56 > 5a then the substitution 

x(z) = x(z) + ^z6b 

GO 

into equation (3) leads to the equation 

a*(z)x(z) + x*(z) a(z) = b(z) 
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where 

S(z) = 6(z) - ^ z 5 V ( z ) - ^ z - í 6 a ( z ) . 

Since a(z) is Schur, the above substitution can always be performed. One 
can check that if x(z) is polynomial, then x(z) is also polynomial. Moreover 
5b < 5b. Thus equation (3) is replaced by another equation of the same kind 
but with lower degree in 6(z). 

- If 5b < 5a then the substitution 

x(z) = x(z) - ^ z * a x * ( z ) 
an 

into equation (3) leads to the equation 

d*(z)x(z) + x*(z)a(z) = b(z) 

where 
a(z) = a(z) - ^ z * a a * ( z ) . 

a0 

One can check that if x(z) is polynomial, then x(z) is also polynomial. More
over 5a < 5a. Thus equation (3) is replaced by another equation of the same 
kind but with lower degree in a(z). 

By repeating the two steps we eventually come to the case 5a = 0, 5b = 0 that 
can be solved directly for a constant solution. Upon performing all the substitutions 
backwards, we recover the original polynomial solution x(z) to equation (3)/ 

By the complex reduction algorithm, we have shown that at least one particular 
polynomial solution to equation (3) exists. Now we prove its uniqueness provided 
that Im x(0) = 0. Given a particular solution xp(z) to equation (3), one can easily 
check that any other solution to equation (3) reads 

x(z) =xp(z)+xg(z) (4) 

where xg (z) is the general polynomial solution of the homogeneous equation 

a*(z) x(z) + x*(z) a(z) = 0. (5) 

In order to find xg(z), consider the equation 

a*(z)x(z)+y(z)a(z)=0 (6) 

in the ring of two-sided polynomials. As a(z) and a*(z) are coprime, the general 
solution to equation (6) reads 

x(z) = a(z)q(z) 

y(z) = -a*(z)q(z) 



124 D . HENRION, J . JEŽEK AND M . ŠEBEK 

where q(z) is an arbitrary two-sided polynomial. Recalling equation (5), this poly
nomial must be antisymmetric, i.e. q*(z) = —q(z). Now, a(z) being a Schur poly
nomial, for xg(z) = a(z)q(z) to be a polynomial, q(z) must be a polynomial. The 
only possible choice is an imaginary constant. Since we enforce Im x(0) = 0, we 
have 

í(-0 = - j 
Im Xp(0) 

Re a(0) (7) 

in equation (4). Because of Assumption 2, this is always possible. 
Finally, we would like to show that Sx < max(Sa, Sb). First suppose that Sb < Sa. 

Since S(x*a) < Sa, we also have S(a*x) < Sa. Because a(0) / 0, S(x*a) = S(a*x) = 
Sx < Sa. Conversely, suppose that Sb > Sa. Since S(x*a) < Sb, we also have 
S(a*x) < Sb and Sx < Sb. D 

4.2. Sylvester matrix algorithm 

An alternative numerical method is now proposed for solving equation (3) without 
resorting to polynomial operations. It is based on Sylvester matrices and relies upon 
resolution of a linear system of equations. 

The Sylvester matrix formulation of equation (3) merely consists in equating the 
coefficients of equal powers of the indeterminate z. Let 

x(z) = x0 + xiz H h xsxz
6x 

and suppose for notational ease that d = Sa = Sb = Sx. If it is not the case then 
some leading coefficients of a(z), b(z) or x(z) may be zero. By inspection, equation 
(3) is equivalent to the linear system of equations 

a0 ai 

ãгj 

0 

a>d 

ai 

Xo 

Xl 

+ 

ao 
ai 

a>d 

aг CLd 

a>d 

Xo ' ь0 ' 
Xi 

— h 

Xd . Ьd . 

