
K Y B E R N E T I K A — VOLUME 38 ( 2 0 0 2 ) , NUMBER 1, PAGES 1 3 - 4 4 

TRANSFORMATIONS OF GRAMMARS AND 
TRANSLATION DIRECTED BY LR PARSING 

BOŘIVOJ MELICHAR AND NGUYEN VAN BAC 

The class of LR translation grammars is introduced. This class is characterized by a 
possibility to implement a formal translation as an algorithm directed by LR parsing. To 
perform a translation, the conventional LR parser is extended by a facility to perform out
put operations within the parsing actions shift and reduce. The definitions of Kernel(R)-
and L-R-translation grammars are presented. The transformations shaking-down and post
poning that enable to transform some translation grammars into KerneJ(il)-translation 
grammars are described and used in the process of construction of the collection of sets of 
LR(k) translation items. Different algorithms using these transformations are presented in 
an uniform way which makes it possible to compare them and to fix the hierarchy of the 
LR translation grammars. 

1. INTRODUCTION 

The notion of the syntax-directed translation was a highly influential idea in the 
theory of formal translations. Models for a description of formal translations are the 
syntax-directed translation schemes. A special case of syntax-directed translation 
schemes are the simple syntax-directed translation schemes, which can be written 
in the form of translation grammars. For an arbitrary translation described by a 
translation grammar with an LL(k) input grammar, it is possible to create a one-
pass translation algorithm by a simple extension of the parsing algorithm for LL(k) 
grammars. A similar approach to LR(k) grammars led to the result that it is only 
possible to perform a one-pass formal translation during LR(k) parsing in case the 
translation grammar has a postfix property ([1, 8, 9, 15]). Nevertheless, there is a 
possibility to make an extension of the LR(k) parsing algorithm in which the out
put of output symbols can be performed not only as a part of the operation reduce 
but also"as a part of the operation shift. Translation grammars for which such an 
extension may be applicable are called -R-translation grammars ([12]). Translation 
grammars for which we can always construct a one-pass formal translation are called 
KerneJ(i?)-translation grammars ([14]). Moreover, there are transformations that en
able to transform some translation grammars into KerneJ(i?)-translation grammars. 
The well-known transformations that can be used for this purpose are shaking-down 
and postponing ([13]). It is possible to include these two transformations in an 



14 B. MELICHAR AND N. VAN BAC 

algorithm for the construction of the collection of sets of LR(k) translation items. 
This collection is then used to construct the translation and goto tables, and un
der control of these tables an LR translator performs a formal translation for a 
given input string. Translation grammars for which this method is usable are called 
LR-translation grammars. 

The main motivation for the research described in this paper was the evaluation of 
attributes in attribute grammars [2, 9]. For this purpose, we suppose that the set of 
semantic rules for the evaluation of attributes in the particular place of the grammar 
rule is taken as an action symbol. Using this assumption, we can transform an 
attribute grammar into the translation grammar where action symbols are inserted 
into the grammar rules at the proper places and plays the role of output symbols. 
The implementation of attribute evaluation is performed as a formal translation with 
this exception: as soon as the output (action) symbol is prepared for the output, 
the corresponding semantic rules are evaluated. 

This paper is organized as follows. Section 2 provides basic notions and notations 
of translation grammars. Section 3 presents algorithms of a computation of the col
lection of sets of ii-translation items, a construction of the translation table, and a 
formal translation. In this section the definition of Kernel(R)-translation grammars 
is presented. Section 4 discusses methods that enable to transform translation gram
mars into Kernel(i?)-translation grammars. In these methods the shaking-down and 
postponing transformations are used as main tools for this purpose. The defini
tion of LR(k) translation grammars is shown in Section 4. Algorithms which use 
miscellaneous combinations of the two abovementioned transformations induce five 
classes of translation grammars and their hierarchy is discussed in Section 5. Finally, 
conclusions are made in Section 6. 

2. BASIC NOTIONS AND NOTATIONS 

We use standard basic notions and notations of context-free grammars and parsing 
such as are designed [1, 2]. Below are basic notions and notations of translation 
grammars. 

A context-free translation grammar is a 5-tuple TG = (1V, T,D,R,S), where IV is 
the set of nonterminal symbols, T is the set of input symbols, D is the set of output 
symbols, R is the set of rules of the form A -» a, where A e N, a e (NUTU D)*, 
and S G N is the start symbol. Empty string is denoted by e. 

The input homomorphism ti[G and the output homomorphism hJG from 
(IV U T U D)* to (N U T U D)* are defined as follows: 

for aeT 
for aeDUN *r°w={* t :ilUN « °w-{ : 

The formal translation defined by a translation grammar TG is the set 

Z(TG) = {(hfG(w),hJG(w)) :S^*w,we (TUD)*}. 

The input grammar G{ and the output grammar GQ of a translation grammar TG 
are the context-free grammars that are defined as follows. 



Transformations of Grammars and Translation Directed by LR Parsing 15 

Gi = (IV, T, Ru S), where R{ = {A -> Zip (a) : A -> a G i?}, 

G0 = (IV, £>, iZ0,5), where R0 = {A -> Z ip (a) : A -> a e -R}. 

Note that we can omit the superscript TG when no confusion arises. 
By T*k we will denote the set T*k = {x : x G T*, |x| < k, k > 0}, where the 

length of string x G T* is denoted by |x|. For input context-free grammars we define 
the sets FIRST*(cx) for a G (IV U T)*, and FOLLOW*(,4) for A G IV as follows: 

FIRST*(a) = {x G T* : a =->* x(5 and |x| = k, or a =>* x and \x\ < k}, 

FOLLOW*(A) = {xeT* :S =>* aAfi and x G FIRST*(/?)}. 

A translation grammar is semantically unambiguous if there are no two distinct 
derivations, called the translation derivations in the theory of translation grammars, 
such that A -=->* a and A =>* (3 where A G N, hi(a) = hi(/3) and /i0(a) ^ /i0(/?). 

A translation grammar TG is called a postfix translation grammar, if the strings 
of output symbols appear only at the ends of right-hand sides of the rules. The class 
of postfix translation grammars is denoted as CpOStnx. 

A translation grammar TG is called an R-translation grammar, if its input gram
mar is an LR(k) grammar and the strings of output symbols appear at the ends of 
right-hand sides of the rules and/or immediately in front of input symbols. More 
formally: .R-translation grammar has rules of the form 
A -> x1y1A1X2y2A2.. .xnynAnxn+i, where A,A1,A2,...,An G N,y1,y2,...,yneT*, 
x\,x2,... ,xn,xn+i G D*. Moreover, if ym = e, 1 <m <n, then xm = e. 

The translation tree is a derivation tree whose leaves can be both input and 
output symbols. 

3. KERNEL(.R)-TRANSLATION GRAMMARS 

In this section we introduce KerneJ(i?)-translation grammars and a one-pass formal 
translation for KerneJ(i?)-translation grammars. The KerneJ(iZ)-translation gram
mars are -R-translation grammars in which a one-pass formal translation during 
LR(k) parsing is performed successfuly. In the KerneJ(i?)-translation grammars the 
output symbols appear in front of input symbols and/or at the ends of the right-hand 
sides of rules. Thus, the postfix translation grammars are also KerneJ(i2)-translation 
grammars. 

Before presenting algorithms for the one-pass formal translation and the definition 
of KerneJ(iZ)-translation grammars we first introduce the notion of LR(k) translation 
item and a translation conflict which can occur during the translation. 

Definition 3 .1 . An LR(k) translation item for an it-translation grammar TG = 
(N, T, D, R, S) is an object of the form [A -> a • /?, x, w], where: 

A —> aft is a rule of the translation grammar TG, 

x G D* is a string of output symbols, 



16 B. MELICHAR AND N. VAN BAC 

w G T*k is a string of input symbols, k > 0, w is called the lookahead string. 

For k = 0, the LR(0) translation item can be written in the form [A -> a • /?,x]. 
The LR(k) translation item differs from the LR(k) item of the input grammar. 

The difference is that the LR(k) translation item contains a string of output symbols. 

Defin ition 3.2. In a set M of LR(k) translation items, there is a shift-translation 
conflict, if there are two items in M of the forms 

[A —> a • a/3, x, u] and [B —> 7 • aJ, y, v], 

for a G T, x £ y, FIRST k(ahi(P)u) n FIRST* ( a / i ^ v ) ^ 0. 

The algorithm for constructing the collection of LR(k) translation items performs 
two basic operations: 

1. Constructing the base of set of LR(k) translation items. 

2. Construction the closure of set of LR(k) translation items. 

We will show several variants of algorithms for constructing the collection of 
LR(k) translation items and therefore we will describable this two operations sepa
rately. 

Algorithm 3.3. Construction of CLOSURE of LR(k) translation items. 

Input : Translation grammar TG = (N,T,D,R,S), where rules are numbered, 
k > 0, and a set I of LR(k) translation items. 

Output: CLOSURE(I). 

