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CONTROL OF DISTRIBUTED DELAY SYSTEMS 
WITH UNCERTAINTIES: A GENERALIZED 
POPOV THEORY APPROACH 

DAN IVANESCU, SILVIU-IULIAN NICULESCU, J E A N - M I C H E L DlON AND 
LUC DUGARD 

The paper deals with the generalized Popov theory applied to uncertain systems with 
distributed time delay. Sufficient conditions for stabilizing this class of delayed systems as 
well as for 7-attenuation achievement are given in terms of algebraic properties of a Popov 
system via a Liapunov-Krasovskii functional. The considered approach is new in the con
text of distributed linear time-delay systems and gives some interesting interpretations of 
H°° memoryless control problems in terms of Popov triplets and associated objects. The 
approach is illustrated via numerical examples. 

DEDICATED TO ACAD. VLAD IONESCU, IN MEMORIAM. 

1. INTRODUCTION 

In the last decade a lot of attention has been paid to the stability and stabiliza
tion problems of uncertain systems with delayed state involving unknown constant 
or time-varying delay (see, for instance, Kolmanovskii and Nosov [11], Hale and 
Verduyn Lunel [4], Kojima et al [10]) and the references therein). 

For the simplest case in which the delayed argument appears only in the state 
variable, a Liapunov-Krasovskii approach or a Liapunov-Razumikhin like theory 
was developed (Cheres et al [1], Xie and de Souza [18], Lee et al [12]). 

Let us mention that some results have been reported about T/QO analysis and 
control of delay systems. For example, memoryless T-LQO control problem has been 
investigated by Lee et al where a frequency domain approach is adopted for linear 
constant delay systems without uncertainty. Niculescu et al [13] deal with robust 
T̂ oo memoryless control problem for linear systems with time-varying state delay 
and norm-bounded time-varying uncertainty which appears in the state matrices 
and input matrix of the state equation. 

Since real systems often have distributed parameters, it is of interest to study 
such a class of systems. However few works have been done in this field (see for 
example Dugard and Verriest [3] and the references therein). 
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In this paper, we consider the control problem of a large class of distributed 
time-delay systems using the generalized Popov theory (see Ionescu et al [7]). Our 
objectives are to achieve simultaneously closed-loop stability and disturbance at
tenuation for systems described in terms of linear retarded functional differential 
equations. This paper provides a unified approach for the considered problems. 
Further extensions (other types of control laws) can be achieved using the frame
work of the generalized Popov theory. The development is essentially based on the 
'generalized' Riccati theory pioneered by Prof. Ionescu and co-authors starting with 
the eighties (see, e.g. Ionescu, Oara and Weiss [7], and the references therein). 
This theory represents an extension of the famous Popov's positivity theory to the 
indefinite sign case, usually encountered in game-theory situations. 

To be more specific, our results are based on the necessary and sufficient condition 
for the existence of the stabilizing solution to an adequate Kalman-Yakubovich-
Popov system of indefinite sign. This approach, combined with the Krasovskii theory 
for time-delay systems, leads to explicit representation formulae. The delay system 
class considered includes discrete and distributed delay terms and can be seen as a 
special case of infinite-dimensional systems described by distributional convolution 
equations. Note that the results presented here extend previous results obtained by 
some of the authors (Dion et al [2], Niculescu and Ionescu [14], Niculescu et al [16]). 

The paper is organized as follows: one first presents, in Section 2 ans 3 the 
problem statement and basic definitions and results of the generalized Popov theory 
for linear non delayed systems. The main results are given in Section 4 and are used 
in Section 5 for H°° control. Section 6 is devoted to the robust control problem. 
Some worked examples are given in Sections 5 and 6. Concluding remarks end the 
paper. 

2. PROBLEM STATEMENT AND PRELIMINARY RESULTS 

Consider the following state-delayed system including discrete and distributed de
lays: 

x(t) = Ax(t) +A1xt(-ri) 

+ f 2 A2(0)xt(-0) d0 + flitii(t) + B2u2(t) (1) 
Jo 

2/i = C\x + Dnui + D12u2 (2) 

where xt represents the translation operator xt(6) = x(t+0), and A2(9) is a piecewise 
continuous matrix function, x(t) G R n is the state, u\(t) e R m i , u2(t) G R m 2 are 
the disturbance and control inputs, yi(t) e R P l is the controlled output, A, A\, B{, 
D\i i = 1,2 are constant matrices of appropriate dimensions. 