At 

where A\ and A2 are complex Toeplitz matrices. Using Fact 1, the above system 
can be written over the field of real numbers as 

Re Ai 
— ImAi 

ImAi 
ReAi + 

Re 
Im 

A2 Im A2 X\ 
A2 - R e A 2 \) 

ReX 
ImX 

ReB 
ImB 

Ã 

(8) 
X 

Under the assumptions of Theorem 1, the imaginary part of x(0) is zero. Thus the 
above equation can further be simplified to 

A X = B (9) 
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where square matrix A is obtained upon removing the column of matrix A cor
responding to the imaginary part of x(0) and the row of matrix A corresponding 
to the zero imaginary part of b(0), and vector X is obtained upon removing the 
corresponding row of vector X. The dimension of matrix A is 2c? + 1. 

Theorem 2. (Algorithm SCALSYL) Under the requirements of Theorem 1, every 
solution x(z) to symmetric polynomial equation (3) corresponds to a solution of 
linear system of equations (8). In particular, the unique solution such that Im x(0) = 
0 can be found by solving the non-singular linear system of equations (9). 

4.3. Illustration 

Algorithms SCALRED and SCALSYL are now illustrated on a simple example. Let 

a(z) = 4 + ( l - j ) z 

b(z) = (9 - l lj)z"1 + 6 + (9 + l lj)z 

and suppose that we are to solve equation (3) for a solution x(z) of degree d = 1. 

4.3.1. Polynomial reduction algorithm 

Algorithm SCALRED consists of the following steps. 

- Sb < 5a, so let 

x(z) = x(z) — ^ z a r ^ z ) 

a(z) = a ( z ) - i f z ( 4 + ( l + j ) z - 1 ) = f 

6(z) = 6(z). 

Polynomial x(z) is a solution to the symmetric equation a*(z)x(z)+x*(z)a(z) = 
b(z) where now 5a = 0 and Sb = 1. 

- Sb > 5a, so let 

x(z) = x(z) + 2i2±iiiiz 

a(z) = a(z) 

6(z) = 6 (z ) -2 i£+M Z a* (z ) -2 i£^ l i i l z a (z ) = 6. 

Polynomial x(z) is a solution to the symmetric equation a*(z)x(z)+x*(z)a(z) = 
b(z) where now 5a = 0 and Sb = 0. 

The latter equation only involves real numbers and can be solved directly. We 
have 

z(z) = =• 
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Upon performing the substitutions backwards, we get 

x(z) = - + - z 

and eventually come up with a particular solution to equation (3), denoted 

, N , 10. 33 + 47J 
Xp(z) = 1 + y j + — Z. 

According to equation (7), the choice q(z) = — J5/14 in (4) yields the unique 
solution to equation (3) such that Im x(0) = 0, namely 

. x(z) = 1 + (2 + 3j)z. 

4.3.2. Sylvester matrix algorithm 

Following the development of Algorithm SCALSYL in Section 4.2, we obtain the 
linear system of complex equations 

4 1 + j 
0 4 

Using Fact 1, we obtain 

Xo 

Xl 

8 2 
1 4 
0 0 

-1 0 

+ 

0 
-1 
0 

-1 

4 

l - j 
l - j 

0 
XQ 

Xl 

6 
9 + Пj 

2 " Re xo 6 
0 Re xx 9 
0 Im xo 0 
4 Im xi 11 

Upon suppression of the third column corresponding to Im xn and the third row 
corresponding to Im bo, we get 

8 2 - 2 Re xo 6 
1 4 0 Re xi = 9 
1 0 4 Im xi 11 

This linear system of equations can readily be solved and yields the unique solution 
to equation (3) with real absolute coefficient, namely 

x(z) = XQ + x\z = 1 + (2 + 3j)z. 

5. MATRIX CASE 

In this section, we study the discrete-time symmetric polynomial equation 

A*(z)X(z) + X*(z)A(z) = B(z) 

when the following assumptions are made. 

(10) 
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Assumption 3. 

- A(z) is a given square complex Schur polynomial matrix of dimension n, 

- B(z) — -B*(z) is a given two-sided symmetric complex polynomial matrix, and 

- X(z) is a complex polynomial matrix to be found. 

We shall also need the following additional assumption. 

Assumption 4. 

- A(0) has non-zero leading minors. 