Method: 

a) CLOSURE(I) := I. 

b) If [A -> a • fl/J-e-u] G CLOSURE(I), B G N, B -> zj G -R, z G .D*, a,/? G 
(1VUTU.D)*,7G (TU1V)(iVuruJD)*U{e}, 
then CLOSURE(I) := CLOSURE(I)U{[B -> z"y,z,v]: v G FIRST*(/i{(/3)u)}. 

c) Repeat step b) until no new translation item can be inserted into the set 
CLOSURE(I). 

The following algorithm constructs the collection L of sets of LR(k) translation 
items for an i?-translation grammar TG. 



Transformations of Grammars and Translation Directed by LR Parsing 17 

Algor i thm 3.4. Collection of sets of LR(k) translation items for an i?-translation 
grammar. 

Input : ./^-translation grammar TG = (N,T,D,R,S), wThere rules in R are num
bered, and k > 0. 

Output: Collection L of sets of LR(k) translation items for the i?-translation 
grammar TG, or a failure signalization. 

Method: 

1. Construct an augmented grammar TG' = (N U {S'},T,D,RU {S' -r 5},S') . 

2. Construct the initial set of LR(k) translation items as follows: 

(a) #:=[S'-+-S,e,e]. 

(b) # := CLOSURED). 

(c) Check if there is a shift-translation conflict. If yes, then finish the com
putation with a failure signalization of a shift-translation conflict. 
Otherwise L : = { # } , # is the initial set. 

3. If the set Mi of LR(k) translation items has been constructed, construct for 
each symbol X G (N U T) which is in some LR(k) translation item in Mi just 
behind the dot, a new set of LR(k) translation items Xj in the following way: 

(a) Xj := {[A -> aXy • (3,y,u]: [A -> a • Xy(3,x,u] G M{, x,y G D*, 
X G (N U T), a G (N U T U £>)*, 0 G (T U iV)(/V UTUD)*U {e}}. 

(b) X,- := CLOSURE(Xj). 

(c) Check if there is a shift-translation conflict. If yes, then finish the com
putation with a failure signalization of a shift-translation conflict. 
Otherwise L := L U { X J . 

4. Repeat step 3 for all sets Xj until no new set can be added into the collection L. 

The collection constructed by this algorithm differs from the collection of sets of 
LR(k) items for the input grammar. There is a string of output symbols in an item 
with the dot at the end of the right-hand side of the rule. In this situation the string 
of output symbols will be added to the output string during the operation reduce. 
There is also a string of output symbols in an item with the dot just in front of an 
input symbol. This means that the string of output symbols will be added to the 
output string during the operation shift if no shift-translation conflict arises. 

This algorithm can be used for postfix grammars, too. In this case the output 
symbols will be emitted only during the reduce operation. 



18 B. MELICHAR AND N. VAN BAC 

Example 3.5. Consider ^-translation grammar TG\ = ({A, B}, {a, 6, c, d}, 
{x,y,z},R, A) whose set R contains the rules: 

(1) A -> xaBb 

(2) A - r Bye 

(3) .9 -> dz . 

Algorithm 3.4 constructs the following collection of sets of LR(1) translation items. 

# = { [ 5 ' -> •-4, £,£,], [_4 -> x-aBb ,x ,e] , [A -r -ifyc, £,£.], [i? -> -dz,e,c]}, 

A ---.{[S'-^ A •£,£]}, 

a ={[_4 -> xa • Bb,e,e], [B -> -dz, £,&]}, 

Bi={[ .A-r£i / -c ,2 / , e ]} , 

di = {[F? —r dz • z ,c]}, 

d2 ={[B -> dz • z ,b]}, 

J52 ={[_4 -> xajB -6,e,e]}, 

c ={[A-*By&,€,£]}, 

b ={[A -> x a B b ^ e , ^ } . 

Let us make a note concerning the names of sets of LR(k) translation items. As 
is usual in LR parsing, we use names of the form X{ where X G IV U T and i is an 
integer number. X is the closest input or nonterminal symbol to the left of the dot. 
This symbol is unique for each set in the collection of LR(k) translation items with 
the only exception of the initial set. Its name is # in all cases. The index i is used 
in order to distinguish different sets for the same grammar symbol. If such set is 
just one then this index may be omitted. Names of sets of items will play the role 
of pushdown store symbols. Symbol # is always the initial pushdown store symbol. 
This way of naming of sets of items has the following advantage during reading the 
contents of the pushdown store: 

If we omit symbol # and indices, we see the so-called viable string [1], a prefix 
of the right sentential form of the input grammar. 

For an i?-translation grammar, the translation can be performed using an algo
rithm that is obtained by the following two modifications of the LR parser. 

1. During a reduce operation, add the string of output symbols from the LR(k) 
translation item corresponding to the reduce operation performed to the output 
string. 

2. During a shift operation, add the string of output symbols from the LR(k) 
translation item corresponding to the shift operation performed to the output 
string. 

Strings of output symbols may be inserted into entries of the action table of the LR 
parser. The resulting table will be called the translation table. 



Transformations of Grammars and Translation Directed by LR Parsing 19 

Algorithm 3.6. Construction of the translation table for an i?-translation gram

mar. 

I n p u t : i?-translation grammar TG = (N,T,D,R,S), and collection P of sets of 
LR(k) translation items for the grammar TG. 

Output: Translation table F for the translation grammar TG. 

Method: Translation table has a row for each set of items from P, columns are for 
all elements of the set T*k. 

1. F(Mi,u) = Shift(x), if [A^a-(5,x,v\ G M{, M{ G P, /? G T(N U T)*, u G 
FIRSTk(hi(Pv)),xeD*, 

2. F(Muu) = Reduce j(x), if j > 1, [A -> a-,x,u] G M{, M{ G P, A -> a is j t h 
rule in # , ueT*k, a x eD*, 

3. F(Mt,e) = Accept, if [S1 -+ -,e,e\ G Mt, Mi G P , 

4. F(Mi,u) = Error otherwise. 

The goto table G is constructed in the same way as that for the LR parser (see [1]). 

Example 3.7. The goto and translation tables for the translation grammar TG\ 
from Example 3.5 are shown in Table 3.1. 

Table 3.1. Goto table G and translation table F 
for the .R-translation grammar TG\. 

A B а Ь c d а b c d є 
# A Bx а dx SЫfí(x) Shift(є) 
A Accept 
Bx c Shift(y) 

в2 
Ь SЫfí(є) 

а в2 
d2 Shift(є) 

Ь Reduce l(є) 
c Reduce 2(є) 
dx Reduce 3(z) 
d2 Reduce 3(z) 

Algorithm 3.8. Formal translation for an i?-translation grammar. 

I n p u t : The translation table F and the goto table G for an _R-translation grammar 
TG = (N,T, D, R, S), and an input string x G T*, k > 0. 

Output: Output string y in case that for x G L(Gi), (x,y) G Z(TG). Otherwise 
an error signalization. 



20 B. MELICHAR AND N. VAN BAC 

Method: The symbol # is the initial symbol in the pushdown store. At the begin
ning of the formal translation the output string is empty, i.e. y = e. Repeat 
steps 1, 2 and 3 until Accept or an Error appears. Symbol X is on the top of 
the pushdown store. 

1. Fix the string u of the first k symbols from the unused part of the input string 
x. 

2. (a) If F(X,u) = Shift(z), then read one input symbol, add the string z to 
the output string y, and go to step 3. 

(b) If F(X, u) = Reduce i(z)1 then pop from the pushdown store the same 
number of symbols as that of input and nonterminal symbols on the right-
hand side of the ith. rule (i) A —> a, and add string z to the output string 
y. Go to step 3. 

(c) If F(X, u) = Accept, then finish the translation. The output string y is 
the translation of the input string x provided that the input string is read 
completely. Otherwise, finish the translation by an error signalization. 

(d) If F(X,u) = Error, then finish the translation by an error signalization. 

3. If W is a symbol that is to be pushed on the pushdown store (the read symbol 
in 2.(a) or the left-hand side of a rule used in the reduction in 2.(b)), and Y is 
the symbol at the top of the pushdown store, then: 

(a) If G(Y, W) = M, then push M on the top of the pushdown store, and go 
to step 1. 

(b) If G(Y, W) = Error, then finish the translation by an error signalization. 

Algorithm 3.8 is an extension of the algorithm of LR parser ([1]). The extension 
is that the output strings are emitted during two operations of translation — shift 
and reduce. 

A configuration of Algorithm 3.8 is a triple (a,x,y), where a is the contents of 
the pushdown store, x is the unused part of the input string, and y is the created 
part of the output string. 

The initial configuration is a triple ( # , x, e), the accepting configuration is a triple 
(#Mi,e,y) , where Mi is the symbol at the top of the pushdown store, and it holds 
tor Mi that F(Mi,e) = Accept. 

Example 3.9. Consider the _R-translation grammar TG\ from Example 3.5. The 
translation and goto tables for TG\ are in Example 3.7. Algorithm 3.8 performs the 
following sequence of moves for input string adb: 

(#,adb,e) ь ( # a ,db , x) 

ь (#ad2 ,b ,x) 
h (*aB2 ,b ,xz) 
1- (#aB2b ,є ,xz) 

ь (#A i Є , xz) 
1- Accept. 