Assumption 4 is made without loss of generality since non-singular matrix A(0) 
can always be transformed to a matrix with non-zero leading minors via suitable 
permutations. 

Note that matrix equation (10) was already studied in [10, 11, 6] over the field of 
real polynomials. 

Symmetric matrix equation (10) is far more complicated than its scalar coun
terpart (3), but our study follows along the same lines as in Section 4. First, we 
establish a condition of existence of a unique solution to equation (10), obtained 
through a matrix version of the complex reduction algorithm. Second, we propose a 
Sylvester matrix formulation from which follows an alternative method for solving 
equation (10). 

5.1. Complex reduction algorithm 

The development of the complex reduction algorithm for solving matrix polynomial 
equation (10) first requires studying another type of scalar polynomial equation. 
This is the topic of Section 5.1.1. In Section 5.1.2, a special instance of equation 
(10) is studied where matrix A(z) is triangular. In Section 5.1.3, a technical lemma 
on the LU decomposition of a polynomial matrix is proposed. It will be the last 
component required in Section 5.1.4 to state our main result of existence of a solution 
to equation (10). 

5.1.1. Non-symmetric polynomial equation 

First, consider the scalar non-symmetric equation 

a*(z) x(z) + 2/*(z)6(z) = c(z) + d*(z) (11) 

when the following assumptions are made. 
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Assumption 5. 

- a(z), b(z) are given Schur complex polynomials, 

- c(z), d(z) are given complex polynomials, and 

- x(z), y(z) are complex polynomials to be found. 

We also require that 

Assumption 6. 

- Re a(0) ^ 0 and Re b(0) ^ 0. 

Note that Assumption 64s made without loss of generality, see Assumption 2 for 
more details. 

Some aspects of non-symmetric equation (11) were already studied in [9, 10, 11]. 

Theorem 3 . Under Assumptions 5 and 6, a polynomial solution x(z), y(z) to equa
tion (11) such that Sx < max(o~a,6*c) and Sy < maix(Sb,Sd) always exists. Moreover, 
under the additional requirement that either Im x(0) = 0 or Im y(0) = 0, the 
solution is unique. 

P r o o f (Algorithm S C A L R E D 2 ) . The proof of existence of at least one poly
nomial solution to equation (11) under the given assumptions closely follows the 
first part of the proof of Theorem 1. The approach is constructive and consists in a 
complex polynomial reduction algorithm for solving equation (11). Let 

a(z) = a0 + aizH h a6az
6a 

b(z) = b0 + b1z + -- + b6hz
6h 

c(z) = co + c izH Vc6cz
6c 

d(z) = d0 + d1z + -- + dzdz
6d. 

- If Sc > Sb then the substitution 

x(z) = x(z) + ^z6c 

a0 

into equation (11) leads to the equation 

a*(z)x(z) + y*(z)b(z) = c(z) + d*(z) 

where 
c(z) = c(z) - ^ z 5 c a * ( z ) . 

a0 

Since a(z) is Schur, a0 ^ 0 and the above substitution can always be performed. 
One can check that if x(z) is polynomial then x(z) is also polynomial. Moreover 
Sc < Sc. Thus equation (11) is replaced by another equation of the same kind 
but with lower degree in c(z). 
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- If 8d > 8a then the substitution 

y ( z ) = y ( z ) + i i z w 

bo 

into equation (11) leads to the equation 

a*(z) x(z) + y*(z)6(z) = c(z) + d*(z) 

where 

^ ( z ) = d * ( z ) - ^ z * d 6 * ( z ) . 
bo 

Since &(z) is Schur, 60 / 0 and the above substitution can always be performed. 
One can check that if y(z) is polynomial then y(z) is also polynomial. Moreover 
8d < 8d. Thus equation (11) is replaced by another equation of the same kind 
but with lower degree in d(z). 

- If 8d < 8a < 8b then the substitution 

z ( z ) = x ( z ) - ^ z « V ( z ) a0 

into equation (11) leads to the equation 

a*(z)x(z) + y*(z)6(z) = c(z) + d*(z) 

where 

b(z) = b(z) - ^ z 5 6 a * ( z ) . 
a0 

One can check that if x(z) is polynomial then x(z) is also polynomial. Moreover 
8b < 8b. Thus equation (11) is replaced by another equation of the same kind 
but with lower degree in b(z). 

- If 8c < 8b < 8a then the substitution 

y ( z ) = y ( z ) - S l z ' f l x * ( z ) 
00 

into equation (11) leads to the equation 

a*(z) x(z) + y*(z)b(z) = c(z) + d*(z) 

where 
a(z) = a(z) - ^ z H * ( z ) . 

bo 

One can check that if y(z) is polynomial then y(z) is also polynomial. Moreover 
8a < 8a. Thus equation (11) is replaced by another equation of the same kind 
but with lower degree in a(z). 
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By repeating the above four steps we eventually come to the case 5a = 0, 5b = 0, 
5c = 0, 5d = 0 that can be solved directly for a constant solution. Upon performing 
all the substitutions backwards, we recover the original polynomial solution x(z), 
y(z) to equation (11). 

The existence of a unique polynomial solution such that Im x(0) = 0 or Im y (0) = 
0 follows as in the proof of Theorem 1 from the parametrization of all the two-sided 
solutions to (11): 

x(z) = xp(z) + b(z)q(z) 

y(z) = yP (z)-a(z)g*(z) 

where xp(z), yp(z) is a particular solution to equation (11) and q(z) is an arbitrary 
two-sided symmetric complex polynomial. As a(z) and b(z) are Schur polynomials, 
the only possibility for z(z)y y(z) to be polynomial is that q(z) is an imaginary 
constant. For example, if the imaginary part of x(0) is to be zeroed, then select 

Ф ) = -j 
Im xp(0) 

Re b(0) ' 

This is always possible, recall Assumption 6. 

The p r o o f of the degree property on x(z) and y(z) mimics the proof of Theo
rem 1 and is not repeated here. • 

5.1.2. Matrix A(z) is triangular 

L e m m a 1. Under Assumptions 3 and 4, suppose that A(z) is upper-triangular. 
Then there exists a unique solution X(z) to (10) such that X(0) is upper-triangular 
with real diagonal entries. 

P r o o f . Write equation (10) entry wise 

<-îl 0 " Xц • • xln 

+ 
xn • ' Xnl 

a*n- • < n _ _Яnl • •£nnш 
xln ' xnn 

a ц a>in bn Пn 

ÛnnJ L ln ' * ' ^nnj 

- Entry (1,1) reads 

an(z) xn(z) + xn(z) an(z) = òц(z). (12) 

This is a symmetric polynomial equation. Since a n ( z ) is Schur, from The
orem 1 there exists a unique polynomial solution to equation (12) such that 
Im xn(0) = 0 . 

- Entry (1,2) reads 

a*_ (z) x12 (z) + x21 (z) a22 (z) = b12 (z) - xn (z) a12 (z). (13) 

This is a non-symmetric polynomial equation. Since on(z) and a22 (z) are 
Schur and xn(z) is known from the previous step, from Theorem 3 there exists 
a unique polynomial solution x12(z), x21(z) to (13) such that X2i(0) = 0. 
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- Entry (2,2) reads 

a£2(z) x22(z) + x\2(z) a22(z) = b22(z) - a\2(z) x12(z) - x\2(z) a12(z). (14) 

This is a symmetric polynomial equation. Since a22(z) is Schur and x12(z) is 
known from the previous step, from Theorem 1 there exists a unique polyno
mial solution x22(z) to (14) such that Im x22(0) -= 0. 

Proceeding as above for each upper triangular entry in matrix polynomial equa
tion (10), one successively solves two types of scalar polynomial equations: 

- Symmetric equations 

p - i p - i 
a*PP(-) XPP(Z) + xlP(z) aPP(z) = M z ) - J2 akP(z)xkP(z) ~ J2xkP(-)akP(-) 

k=l k=l 

for p = 1, • • • , n. Each equation has a unique polynomial solution xpp(z) such 
that Im xPp(0) = 0. 