Transformations of Grammars and Translation Directed by LR Parsing 21 

Thus, for the i?-translation grammar TG\, we can create one-pass formal translator. 
Such an i?-translation grammar will be called Kernel(R)-translation grammar and 
is defined as follows. 

Definition 3.10. A translation grammar TG is called a I<erne](i?)-translation 
grammar if and only if the following conditions hold: 

1. TG is an iJ-translation grammar. 

2. There is no shift-translation conflict in the collection of sets of LR(k) transla
tion items for TG. 

The class of Kernel(R)-translation grammars is denoted as CKernei(R)-

4. COLLECTION OF LR(k) TRANSLATION ITEMS 
AND TRANSFORMATIONS OF TRANSLATION GRAMMARS 

In Section 3 we have shown that it is possible for a translation grammar with 
LR(k) input grammar to perform a one-pass formal translation if it is a Kernel(R)-
translation grammar. What is for translation grammars which are not iJ-translation 
grammars or are ./^-translation grammars but the second condition in Definition 3.10 
is not satisfied? 

In this section we show that among the translation grammars which are not in 
the class of Kernel(R)-translation grammars are translation grammars which can be 
transformed so that the second condition would be satisfied. There are transforma
tions enabling to transform some translation grammars into equivalent Kernel(R)-
translation grammars. The transformations that can be used for this purpose are 
called shaking-down and postponing. In this section we also see which translation 
grammars can be transformed and which ones cannot be transformed. At the end of 
the section we will define the class called Li?-translation grammars as an extension 
of the class of Kerne](jR)-translation grammars. 

T h e o r e m 4 .1 . Let TG = (N,T,D,R,S) be a translation grammar, and let R 
contain a rule A —> axC/3, where a,(3 G (NUTUD)*, C is either a terminal symbol 
or a nonterminal symbol generating only strings of input symbols, and x G D+. 
Then the translation grammar TG' = (N,T,D,R',S), in which R' = (R - {A -> 
axC/3}) U {A -> aCx/3}, is equivalent to the translation grammar TG. 

P r o o f . The proof of this theorem is in [13]. • 

The transformation defined by Theorem 4.1 is called postponing of the string of 
output symbols. 



22 B. MELICHAR AND N. VAN BAC 

Theorem 4.2. Let TG = (N,T,D,R,S) be a translation grammar, where R 
contains a rule A -r axB/3, x G D+, a,j3 G (JVUTU D)*, B G N, and 5 -> 
71I72I • • • |7n are all rules in R with nonterminal symbol F? on the left-hand side. 
Let TG' = (N U {[xB]},T,D,.R',S), where R' = (R - {A -» axB/3}) U {A -> 
a[x£]/?, [sB] -> X7i|x72 | • • • | x 7 n } . Then Z(TG) = Z(TG'). 

P r o o f . The proof of this theorem is in [13]. • 

The transformation defined by Theorem 4.2 is called shaking-down of the string 
of output symbols. 

The transformation shaking-down and postponing can be used to transform some 
translation grammars into equivalent Kernel (iJ)-translation grammar. 

Moreover, these transformations can be embeded in the process of construction 
of the collection of sets of LR(k) translation items. During this process, translation 
conflicts are indicated and in some cases, they can be resolved by a transformation 
of rules of translation grammar. In all the following algorithms the two above men
tioned transformations are used to remove translation conflicts, if possible, otherwise 
the algorithms finish with a failure signalizatidn. 

We know that the LR(k) items associated with the viable prefixes of an LR(k) 
grammar are the main key to create the action and goto tables of LR(k) parser 
([1]). LRsp(k) translation items defined below are also the key to create translation 
and goto tables of LR(k) translator. The subscript sp stands for shaking-down and 
postponing transformations. 

Definition 4.3. An LRsp(k) translation item for a translation grammar TG = 
(iV, T, F>, /?, S) is an object of the form [A -> a • /3, xs, w], where: 

A -> a(3 is a rule of translation grammar TG, 

x G D* is a string of output symbols, 

w G T*k is a string of input symbols, k > 0, 

J is a flag, and 

S = post means that x was and/or will be postponed, 

S = shake means that x was and/or will be shaken-down, 

S = out means that x will be appended to the string of output symbols during 
parsing. 

For k = 0, the LRsp(0) translation item can be written in the form [A —r a-/?, x5]. 
The LRsp(k) translation item differs from the LR(k) translation item in that the 
LRsp(k) translation item contains output symbols with a flag S. By definition e = 
cshake __ ^post __ c-out 



Transformations of Grammars and Translation Directed by LR Parsing 23 

Definition 4.4. Let TG = (N,T,D,R,S) be a translation grammar. The set of 
all nonterminal symbols of the translation grammar TG which generate only strings 
of input symbols is called NPost and formally defined as follows: NPost(TG) = {A: 
AeN,A=>+w,we T*}. 

Let us now formulate two basic transformations of postponing and shaking-down 
in terms of translation items. 

Let TG = (N,T,D,R,S) be a translation grammar with a rule A -> axCy/3 
in R, where a,(3 G (N U T U D)*, x,y G D\ C G (T U NPost), and a does not 
end with an output symbol. Let us have a set of translation items M that contains 
item [A -> ax • CyP,xpost,u], (3 does not start with an output symbol. The set 
GOTO(M, C) contains item [A -> axCy • /?, (xy)6 ,u], where x,y G D* and S can 
be shake, post or out. This item corresponds to the rule A -> aCxy/3 that may be 
obtained by postponing the string x in the rule A -> axCy(3. 

Similarly, if there is an item [B -> ax • C(3,xsha,ke,u] in set M and 
C -> yi7iI1/272I''' \Vnln e R, where Vi G .D*, 7 i G (1VUT)(/VUTUF>)*, 1 < t < n, 
then translation items 

[C-> 1/2-72,(^2)^], 

[C->2/n-7n,(x2/n)5,i;], 

are in M, where v G FIRSTk(hi((3u)) and 5 can be shake, post or out, and they 
correspond to the following rules obtained by shaking-down of string x from the rule 
B -> axC/3 to rules: 

C -> ;n/i7i k2/2721 • • • \xyn-yn. 

Before describing the algorithms constructing the collection of sets of LRsp(k) 
translation items for a given translation grammar we cite some cases that are asso
ciated with using postponing and shaking-down. A collection of sets of LR(k) items 
is always finite regardless of whether the grammar is LR(k) or not. Nevertheless, 
there are translation grammars for which the collection of sets of LRsp(k) transla
tion items is an infinite collection of infinite sets. In this case, it is necessary to 
prevent such situation by indicating infinite loops in a construction algorithm. Let 
us demonstrate two sources of such infinite loops via examples. 

Example 4.5. The first source of an infinite loop is a shaking-down in connection 
with an output symbol in front of a left-recursive nonterminal. Consider translation 
grammar TG2 = ({A}, {a, b}, {x}, R, A), whose set R contains the rules: 

(1) A -» xAa 

(2) ,4 -> 6. 



24 B. MELICHAR AND N, VAN BAC 

The initial set of the collection of sets of LRsp(l) translation items for the grammar 
TG2 is infinite, and some of the items it contains are: 

[S'^-A,e,e], 
[A-^ x • A a,xsh*ke,e], 

[A->-b,e,s], 

[A^x-Aa,(xx)shake,a], (*) 

[A-+-b,xP°st,a], 

[A -> x • A a, (xxx)shake, a], 

[A^-b,(xx)P°st,a], 

The complete initial set for the translation grammar TO2 can be written as 

# = { [S'^-A,e,s], 
[A->x-Aa,xshake,e], 
[A->-b,e,e], 
[A^x-Aa,(xn)shake,o], 
[A -> -b, (xm)P°st, a] : m > 1, n > 2}. 

This initial set of the collection of sets oiLRsp(k) translation items for the translation 
grammar TG2 is infinite for any k > 0. 

There is a possibility to indicate an infinite loop during the construction of such 
infinite set. The loop only becomes infinite, if in some LRsp(k) translation item 
[A -> -a,w,u], an output symbol positioned in the particular rule at a particular 
place appears in string w at least twice. In our example, symbol x from the first 
rule appears for the second time in item (*). 

Example 4.6. The second source of an infinite loop is a combination of postpon
ing and shaking-down transformations in connection with a recursive nonterminal 
symbol. Consider a translation grammar TG% = ({A}, {a,b}, {x},R, A), whose set 
R contains rules 

(1) A -> xaA 

(2) A -r b. 

The initial set of the collection of sets of LR(1) translation items is finite, but there 
is an infinite number of sets ax = GOTO(#,a) , a2 = GOTO(GOTO(#,a) ,a) , 
a3 = GOTO(GOTO(GOTO(#,a) ,a) ,a) , . . . , that differ from each other only in 
output strings. Initial set # , and sets a\, a2 have the following form: 



Transformations of Grammars and Translation Directed by LR Parsing 25 

# = {[S'->-A,e,e], 

[A->x-aA,xp0St,e], 

[A ->•&,£,£]}, 

Gl = {[A->xa-A,xshake,e], 

[A->x-aA,(xx)post,e], 

[A->-b,xout,e]}, 

a2 = { [A -> xa • A, (a;x)shate, e] , 

[A -> x • aA,(xxx)post,e], 

[A^-b,(xx)out,e]}. 