- Non-symmetric equations 

p - l q r - l 

alP(z)xpq(~) + < p ( z ) a M ( z ) = bpq(z) - ]Ta£ p(z)x* g(z) -~~]xlp(z)akq(z) 
k=i k=i 

for p = 1, • •. , n and q = p + 1 , . . . , n. Each equation has a unique polynomial 
solution xpq(~), xqp(z) such that xqp(0) = 0. 

As a result, the matrix X(z) whose entries are built according to fche above procedure 
is unique and X(0) is upper-triangular with real diagonal entries. • 

5.1.3. LU decomposition for polynomial matrices 

Lemma 2. Given a square polynomial matrix A(z) such that A(0) has non-zero 
leading minors, there always exists a decomposition 

A(z) = L(z) U(z) 

where L(z) is a unimodular matrix such that L(0) is lower-triangular with unit 
diagonal entries and U(z) is an upper-triangular polynomial matrix whose diagonal 
entries have non-zero real parts. 

P r o o f (Algorithm L U R E D ) . Existence of a unimodular matrix V(z) such that 
non-singular matrix A(z) is transformed into upper-triangular form H(z) = V~l(z) 
A(z) directly follows from the existence of the row Hermite form of -4(z), see for 
instance [13, Theorem 6.3-2]. Existence of matrices L(z) and U(z) satisfying the 
required properties stems for the complex LU-decomposition of absolute coefficient 
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matrix A(0) = L0Uo obtained through Gaussian elimination, see [3, Section 4.2]. In 
matrix notation, we have 

A(z) = V(z)H(z) 

= V(z)V~1(0)A(0)H-1(0)H(z) 

= V(z)V-1(0)LoUoH-1(0)H(z). 
> v ' V v ' 

L(z) U(z) 

5.1.4. Main result 

With the help of the lemmas developed in the previous sections, we can now state 
our main result. 

Theorem 4. Under Assumptions 3 and 4, a polynomial solution X(z) to equation 
(10) such that SX < max(<L4, SB) always exists. Moreover, under the additional 
requirement that X(0) is upper-triangular with real diagonal entries, the solution is 
unique. 

P r o o f (Algorithm M A T R E D ) . The proof of Theorem 4 is constructive and 
provides us with a first algorithm for solving equation (10). First, factorize A(z) = 
L(z) U(z) as in Lemma 2, using the LU-decomposition of -4(0). Second, build the 
equation 

C/*(z) L*(z)X(z) + X*(z)L(z) U(z) = B(z) 

A*(z) X(z) X*(z) A(z) 

where A(z) = U(z) is upper-triangular with diagonal entries with non-zero real 
parts. From Lemma 1, there exists a unique solution X(z) such that X(0) is upper-
triangular with real diagonal entries. As in the proof of Lemma 1, this solution 
can be computed from successive resolutions of scalar symmetric equations (3) and 
non-symmetric equations (11), through complex reduction Algorithms SCALRED 

and S C A L R E D 2 . Since L*(0) is upper-triangular with unit diagonal entries and 
X(0) = L*(0)X(0), then X(0) is upper-triangular with real diagonal entries. • 

5.2. Sylvester matrix algorithm 

As in the scalar case, the Sylvester matrix approach for solving equation (10) relies 
upon the resolution of a linear system of equations over the field of reals. Suppose 
for notational ease that d = SA = SB = SX. If it is not the case then some leading 
coefficients of -4(z), B(z) or X(z) may be zero. 

Let ® stand for the Kronecker product, vecA for the column vector obtained 
by stacking the columns of matrix A and P for the orthogonal permutation matrix 
such that for any arbitrary matrices of compatible dimensions it holds vec (AXB) = 
(BT 0 A) vecX, vec (XT) = P vecX and (A ® B)P = P(B (8) A). 

Upon application of the Kronecker product [6], equation (10) reads 

[In ® A*(z)] vecX(z) + [AT(z) ® In] vecX*(z) = vecB(z) 
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or, equivalently, 

[I n ® A*(z)] vecX(z) + P [ I n ® A T (z)] vecX*T(z) = vecB(z). (15) 

Now define 
Q(z) = I n ® A T ( z ) = Q 0 + Q i z + Q d (z) , 

so that 
I n ® A*(z) = Q 0 + Q-.Z"1 + • • • + Q d z - d . 

Moreover, let 
V(z) = V0 + Vxz + • • • + Vdz

d = vecX(z) 

and 

W(z) = PWdz-d + - • • + PTV iz" 1 + Wo + VViz + • • • + Wdz
d = vecB(z). 

With these notations, equating the powers of z in (15) yields 

Q 

Q 

9,i -I 
Qo Qi 

Qo 

Q 

9.1 
<ЗoJ 

V0" 
Vi 

vd 

+ 

0 

PQo 
PQo PQi 

PQi 

PQd 

PQo 

PQi 

PQd 

V0" 
Vi 

Ӯd. 

= 

'PWď 

Wo 
Wi 

0 .wđ. 

(16) 

0 QnJ [PQd 

This linear system features 2 d + l row blocks of n 2 equations for (d+l)ra 2 unknowns. 
Now we prove that slightly less than half of these equations are actually redundant. 

On the one hand, consider for instance the pth row block in (16). It reads 
d 

22/Q-p+q+d+1Vq + PQp+q-d-iVq = PW-p+d+l 
q=0 

where it is understood that 1 < p < d and Qq = Qq = 0 if q < 0 or q > d. Upon 
multiplication by P and complex conjugation, the above equation becomes 

^ Qp+q-d-\Vq + PQ-p+q+d+1Vq = W-p+d+i 
q=0 

which is nothing but the (p + d + l)th row block in (16). As a result, the first d row 
blocks and the last d row blocks describe the same equalities. 

On the other hand, one can check that in the central (d + l)th row block 

[Qo Qi Qd] 

V0" 
Vi 

Уd. 

Xм 

+P[Qo Qi Qd] 

Vol 
Vi 

Ӯ.d. 

Xм 

Wo (17) 
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there are n(n — l ) /2 redundant equalities since Bo = B0 , hence Wo = PWQ- They 
can be replaced by n(n — l ) /2 equalities forcing the lower-triangular components of 
X(0) to zero. In matrix notation, (17) is then replaced by the non-redundant n2 

equalities 

ПQo ПĆ?! nQfl 

Xм + 
0 

UPQ0 IIPQi TÍPQa 

X 
м 

0 
nW0 

where matrix II extracts the n(n + l)/2 non-redundant equalities in (17) and T 
selects the n(n — l)/2 lower-triangular components of X(0) in XM- Based on the 
above two points, linear system (16) is equivalent to 

Г 

UQ0 UQX UQ2 • • 

o Q0 Qi-- • Qd-i 

Qo 

• 
•• Qi 

0 Qoi 

Xм+ 

0 

UPQoUPQг • 

PQi PQ2-

• • П F Q d _ i UPQd 

PQd 0 

\PQd-i PQd 
L PQd 0 

Xм = 

0 

ПWo 
Wi 

Wd 

which is a linear system of (d + l)n2 complex equations with (d + l)n2 complex 
unknowns. Note that one can also obtain this reduced system of equations through 
the equivalent approach pursued in [4] for the case of real polynomial matrices. 

Using Fact 1, the above complex system can be written over the field of real 
numbers as 

R e A l M 

" I m A i M 

I m A u 

ReA l м + 
ReA 2м ImA 2м 
Im A 2 м - Re A 2 м 

R e X ^ 
IITIXM 

ReBм 
ImBм 

Under Assumptions 3, imaginary parts of the diagonal entries of X(0) are zero. Thus 
the above equation can further be simplified to 

A M X M = B м (19) 

where square matrix A M is obtained upon removing the n columns of matrix A M 
corresponding to the imaginary part of the diagonal entries of X(0) and the n rows 
of matrix A M corresponding to the zero imaginary parts of the diagonal entries of 
_3(0), and vector X M is obtained upon removing the corresponding n rows of vector 
X M - The dimension of matrix A M is 2(d + l)n2 — n. 

Theorem 5. (Algorithm MATSYL) Under the requirements of Theorem 4, Every 
solution X(z) to symmetric polynomial equation corresponds to a solution to linear 
system of equations (18). In particular, the unique solution such that X(0) is upper-
triangular with real diagonal entries can be found by solving the non-singular system 
of equations (19). 