The number of sets 

cn = {[A-*xa-A,(xi)ahala',e], 

[A^x-aA,(xi+1)post,e], 

[A^M*')™*,*]} 

is infinite because there is such a set for each i > 1. 

An infinite loop caused by a combination of the postponing and the shaking-down 
transformations can be indicated using the same principle as in case of presence of an 
output symbol in front of a left-recursive nonterminal. Again, if an output symbol 
from a particular place in some grammar rule appears at least twice in the output 
string of some LRsp{k) translation item, an infinite loop starts. In Example 4.6, we 
can indicate that the output symbol x occurs twice in the second item of set a\. This 
symbol is the first symbol of the right-hand side in the first rule of the translation 
grammar TG3. 

To enable an indication of infinite loops, we append to each output symbol some 
information about its location in translation grammar rules. The location of an 
output symbol is a pair (r,p), where r is the number of the grammar rule, and p is 
the position of the output symbol within the right-hand side of this*rule. Positions 
in the right-hand side of a rule are numbered naturally by 1, 2, 

As the algorithm constructing the collection of sets of LRsp translation items 
includes the postponing and shaking-down transformations, besides shift-translation 
conflict mentioned in Section 3 the following translation conflicts can occur during 
its construction. 

Definition 4.7. In a set M of LRsp(k) translation items, there is 

1. an expansion-translation conflict, if there are two items in M of the forms 

[A -* a-BP,x5,u] and [C-.> 7- BS,y6,v], 
for B e N, x ^ y, and FIRSTk(fn(Pu)) n FIRSTk(hi(5v)) / 0, 

2. a reduction-translation conflict, if there are two items in M of the forms 

[A -> a-,x5,u] and [A -> a-,y5,u], 
for x ^ y. 



26 B. MELICHAR AND N. VAN BAC 

There are several algorithms using miscellaneous combinations of two above-mentioned 
transformations in the process of construction of the collection of sets of LRsp trans
lation items. Each such combination defines a particular class of translation gram
mars: 

1. the algorithm using only the shaking-down transformation ([10]) and defining 
class Cs, 

2. the algorithm using only the postponing transformation ([3]) and defining class 
CP, 

3. the algorithm using both the postponing and shaking-down transformations, 
but the postponing is used when the shaking-down transformation cannot be 
used ([3]) and defining class CSP, 

4. the algorithm using both the postponing and shaking-down transformations 
but the shaking-down transformation is used when the postponing cannot be 
used ([3]), and defining class -Cps and 

5. the algorithms using both the postponing and shaking-down transformations 
which are used with the same priority, and defining class CSEP-

The following algorithm ([3, 10]) uses only shaking-down transformation. Thus, an 
output symbol will be emitted if it is in front of an input symbol and will be shaken 
down if it is in front of a nonterminal symbol. The shaking-down transformation 
affects mainly the computation of the closure. Therefore, we can use Algorithm 3.4 
where the operation CLOSURE will be substituted by the operation SCLOSURE, 
where S stands for the shaking-down. Moreover, during the computation of the base 
of a new set we must set into the item [A -> aXy • (3, j 6 , u] the value of flag S: 

S = shake when /3 G N(N UTUD)* , 
S = out when /3 G T(N U T U F>)* U {e}. 

We will denote the resulting collection of sets of LRsp(k) translation items byS(TG). 

Algor i thm 4.8. Construction of SCLOSURE of LRsp(k) translation items. 

Input : Translation grammar TG = (N,T,D,R,S), where rules are numbered, 
k > 0, and a set I of LRsp(k) translation items. 

Output: SCLOSURE(I). 

Method: 

a) SCLOSURE(I) := I. 

b) If [A -> a • Bf3,yshake,u] G SCLOSURE(I), B G N and B -> z<77 G R, 
a, p, 7 G (N U T U D)*, y, z G £>*, C G (N U T) or CP = e, 
then SCLOSURE(I) := SCLOSURE(I) U {[B -> z • C/3, (yz)5, v]: v G 
FIRSTk(hi(a)u)}, S = shake when C eN,S = out when C G T or C0 = e\ 



Transformations of Grammars and Translation Directed by LR Parsing 27 

check in the new created LRsp(k) translation item whether some output symbol 
from a particular place in some grammar rule appears at least twice in the 
output string. If there is such a symbol, then finish the computation with a 
failure signalization of an infinite loop. 

c) Repeat step b) until no new translation item can be inserted into the set 
SCLOSURE(I). 

E x a m p le 4.9. Consider translation grammar TGĄ = ({S, A, B}, {c, d}, {x, y}, R, S) 
where set R contains the following rules: 

(i) S -> xA 

(2) S ->yB 

(3) A —> c 

(4) B -> d. 

This translation grammar describes translation Z(TGĄ) = {(cd, x), (db, y)}. 
The collection of sets S(TG±) of LRsp(l) translation items contains the following 
sets: 

# {[S'->-S,є,є], 

[S->x-A,xshake,є], 

[S->yB,ysh*ke,є], 

[A->-c,xout,є], 

[B^-d,yout,є]}, 

5 = {[S' -> S;Є,Є]}, 

A = {[S -+ XA;Є,Є]}, 

B = {[S->УB;Є,Є]}, 

c = {[A-+C;Є,Є]}, 

d = {[A-^d-,є,є]}. 

There is no translation conflict in the set S(TGi). Output symbols x and y has 
been shaken down to the items [A —> -c, x,e] and [B -» -d, y,s], respectively. 

Algorithm 4.11 ([3, 4]) uses only the postponing transformation. An output 
symbol will be emitted if it is in front of an input symbol and it is not in a shift-
translation conflict. An output symbol must be postponed if it is in front of a 
nonterminal symbol or it is in a shift-translation conflict. We know that an output 
symbol cannot be postponed if it is in front of a nonterminal symbol that produces 
an output string. In such a case we can finish immediately the computation with 
an error signalization. The flag 5 in an LRsp(k) translation item of the form [A —>> 
a • Cfi, xs, u] will be post if C G NPost or out if C G T or C/3 = e. The postponing 
transformation affects both the computation of bases and closures of sets of LR(k) 
translation items and therefore we will define the operation PCLOSURE. 



28 B. MELICHAR AND N. VAN BAC 

Algorithm 4.10. Construction of PCLOSURE of LRsp(k) translation items. 

Input : Translation grammar TG = (N,T,D,R,5), where rules are numbered, 
k > 0, and a set I of LRsp(k) translation items. 

Output: PCLOSURE(I). 

Method: 

a) PCLOSURE(I) := I. 

b) If [A -> a • BP,yP°s\u] G PCLOSURE(I), B G TV and J5 -> zC7 G # , 
a , / 3 , 7 G (7VUTU.D)*, y,z G £>*, C G (JV U T) or C(3 = e,ii B $ NPost 
then finish the computation with an error signalization else PCLOSURE(I) := 
PCLOSURE(I)U{[B - r z-Cj, (yz)\v\: v G FIRSTk(hi(a)u)}, 6 = post when 
C G IV, S = out when C G T or C/3 = e\ 
check in the new created LRsp(k) translation item whether some output symbol 
from a particular place in some grammar rule appears at least twice in the 
output string. If there is such a symbol, then finish the computation with a 
failure signalization of an infinite loop. 

c) Repeat step b) until no new translation item can be inserted into the set 
PCLOSURE(I). 

Algorithm 4.11. Construction of the collection P of sets of LRsp(k) translation 
items. The postponing transformation is used. 

Input : Translation grammar TG = (iV, T, JD, i?, 5), where rules in R are numbered, 
and k > 0. 

Output: Collection P of sets of LRsp(k) translation items for the translation gram
mar TG, or a reduction-translation conflict, or an error signalization. 

Method: 

1. Construct an augmented grammar TG' = (N U {S"},T,D,RU {S' -r 5},S') . 

2. Construct a set NPost for TG'. 

3. Construct the initial set of LRsp(k) translation items as follows: 

(a) # : = [ £ ' - + . £ , £ , £ ] . 

(b) # := PCLOSURE(#). 

(c) Check all translation items of the set # with an input symbol following 
immediately the dot, whether there is a shift-translation conflict. If yes, 
then rewrite out of all translation items in the shift-translation conflict 
to post. 
Otherwise P : = { # } , # is the initial set. 



Transformations of Grammars and Translation Directed by LR Parsing 29 

4. If the set Mi of LRsp(k) translation items has been constructed, construct for 
each symbol X € (N U T) which is in some LRsp(k) translation item in Mi 
just behind the dot, a new set of LRsp(k) translation items Xj in the following 
way: 

(a) Construction of the basis of the set Xj is divided into two cases: 

i. Xj := {[A -> aXy • C/3,(xy)s,u): [A -> a • XyC/3,XP°st,u] G Mu 

y G D*, x G D+, X G (NPost U T), a,/3 G (N U T U £>)*, C G 
( jVUT)U{e} } . 

ii. Xj := {[A -> aXy • Cp,ys,u): [A -> a • XyC/3,xout,u] G Mi, x,y e" 
L>* ,XGTa , /?G (NUTUZ) ) * ,OG ( N U T ) U { e } } . 