Discrete-Time Symmetric Polynomial Equations with Complex Coefficients 135 

5.3. Illustration 

Algorithms M A T R E D and MATSYL are now illustrated by way of an example. For 

simplicity, we assume that matrix A(z) is already in the triangular form described 
in Lemma 1. We choose 

' ( l - 4 j ) + 3jz 4 + z 
0 5 + (1 - 2j)z 

A(z) = 

and 

B(z) = 
-Зjz- 1 + 2 + Зjz бz" 1 - (4 + j) + (2 + 4j)z 

(2 - 4.0Z-1 - (4 - j) + бz (7 + ])z~l + 32 + (7 - 8j)z 

5.4. Polynomial reduction algorithm 

In matrix equation (10), entry (1,1) reads 

(-3JZ- 1 + (1 + 4j)) xn(z) + x*n(z)((l - 4j) + 3jz) = -3jz" 1 + 2 + 3jz. 

Using Algorithm SCALRED, we get 

xn(z) = 1. 

Entry (1,2) reads 

(-3JZ- 1 + (1 + 4j)) x12(z) + x*n(z) (4 + z) + ^ ( z ) (5 + (1 - 2j)z) 

= 6 z - 1 - ( 4 + j) + (2 + 4j)z 

or equivalently 

(-3JZ- 1 + (1 + 4j)) x12(z) + x*21(z) (5 + (1 - 2j)z) = 6Z" 1 - (8 + j) + (1 + 4j)z. 

Using Algorithm S C A L R E D 2 , we get 

x12(z) = 2j + z 

x21(z) = 0. 

Finally, entry (2,2) reads 

( z - 1 + 4 ) x 1 2 ( z ) + ((l + 2 j ) z - 1 + 5 ) x 2 2 ( z ) + x ^ 2 ( z ) ( 4 + z ) + x$ 2(z)(5 + (1 - 2j)z) 

= (7 + 8 j ) z " 1 + 3 2 + ( 7 - 8 j ) z 

or equivalently 

((1 + 2j)z-x + 5) x 2 2 (z) + x*22(z) (5 + (1 - 2j)z)) = (3 + Gjjz"1 + 30 + (3 - 6j)z. 

Using Algorithm S C A L R E D , we get 

x22(z) = 3, 

hence the required solution to equation (10) reads 

X(z) = 
1 2j + z 
0 3 
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5.5. Sylvester Matrix Algorithm 

Following the development of Algorithm MATSYL in Section 5.2, we obtain the linear 
system of complex equations 

0 1 0 0 
l - 4 j 0 0 0 

0 0 l - 4 j 0 
0 
0 
0 
0 
0 

4 
0 
0 
0 
0 

0 
Зj 
0 
0 

0 
0 
0 
0 

l - 4 j 0 
4 5 
0 
0 

0 
0 
Зj 
1 
0 
0 

0 l - 4 j 
0 4 

0 
0 
0 

l - 2 j 
0 
0 
0 
5 

Xм + 

0 0 0 
Aiм 
0 0 0 0 0 

l - 4 j 0 0 0 Зj 0 0 0 
4 5 0 0 1 l - 2 j 0 0 
0 0 4 5 0 0 1 l - 2 j 
Зj 0 0 0 0 0 0 0 
0 0 Зj 0 0 0 0 0 
1 l - 2 j 0 0 0 0 0 0 
0 0 1 l - 2 j 0 0 0 0 

0 
2 

- 4 - j 

Xм = 
32 

Зj 
6 

2 + 4j 

L 7-8j ] 
A2Д B м 

Using Fact 1 and upon suppression of the 9th and 12th columns corresponding to 
the imaginary part of the diagonal entries of X(0) and the 10th and 12th rows 
corresponding to the zero imaginary parts of the diagonal entries of .6(0), we get 
the equivalent real system of dimension 14: 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 6 0 0 0 2 
4 5 1 0 1 1 0 0 0 - 4 0 - 2 3 0 - 4 
0 0 8 10 0 0 2 2 0 0 0 0 0 - 4 32 
0 0 0 0 1 0 0 0 0 0 - 4 0 0 0 0 
0 0 0 0 4 5 0 0 0 3 0 0 0 0 6 
1 
0 

1 
0 

0 
1 

0 
1 

0 
0 

0 
0 

1 
4 

0 
5 

- 2 
0 

0 
0 

0 
0 

0 
0 

- 4 
0 

0 
0 Xм = 

2 
7 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 4 0 0 - 2 - 3 0 - 5 1 - 1 - 1 0 0 - 1 
3 0 0 0 4 0 0 0 0 0 1 0 0 0 3 
0 0 3 0 0 0 0 0 0 0 4 5 0 0 0 
0 - 2 0 0 0 0 4 0 - 1 0 0 0 1 0 4 
0 0 0 - 2 0 0 0 0 0 - 1 0 0 4 5 - 8 
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Solving this linear system of equations yields the unique solution X(z) to (10) such 
that X(0) is upper-triangular with real diagonal entries, namely 

X(г) = 
1 2j + z 
0 3 

6. NUMERICAL CONSIDERATIONS 

We have proposed two kinds of techniques for dealing with the scalar symmetric 
polynomial equation (3) and its matrix counterpart (10). 

- Algorithms based on complex polynomial reduction, a sophisticated version 
of the Euclidean division for polynomials: Algorithm SCALRED for the scalar 
case and Algorithm M A T R E D for the matrix case, the latter relying upon 
intermediate Algorithms S C A L R E D 2 and LURED. 

- Algorithms based on Sylvester matrices and linear systems of equations: Al
gorithm SCALSYL for the scalar case and Algorithm MATSYL for the matrix 
case. 

The first category of algorithms is clearly of theoretical interest, since at the 
core of the proofs of main Theorems 1 and 4. However, it is now well recognized 
that these algorithms are unfortunately prone to numerical instability since based 
on elementary polynomial operations. Moreover, in order to apply the polynomial 
reduction algorithms, restrictive additional assumptions are required. 

The second category of algorithms only relies upon the resolution of linear systems 
of equations, for which powerful and numerically reliable tools such as the singular 
value decomposition are now widely available [3]. Therefore Algorithms SCALSYL 
and MATSYL can be considered as numerically reliable alternatives to Algorithms 
S C A L R E D and M A T R E D , respectively. Note that, in contrast to polynomial reduc
tion algorithms, no additional assumptions are required to apply Sylvester matrix 
algorithms. 

MATLAB implementations of algorithms SCALRED, M A T R E D , SCALSYL and MAT

SYL are included to the latest version of the Polynomial Toolbox [19]. 

7. CONCLUDING REMARKS 

After a generalization of classical polynomial matrix notions to the complex case, we 
proposed conditions of existence of a unique solution to scalar and matrix symmetric 
polynomial equations. Our proofs were constructive and resulted in a first family 
of resolution algorithms, based on polynomial reductions, a sophisticated version of 
the Euclidean division algorithm for polynomials. In order to overcome potential 
numerical instability, we also developed alternative Sylvester matrix algorithms only 
relying upon well-known and reliable tools from numerical linear algebra. It must 
be underlined that all these algorithms are available in the latest version of the 
Polynomial Toolbox for MATLAB, see [19]. 
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Possible directions for further research are now mentioned. The extension to the 
complex case must be generalized to other types of algorithms on polynomial matr i 
ces. In part icular , interpolation techniques as presented in [6, 7] would undoubtedly 
benefit from such an extension. Indeed, it is well-known tha t the conditioning of the 
Vandermonde mat r ix is perfect when interpolation points are chosen as the com
plex roots of unity [8, §21.1]. It is also necessary to distinguish between matr ix 
polynomial algorithms tha t really require a special t rea tment to handle complex co
efficients. Some of them, such as the basic linear matr ix polynomial equation solver 
implemented in [19], straightforwardly generalize to the complex case because they 
rely on s tandard numerical linear algebra tools (e. g. QR decomposition or singular 
value decomposition [3]) already dealing with complex numbers. 

(Received April 20, 2001.) 
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