In both cases S = post when C G NPost, 5 = out when C G T or C/? = e. 

(b) X,- := PCLOSURE(Xj). 

(c) Check if there is a shift-translation conflict in the set Xj. If yes, then 
rewrite out over the output symbols in these translation items to post. 
Otherwise P := P U {Xj}. 

5. Repeat step 4 for all sets Xj until no new set can be added into the collection 
P. 

Example 4.12. Consider translation grammar TO5 = ({S, A}, {a, b, c}, {x, y}, R, S), 
where set R contains the following rules: 

(1) S -> xAa 

(2) S -> yAb 

(3) A -> c. 

Construct the collection P(TGs) of sets of LRsp(l) translation items as follows: 
NPOST = {A}, 

# = {[S'->-S,e,e], 
[S->x-Aa,xP°st,e], 
[S-^yAb,yP°st,e], 
[A->-c,e,{a,6}]}, 

A = {[S->xA-a,xout,e], 
[S^yA-b,yout,e]}, 

a = { [S -> xAa-,£,£]}, 

6 = { [S ^yAb-,e,e]}, 

c = { [A->c-,e,{a,6}]} . 

The next algorithm ([3, 4]) uses the shaking-down and postponing transforma
tions. Shaking-down is always used if an output symbol is in front of a nonterminal 
symbol. Postponing is used if there is a shift-translation conflict. The flag S in an 
LRsp(k) translation item of the form [A —> a • Cf3,xs,u] will be shake if C G N or 
out if C G T or C/3 = e. 



30 B. MELICHAR AND N. VAN BAC 

Algorithm 4.13. Construction of the collection SP of sets of LRsp(k) translation 
items. The shaking-down and postponing transformations are used. The shaking-
down transformation has greater priority than the postponing transformation. 

Input : Translation grammar TG = (N, T, D, R, S), where rules in R are numbered, 
and k > 0. 

Output: Collection SP of sets of LRsp(k) translation items for the translation 
grammar TG, or a reduction-translation conflict. 

Method: 

1. Construct an augmented grammar TG' = (N U {5 '} ,T,D,RU {S' -r S},S'). 

2. Construct the initial set of LRsp(k) translation items as follows: 

(a) # : = [ S ' - > . £ , £ , £ ] . 
(b) # := SCLOSURE(#). 

(c) Check all translation items of the set # with an input symbol following 
immediately the dot, whether there is a shift-translation conflict. If yes, 
then rewrite out of all translation items in the shift-translation conflict 
to post. 

(d) Check if there is a reduction-translation conflict. If yes, then finish the 
computation with a failure signalization of a reduction-translation con
flict. Otherwise SP : = { # } , # is the initial set. 

3. If the set Mi of LRsp(k) translation items has been constructed, construct for 
each symbol X e (N U T) which is in some LRsp(k) translation item in Mi 
just behind the dot, a new set of LRsp(k) translation items Xj in the following 
way: 

(a) Construction of the basis of the set Xj is divided into three cases: 

i. Xj := {[A -> aXy • CP,y6,u\ [A -> a • XyCP,xshake,u] e M{, 
x,yeD*,XeN,a,0e(NUTU D)*, Ce(NUT)U {e}}. 

ii. Xj := {[A-+aXy C/3,y5,u\ [A -> a • XyCp,x0Ut,u] e Mu x,y e 
D*, X e T, a, /3 e (N U T U D)*, C e (N U T) U {e}}. 

iii. Xj := {[A -> aXy • C(3,(xy)5,u\ [A -> a • XyCP,xpost,u] e Mu 

xeD+,yeD*,XeT,a,(3e(N[JTUD)*,Ce(NUT)U {e}}. 
In all cases above S = shake when C e N and 6 = out when C e T or 
C(3 = e. 

(b) Xj := SCLOSURE(Xj). 

(c) Check if there is a shift-translation conflict in the set Xj. If yes, then 
rewrite out over the output symbols in these translation items to post. 

(d) Check if there is a reduction-translation conflict. If yes, then finish the 
computation with a failure signalization of a reduction-translation con
flict. Otherwise SP := SP U {Xj}. 

4. Repeat step 3 for all sets Xj until no new set can be added into the collection 
SP. 



Transformations of Grammars and Translation Directed by LR Parsing 31 

Example 4 .14. Consider translation grammar 

TGe = ({S, A}, {a, b, c}, {x, y}, R, S), where set R contains the following rules: 

(1) S -> xBa 

(2) S -> yCb 

(3) B -> zD 

(4) C ->wE 

(5) D -> c. 

Construct the collection SP(TGe) of sets of Li? sp(l) translation items as follows: 

iVposr = {D}, 

# = { [S ' - ^ .S . e . e ] , 

[s ->x-£o ,x s h a J c e , e ] , 

[S-*yCb,yshake,e], 

[B-+z-D,(xz)sh*ke,a], 

[C ->w-D,(yw)shake,b], 

[D-*-c,(xz)P°st,a], 

[D^-c,(ywY0St,b]}, 

5 = {[S>-* S-,e,e]}, 

£ = { [ s ->x .B-a , e , e ]} , 

C = { [5 ^yC -b,e,e]}, 

D = { [B ->zD . , e , o ] , 

[C ^wD;£,b]}, 

c = {[D->c-,(a:2)ou t ,o], 

[ D - > O . , ( y « ; r t , 6 ] } , 

a = { [5 ->xBa ' ,£ ,£ ]} , 

6 = {[S->yCb.,e,e]}. 

Algorithm 4.16 ([3, 4]) uses shaking-down and postponing. The shaking-down 
transformation is used if an output symbol is in front of a nonterminal symbol over 
which the postponing transformation cannot be used. The flag S in an LRsp(k) 
translation item of the form [A -r a • C0,x5,u] will be shake if C G (N - NPost), 
post if C G NPost or out if C G T or Cj5 = e. We must cover two situations in this 
algorithm, because the output strings may be either shaken down or postponed. 

This is the reason to define another version of the closure computation. 



32 B. MELICHAR AND N. VAN BAC 

Algorithm 4.15. Construction of PSCLOSURE of LRsp(k) translation items. 
» 

Input : Translation grammar TG = (N,T,D,R,S), where rules are numbered, 

k > 0, and a set I of LRsp(k) translation items. 

Output: PSCLOSURE(I). 

Method: 

a) PSCLOSURE(I) := I. 

b) If [A -> a • Bj, xshake,u] e PSCLOSURE(I), B e (N - NPost) and B -r yCfi, 
x,y eD*, a,/3,7G (7VUTU.D)*, C e (NUT) U {e}, then 
PSCLOSURE(I) := PSCLOSURE(I) U {[B -> y • C/3, (xy)5,*;]: 
v G FIRSTfc(/ii(7)u)}, 5 = post when C G NPost, 5 = shake when C G 
(TV - NPost) and 5 = out when C G T or C/3 = e. 
Check in the new created LRsp(k) translation item whether some output sym
bol from a particular place in some grammar rule appears at least twice in the 
output string. If there is such a symbol, then finish the computation with a 
failure signalization of an infinite loop. 

c) If [A -> a • B>y,xi>ost,u\ G PSCLOSURE(I), x G D+, a, 7 G (N U T U D)*, 
B e NPost and B -r /?, /? G (NPost U T)*, 
then PSCLOSURE(I) := PSCLOSURE(I) U {[B -> -fte-v]: 
u G F I R S T ^ / i ^ u ) } . 

d) Repeat steps b) and c) until no new translation item can be inserted into the 
set PSCLOSURE(I). 

Algor i thm 4.16. Construction of the collection PS of sets of LRsp(k) translation 
items. Shaking-down and postponing transformations are used. The postponing 
transformation has greater priority than the shaking-down transformation. 

Input : Translation grammar TG = (N, T,D,R,S), where rules in R are numbered, 
and k > 0. 

Output: Collection PS of sets of LRsp(k) translation items for the translation 
grammar TG, or a reduction-translation conflict. 

Method: 

1. Construct an augmented grammar TG' = (N U {S'},T,D,RU {S' -r S},S'). 

2. Construct a set NPost for TG'. 

3. Construct the initial set of LRsp(k) translation items as follows: 

(a) # : = [ s ' - > B , e , e ] . 

(b) # := PSCLOSURE(#) 



Transformations of Grammars and Translation Directed by LR Parsing 33 

(c) Check all translation items of the set # with an input symbol following 
immediately the dot, whether there is a shift-translation conflict. If yes, 
then rewrite out of the all translation items in the shift-translation conflict 
to post. 

(d) Check if there is a reduction-translation conflict. If yes, then finish the 
computation with a failure signalization of a reduction-translation con
flict. Otherwise PS := {#} , # is the initial set. 

4. If the set Mi of LRsp(k) translation items has been constructed, construct for 
each symbol X G (IV U T) which is in some LRsp(k) translation item in Mi 
just behind the dot, a new set of LRsp(k) translation items Xj in the following 
way: 

(a) Construction of the basis of the set Xj is divided into three cases: 

i. Xj := {[A -> aXy • C/3,y5,u]: [A -> a • XyCf3,xshake,u] G M{, 
x,yeD*,Xe (N-NPost), a,0 G (NUTUD)*, C G (IVUT)U{e}}. 

ii. Xj := {[A^aXyCp,y5,u]: [A -> a • XyC(3,x0Ut,u] G M{, x,y G 
D*, X G T, a, p G (IV U T U D)*, C G (IV U T) U {e}}. 

hi. X,- := {[A^aX2/-C/3,(a:2/)5,w]: [A-> a-X^C/3,xpos t,w] G M i} x G 
D+, yeD*,Xe (NPostUT), a,(3 G (IVUT)*, C G (IVUT)U {s}}. 

In all cases above 5 = post when C G NPost, S = shake when C G 
(IV - JVPost) and S = out when C G T or C/3 = e. 

(b) X, := PSCLOSURE(Xj) 

(c) Check if there is a shift-translation conflict in the set Xj. If yes, then 
rewrite out over the output symbols in these translation items to post. 

(d) Check if there is a reduction-translation conflict. If yes, then finish the 
computation with a failure signalization of a reduction-translation con
flict. Otherwise PS := PS U {Xj}. 

5. Repeat step 4 for all sets Xj until no new set can be added into the collection 
PS. 

Example 4.17. Consider translation grammar TGj = ({S, A, B, C}, {a, b, c}, 
{x, y, z}, R, S), whose set R contains the rules: 

(1) S - r xAb (4) B -> Bb 

(2) S - r yAc (5) B -> b 

(3) A -+ BzC (6) C-+a. 

Construct the collection SP(TG7) of sets of LRsp(l) translation items as follows: 



34 B. MELICHAR AND N, VAN BAC 

NPost= {B, C}, 

# ={[S'-4-S,e,e], 
[S-*x-Ab,xshake,e], 
[S^yAc,ysh*ke,e], 
[A-*-BzC,xpost,b], 
[A-*-BzC,ypost,c], 
[B^Bb,e,{a,b}], 
[B^b,e,{a,b}]}, 

S = {[S'-> 5 •£,£]}, 

A ={[S -»• xA -b,£,e], 
[S-*yA-c,e,e]}, 

B ={[A->Bz-C,(xz)p0St,b], 
[A-+Bz-C,(yz)post,c], 
[B->B-b,e,{a,b}], 
[C ->-a,e,{6.c}]}, 

6a ={[S->5-e , {a,6}]}, 

62 = {[5-» avlb •£,£]}, 

C ={[S^yAC; £,£]}, 

C ={[A-+BzC;(xz)out,b], 
[A-*BzC;(yz)oat,c]}, 

a ={[C-*a;e,{b,c}]}, 

63 ={[B^Bb-,e,{a,b}]}. 

Algorithm 4.20 prevents the translation conflicts during constructing a set of 
LRsp(k) translation items. If the created set includes an expansion translation 
conflict, then the algorithm uses postponing to remove it. 

Definition 4.18. Let TG = (N,T,D,R,S) be a translation grammar and M is 
a set of LRsp(k) translation items for TG. The set of all nonterminal symbols of 
TG, which are in NPost and induce an expansion-translation conflict in M, is called 
NConflictM and formally defined as follows: NConflictM = {A: A G NPost and 
there is an expansion-translation conflict for A in M}. 



Transformations of Grammars and Translation Directed by LR Parsing 35 

Algorithm 4.19. Construction of ECLOSURE of LR(k) translation items. 

Input : Translation grammar TG = (N,T,D,R,S), where rules are numbered, 
k > 0, and a set i" of LRsp(k) translation items. 

Output: ECLOSURE(I). 

Method: 

a) ECLOSURE(I) := / 

b) If [A -> a • B7,y«i«ai»jti] e ECLOSURE(I), B G N and B -> sC/J, M e 25*, 
a,/S,7e(iVuruZ?)*,C€(-VUT)U{£}then 

i. If C G NConflictECLOSURE(I), then 
ECLOSURE(I) := ECLOSURE(I) u {[B -> z • C/J, (yzT s t ,<;]: v G 
FIRST*(/ii(a)u)}. 

ii. If C G (N - NConflictEcLOSURE(i)), then 
ECLOSURE(I) := ECLOSURE(I) u {[B -> z • C/?, M s h a * ^ ] : t; G 
FIRSTfc(fci(a)ti)}. 
Check in the new created LRsp(k) translation item whether some output 
symbol from a particular place in some grammar rule appears at least 
twice in the output string. If there is such a symbol, then finish the com
putation with a failure signalization of an infinite loop. Check the new 
translation item with all others for any expansion-translation conflict. If 
yes, and C $ NPost, then finish the computation with a failure signaliza
tion of an expansion-translation conflict. If yes, and C G NPost, then put 
C into NConflictECLOSURE(i) > rewrite shake over the output symbols in all 
translation items with the nonterminal symbol C following immediately 
after the dot to post and remove all output symbols in all translation 
items deduced from C. 

iii. If C G T or C/3 = e, then 
ECLOSURE(I) := ECLOSURE(I) U {[B -> z • C/3, (yz)out,v]: v G 
FIRSTfc(fHi(a)ti)}. 

c) If [A -> a • .B7i!/port-ti] G ECLOSURE(I), a, 7 G (TV U T U £>)*, 2/ G £>+, 
£ G JVPost and B -> /3, /J G (JVPost U T)*, then ECLOSURE(I) := 
ECLOSURE(I) U {[5 -> •/?,£, v]: 1; G FIRST* (/li(a)u)}. 

d) Repeat steps (d) and (e) until no new translation item can be inserted into 
the set ECLOSURE(I). 

Algorithm 4.20. Construction of the collection SEP of sets of LRsp(k) trans
lation items. The shaking-down and postponing transformations are used. The 
shaking-down and postponing transformations have the same priority. 



36 B. MELICHAR AND N. VAN BAC 

Input : Translation grammar TG = (N, T, D, R, S), where rules in R are numbered, 
and A: > 0. 

Output: Collection SEP of sets of LRsp(k) translation items for the translation 
grammar TG, or a reduction-translation conflict, or an expansion-translation 
conflict. 

Method: 

1. Construct an augmented grammar TG1 = (N U {S"}, T, D, R U {S' -> 5 } , Sf). 

2. Construct a set NPost for TG'. 

3. Construct the initial set of LRsp(k) translation items as follows: 

(a) # := [S' -> -S,e,s], NConfHct# = 0. 

(b) # := ECLOSURE(#). 

(c) Check all translation items of the set # with input symbol following 
immediately the dot for any shift-translation conflict. If yes, then rewrite 
out of all translation items in the shift-translation conflict to post. 

(d) Check if there is a reduction-translation conflict. If yes, then finish the 
computation with a failure signalization of a reduction-translation con
flict. 
Otherwise SEP : = { # } , # is the initial set. 

4. If the set Mi of LRsp(k) translation items has been constructed, construct for 
each symbol X G (N U T) which is in some LRsp(k) translation item in Mi 
just behind the dot, a new set of LRsp(k) translation items Xj in the following 
way: 

(a) Put NConflictXj = 0 and the basis of the set Xj is constructed as follows: 

i. Xj := {[A -> aXy • C(3,y5,u]: [A -> a • XyCP,xshake,u] G M{, 

yeD*,xeD+,XeN,a,Pe(NUTUD)*,Ce(NUT)U {e}}, 
ii. Xj := {[A -> aXy • C/3, (xy)5 ,u]: [A -> a • X2/G/3,xpost,iz] G M i? 

1/ G T>*, x G T>+, X G (T U NPost), a,/3 G (/V U T U D)\ C G 
( iVUT)U(e}}, 

iii. Xj := {[A -> aXy • C(3,y5,u]: [A -> a • XyC(3,xout,u] G M*, 
x, 2/ G T>*, X G T, a, /3 G (/V U T U D)*, G G (IV U T) U {e}}. 

(b) Check the basis of the set Xj, whether there is an expansion-translation 
conflict. If yes, and G ^ NPost, then finish the computation with a failure 
signalization of a reduction-translation conflict. If yes, and G G NPost, 
then put G into NConflictXj. This step is repeated for all nonterminal 
symbols following immediately after the dot. 

(c) The computation the S after steps (a) and (b) is as follows. If G G 
NConflictXj, then S = post. If G G (N-NConflictXj), then S = shake. If 
G G T or C(3 = e, then S = out. 



(1)5 -» xAb 

(2)5 -> yAc 

(3)A -^BzC 

Transformations of Grammars and Translation Directed by LR Parsing 37 

(d) Xj := ECLOSURE(Xj). 
(e) Check if there is a shift-translation conflict in the set Xj. If yes, then 

rewrite out over the output symbols in these translation items to post. 

(f) Check if there is a reduction-translation conflict. If yes, then finish the 
computation with a failure signalization of a reduction-translation con
flict. 
Otherwise SEP := SEP U {Xj}. 

5. Repeat step 4 for all sets Xj until no new set can be added into the collection 
SEP. 

Example 4.21. Consider translation grammar TGs = ({S, A,B, C}, {a,b,c}, 
{x,y,z},R,S), whose set R contains the rules: 

(4) B^Bb 

(5) B->b 

(6) C -> a. 

The collection SEP(TGs) of sets of LRsp(l) translation items for the grammar TGs 
is constructed as follows: 

JVPost= {B, C}, 

# ={[5'->B,e,e], 
[S-+x-Ab,xshake,e], 
[S-^yAc,yshake,e], 
[A->-BzC,xshake,b], 
[A->-BzC,yshake,c],}. 

NConflict#={B}. 

Items [A -> -BzC,xshake,b] and [A -> •BzC,yshake,c] of the closure of the set # are 
in the expansion-translation conflict. The nonterminal symbol B following the dot 
is the element of the set NPost, therefore we can postpone the output symbol over 
the nonterminal symbol B. 

# ={[S'-+.S,e.e], 
[S->x-Ab,xshake,e], 
[S -> y Ac,yshake,e], 
[A^-BzC,xP°st,b], 
[A->-BzC,yP°st,c], 
[B^-Bb,e,{a,b}], 
[B^-b,e,{a,b}]}, 

S ={ [S' - > B , s,e]}, 

A ={[S -+xA -b,e,e], 



38 B. MELICHAR AND N. VAN BAC 

[S ->y-4-c,e,e]}, 

B ={[A-+Bz-C,(xz)shake,b], 
[A->Bz.C,(yz)shake,c], 
[B->B-b,e,{a,b}}, 
[C->.a , (xz ) o u t ,6] , 
[C->.a , (yz ) o u t ,c ]} , 

Items [C -> -a, (xz)out,b] and [C -> -a, (yz)out,c] of the closure of set B are in the 
shift-translation conflict. We postpone the output symbols over the terminal symbol 
a. 

B ={[A^Bz-C,(xz)shake,b], 
[A->Bz-C,(yz)sh*ke,c], 
[B^B'b,e,{a,b}], 
[C->-a,(xz)P°st,b], 
[C->.a,(yzyost,c}}, 

h ={[B->b-,e,{a,b}}}, 

b2 ={[S -> xAb-,e,e]}, 

c ={[S-+yAc,e,e}}, 

C ={[A->BzC-,e,b], 
[A-+ BzC-,e,c]}, 

a ={[C ->a-,(xz)out,b], 
[C->a- , (yz)o u t ,c]} , 

b3 ={[B->Bb-,e,{a,b}]}. 

So that there is no translation conflict in the collection SEP(TG$) of sets of trans
lation items. 

L e m m a 4.22. Algorithm 4.20 either constructs a finite collection of finite sets of 
LR(k) translation items, or indicates an infinite loop and stops for each translation 
grammar. 

P r o o f . The proof is very similar to the proof in [11, 14]. Algorithm 4.20 is an 
extension of the algorithm for the construction of the collection of sets of LR(k) 
items for a context-free grammar. This collection is always finite. An LRsp(k) 
translation item is an LR(k) item augmented with a string of output symbols with a 
flag. If an output symbol from a particular location in a grammar rule appears more 
than once in some LRsp(k) translation item of a set of LRsp(k) translation items 
M, then either a shaking-down transformation is used by rules with output symbol 
before left-recursive nonterminal or a combination of postponing and skaking-down 
transformations in connection with a recursive nonterminal symbol. The algorithm 
either removes translation conflicts by using a postponing transformation or finishes 
with a failure signalization. 



Transformations of Grammars and Translation Directed by LR Parsing 39 

The length of the string of output symbols in each LRsp(k) translation item 
is limited by the number of output symbols appearing at distinct positions in the 
grammar rules. As the number of output symbols is limited in all grammar rules, 
the length of the output string in each LRsp(k) translation item is limited too. • 

L e m m a 4.23. For an LR(k) translation grammar TG, and for an input string x, 
Algorithm 3.8 using the translation table based upon the collection SEP of sets of 
LRsp(k) translation items constructed by Algorithm 4.20 creates an output string y 
such that (x,y) G Z(TG). 

P r o o f . The proof is very similar to the proofs in [3, 11]. • 

Definition 4.24. A translation grammar TG is called an LR(k) translation gram
mar if the following conditions hold: 

1. The input grammar of the translation grammar TG is an LR(k) grammar. 

2. There is no output symbol in front of a left-recursive nonterminal in TG. 

3. There is no reduction-translation conflict in the collection of sets of LRsp(k) 
translation items. 

For each LR(k) translation grammar we can construct a deterministic bottom-up 
translator that operates in linear time. 

5. THE HIERARCHY OF LR TRANSLATION GRAMMARS 

The hierarchy of Li?-translation grammars is described in the following theorems. 

T h e o r e m 5 . 1 . CpostGx CCKernei(R)-

P r o o f . The containment is implied from their definitions. The following trans
lation grammar TGKemei(R) = ({-4}, {a}, {x},R,A) whose set R contains the rule 

(1) A -» xa. 

is in CKernei(R) but not in CPoStnx' Therefore, the inclusion is proper. • 

Theorem 5.2. CKemei(R) C CS. 

P r o o f . Assume TG is a translation grammar and TG G CKemei(R)- Algorithm 
3.4 with the operation SCLOSURE differs from Algorithm 3.4 in that, if there is an 
output symbol appearing immediately in front of a nonterminal symbol, Algorithm 
3.4 with the operation SCLOSURE uses the shaking-down transformation so that 
the output symbol will appear immediately before the input symbol while Algorithm 



40 B. MELICHAR AND N. VAN BAC 

3.4 cannot compute the set of LRsp(k) translation items because the translation 
grammar is not an .^-translation grammar. If the collection of sets of LRsp(k) 
translation items for TG is computed by using Algorithm 3.4, then no shaking-down 
is used and this collection does not include any shift-translation conflict because 
TG G CKernel(R). So tha t TGeCS. 

The translation grammar TGs = ({-4,F?}, {a, 6}, {x,y},R, A) whose set R con
tains the rules 

(1) A -> xBa 

(2)B->yb. 

is in Cs but not in CKemei(R) • Therefore the inclusion is proper. D 

T h e o r e m 5.3. Cs C CSp. 

P r o o f . Assume TG is a translation grammar and TG G Cs- Algorithm 4.13 
differs from Algorithm 3.4 with the operation SCLOSURE in that if in some set of 
LRsp(k) translation items is any shift-translation conflict, then Algorithm 4.13 uses 
the postponing transformation while Algorithm 3.4 with the operation SCLOSURE 
finishes the computation with a failure signalization of a reduction-translation con
flict. In other cases both algorithms behave in the same way. So TG G Csp. 

The translation grammar TGSP = ({-4, B}, {a, b, c}, {x, T/, z}, i?, A) whose set R 
contains the rules 

(1) A -> xBa 

(1) A -> yBb 

(2) B -> zc . 

is in CSP but not in Cs. Therefore the inclusion is proper. D 

T h e o r e m 5 .4 . CKernei(R) C CP. 

P r o o f . Assume TG is a translation grammar and TG G CKemei{R)- Algorithm 
4.11 differs from Algorithm 3.4 in that if in some set of LRsp translation items there 
is any shift-translation conflict, then Algorithm 4.11 uses the postponing transfor
mation while Algorithm 3.4 finishes with a failure signalization of a shift-translation 
conflict. In other cases both algorithms behave in the same way. So TG G Cp. 

The translation grammar TGp = ({5, A,£?}, {a,b,c}, {x,y},R,S) whose set R 
contains the rules 

(1) S -> xA a 

(2) S-±yAb 

(3) A -> Bb 

(4) B->c. 

is in Cp but not in CKemei(R) • Therefore the inclusion is proper. D 



Transformations of Grammars and Translation Directed by LR Parsing 4 1 

Theorem 5.5. CP C CSP. 

P r o o f . Assume TG is a translation grammar and TG G CP. Algorithm 4.13 
differs from Algorithm 4.11 in that: if there is an output symbol appearing immedi
ately in front of a nonterminal symbol, which produces a non-empty string of output 
symbols, Algorithm 4.13 uses the shaking-down transformation so that the output 
symbol will appear immediately before the symbol that is in (NPost U T) while Al
gorithm 4.11 finishes computation with an error signalization. If the collection of 
sets of LRsp(k) translation items for TG is computed using Algorithm 4.13, then 
the shaking-down transformation need not to be used and this collection is the same 
as when it is computed by Algorithm 4.11. So TG G CSP. 

The grammar TGSP presented in the proof of Theorem 5.3 is in CSP but not in 
CP. Therefore the inclusion is proper. • 

Theorem 5.6. CKemei(R) C Cs n CP. 

P r o o f . Prom Theorem 5.2 we have CKerne](R) C Cs. Prom Theorem 5.4 we 
have CKerne}(R) C CP. So that CKernel(R) CCS n CP. 

The translation grammar TGSnP — ({A,B},{a,b},{x},R,A) whose set R con
tains the rules 

(1) A -> xBa 

(3) B -> b. 

is in Cs n CP but not in CKerne^R). Therefore the inclusion is proper. • 

Theorem 5.7. CSP £ CP ,CP £ CSP. 

P r o o f . The grammar TGSP described in the proof of Theorem 5.3 is in CSP 

but not in CP. 
The grammar TGP described in the proof of Theorem 5.4 is in CP but not in 

CSP. • 

Theorem 5.8. CSP C CSEP-

P r o o f . Assume TG is a translation grammar and TG G CSP. Algorithm 4.20 
differs from Algorithm 4.13 in that if during the computation of the sets of LRsp(k) 
translation items there is any expansion-translation conflict, then Algorithm 4.20 
uses the postponing transformation while Algorithm 4.13 uses the shaking-down 
transformation. It is known that if the shaking-down transformation is used for 
an output symbol which is in an expansion-translation conflict, then the collection 
includes a reduction-translation conflict. In other cases both algorithms behave in 
the same way. Because TG G CSP, no expansion-translation conflict occurs when the 



42 B. MELICHAR AND N. VAN BAC 

collection of sets of LRsp(k) translation items for TG is computed using Algorithm 
4.20. So that CSp C CSEP. 

The grammar TGp presented in the proof of Theorem 5.4 is in CSEP but not in 
CSp. • 

T h e o r e m 5.9. CSP — CSEP. 

P r o o f . We describe briefly the differences between Algorithm 4.20 and Algo
rithm 4.16. Algorithm 4.20 checks during the computation of the sets of LRsp(k) 
translation items for any expansion translation conflict. If there is such a conflict, 
then Algorithm 4.20 uses the postponing transformation to postpone the output 
symbols, otherwise it uses the shaking-down transformation for the output symbols. 
Algorithm 4.16 uses always the postponing transformation if it is possible. That is, 
the postponing transformation is also used in the case when in all sets of LRsp(k) 
translation items there is no expansion translation conflict (note: on this account 
we call Algorithm 4.16 a lazy variant of translation). In the case when an output 
symbol appears immediately before a grammar symbol that is in ((IV — NPost)\JT) 
both algorithms behave in the same way. 

Now we prove Theorem 5.9 by contradition. Assume TG is a translation grammar 
and TG G Csp. Assume TG & CSEP, i-e., Algorithm 4.20 finishes in a case when 
in a set M there is an expansion-translation conflict as: [B -> c^ • A fii,xshake,u ], 
[C -> a\ • A (3\,yshake,u'], FIRSTk(Piv) = FTRSTk(0\u') and A $ NPost. The 
two rightmost derivations of the initial symbol S are S =-=>* aaiA A/? and S -=>* 
a'a\A (3\P1. TG G CSp implies: hi(aa{A A/5) = hi(a'a\A #/3'), h0(aatA ft/3) = 
h0(a'a\A /3\P'). Because A $ NPost no output symbols can be postponed over .A, 
Algorithm 4.16 must emit all output symbols before reading hi(fiiP) and TG G 
CSP we have h0(aai) = h0(a'a\) and hi(aai) = hi(a'a\). The collection PS 
must contain the set M' that includes the translation items such as: [B -> ai • 
A Pi,zshake,u ], [C -> a\ • A /3\,zshake,u'], z G D+. Because x ^ y, on the same 
position in aai and a 'a j Algorithm 4.20 emits different substrings of h0(a'a\). But 
it cannot happen because in such a case Algorithm 4.20 must finish earlier before 
the computation of the set M on account of an expansion or a reduction translation 
conflict. So TG E CSEP-

Assume TG is a translation grammar and TG G CSEP. Assume TG & Csp, i.e., 
Algorithm 4.16 finishes computation in a case when in a set M there is a reduction 
translation conflict. We know that a reduction translation conflict can occur only 
if the algorithm uses the shaking-down tranformation for an output symbol of a 
translation item which is in an expansion translation conflict. The PS includes 
such translation items as: [B -> a{ • A Pux

shake,u ], [C -> a\ • A (3\,yshake,u'], 
FIRST*(fau) = FIRSTk(/3\u') and A $ NPost. The two rightmost derivations 
of the initial symbol S are S =>* aa{A A/3 and S =»* a'a\A #/3 ' . TG G CSEP 
implies: hi(aatA A/5) = hi(a'a\A (3\f3'), h0(aa{A A/5) = h0(a'a\A (3\/3'). Because 
A £ NPost no output symbols can be postponed over A, Algorithm 4.20 must emit all 
output symbols before reading hi(fii/3) and TG G CSEP we have h0(aai) = h0(a'a\) 
and hi(aai) = hi(a'a\). The collection SEP must include the set M' that includes 



Transformations of Grammars and Translation Directed by LR Parsing 43 

the translation items such as: [B -> a{ • A /3uz
shake,u ], [C -> a'r A (3[,zshake,u% 

z e D+. Because x / j / , on the same position in aai and ota\ Algorithm 4.16 
emits different substrings of /^(a 'a j ) . But it cannot happen because in this case 
Algorithm 4.16 must finish earlier before the computation of the set M on account 
of an expansion or a reduction translation conflict. So TG G CSP- n 

6. CONCLUSION 

An approach similar to that for LR(k) translation grammars may also be used to 
define LALR(k) translation grammars. A slightly different approach must be used in 
case of SLR(k) translation grammars. An inspection of translation conflicts must be 
performed during the computation of translation LRsp(0) items in order to postpone 
output symbols. 

The class of LR(k) translation grammars does not contain all translation gram
mars with LR(k) input grammars. For example, if we modify the grammar TG7 
from Example 4.17 such that we replace rule (5) B -> b by B -> xb, then the result
ing translation grammar is no longer an LR(l) but an LR(2) translation grammar, 
although its input grammar is the same as the input grammar of translation gram
mar TG7 and both input grammars are LR(1) grammars. Implementation of all 
translations described by translation grammars with LR(k) input grammars can be 
done by a combination of output of output symbols and temporary storing them in 
the memory until they can be added to the output string ([5, 6, 7]). 

(Received February 18, 2000.) 

R E F E R E N C E S 

[1] A.V. Aho and J .D. Ullman: The Theory of Parsing, Translation and Compiling. 
Vol. 1: Parsing, Vol. 2: Compiling. Prentice-Hall, New York 1971,1972. 

[2] A. V. Aho, R. Sethi, and J. D. Ullman: Compiler-Principles, Techniques and Tools. 
Addison-Wesley, Reading, 1987. 

[3] N. V. Bac: LR Translation Grammars. MSc Thesis. Department of Computer Science 
and Engineering, CTU, Prague 1994. In Czech. 

[4] N. V. Bac and B . Melichar: Hierarchy of LR(k) Translation Grammars. Research 
Report DC-96-09, Department of Computer Science and Engineering, CTU, Prague 
1996. 

[5] J. Janousek: One-pass formal translation directed by LR parsing. In: WORK-
SHOP'97, CTU, Prague 1997, pp. 139-140. 

[6] J. Janousek and B. Melichar: Formal translations described by translation grammars 
with LR(k) input grammars. In: Ninth International Symposium on Programming 
Languages, Implementations, Logics and Programs (Lecture Notes in Computer Sci
ence 1338), Springer-Verlag, Berlin 1997, pp. 421-422. 

[7] J. Janousek and B. Melichar: The output-store formal translator directed by LR pars
ing. In: SOFSEM'97: Theory and Practice of Informatics (Lecture Notes in Computer 
Science 1338), Springer-Verlag, Berlin 1997, pp. 432-439. 

[8] P. M. Lewis and R. E. Stearns: Syntax directed transductions. J . Assoc. Comput. 
Mach. 15 (1967), 3, 465-488. 

[9] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns: Compiler Design Theory. Addison-
Wesley, London 1976. 



44 B. MELICHAR AND N. VAN BAC 

[10] B. Melichar: Compilers. Publishing House of the Czech Technical University, Prague 
1991. In Czech. 

[11] B. Melichar: LR Translation Grammars. Reseach Report DC-92-03, Department of 
Computer Science and Engineering, CTU, Prague 1992. 

[12] B. Melichar: Formal translation directed by LR parsing. Kybernetika 28 (1992), 1, 
50-61. 

[13] B. Melichar: Transformations of translation grammars. Kybernetika 30 (1994), 1, 53-
62. 

[14] B. Melichar and N. V. Bac: Transformations of Grammars and Translation Directed 
by LR Parsing. Research Report DC-96-02, Department of Computer Science and 
Engineering, CTU, Prague 1996. 

[15] P. Purdom and C. A. Brown: Semantic routines and LR(k) parsers. Acta Inform. 14 
(1980), 4, 229-315. 

Prof. Ing. Bořivoj Melichar, DrSc. and Ing. Nguyen Van Bac, CSc, Department of 
Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical 
University, Karlovo nám. 13, lil 35 Praha 2. Czech Republic, 
e-mail: melichar@fel.cvut.cz 