We are first interested in finding a memoryless controller 

u2(t) = F2x(t) (3) 

that simultaneously stabilizes the system (1) and achieves the 7-att.enuation prop
erty, i.e., | |Ty i U l | | < 7 where TyiUl is the L2-linear bounded input-output operator 
defined by the closed-loop configuration obtained by coupling (1) and (3). 
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Consider now the robust control problem for the same system with uncertainties: 

x = (A + AA) x + (Ax + AAi) x(t - ri) 

+ r A2(0)xt(-9)d9 + Bu. (4) 
Jo 

The uncertainty [AA AAi] satisfies the following norm-bounded conditions Vt > t0: 

AA = DF(t)E FT(t)F(t) < / , (5) 

AAX = DxF^Ex F ^ ^ F i W ^ / , (6) 

with known matrices D e R n x i , Dx e R n x i l . The matrices E and Ex are given 
weighting matrices. 

For simplicity only the robust control problem is considered but the joint, robust 
and 7-attenuation problem. 

Unlike the techniques previously mentioned, our interest is directed towards the 
tools offered by the generalized Popov theory. The interest of such approach is 
twofold: first to extend the Popov theory developed in the linear case to delay 
systems and second to provide some alternative to handle control problems for delay 
case. 

First,we define a general quadratic cost function which corresponds to the distur
bance attenuation requirement. We show that the stabilization problem is solvable 
if the corresponding Kalman-Popov-Yakubovich system has a stabilizing solution 
and a stabilizing controller can be derived from the partition. If further conditions 
related to the general quadratic cost function are satisfied, then the stabilizing con
troller also achieves disturbance attenuation requirement. 

We will use a Popov theory approach combined with the Liapunov-Krasovskii 
stability theorem. The direct application of this theorem is not easy because it is 
difficult to build such functionals. A general form for this functional is: 

v(xt) = xT(t)Px(t) + 2xT(t) / Q(0)x(t + 0) d9 (7) 

+ / xT(t + 0)R(0)x(t + 0) (8) 

~T(t + 0i)S(0u02) x(t + 02) d0id02, (9) 
/

o r0 

.1/ 
where P, Q(0), R(0) and S(0i,O2) are weighting matrices. In the sequel, we will 
drop the explicit time dependence of x(t), u\(t) and u2(t) on t for brevity. 

3. SOME BASIC RESULTS ON THE GENERALIZED POPOV THEORY 

In this section several basic notions and results concerning the general Riccati theory 
are presented. The present development is essentially based on the theory exposed 
in Ionescu and Weiss, [8] or in Ionescu et al [5]. 
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Definition 1. Call £ = {A, B; P) where A e R n x n , B € R n X m and 

P = 
Q L 

Lт R 
__ pT ^ p (n-fm) x (n+m) 

a Popov triplet with Q £ R n x n . 

Frequently, we will use the extensive notation E = (A,B\Q,L,R). 
Let E = (A, B\ Q, L, R) be a Popov triplet and let 

j = 
-i, m\ 

-7712 

77ii + 7712 = 771 (10) 

be an arbitrary sign matrix. We associate with E the following objects: 

(1) The Kalman-Popov-Yakubovich system in J form (KPYS(E, J)) is the follow
ing nonlinear system with unknown X,V,W: 

R = VTJV 

L + XB = WTJV 

Q + ATX + XA = WTJW. 

This system is usually denoted as KPYS(E, J). 

(2) The extended Hamiltonian pencil EHP(E) AM - 1V where 

M = 

(11) 

N = 

In 0 0 " 
0 /„ o J 

0 0 0 

A 0 в 
-Q -AT -L 
LT BT R 

(12) 

M,N Є R ( 2 n + m ) x ( 2 r г + m ) . 

Definition 2. Any triplet (X,V,W) for which (11) is fulfilled and in addition 
X = XT, V is nonsingular and of lower-left block triangular form 

V = VU o 
V21 V22 

(13) 

partitioned in accordance with J in (10) and A + BF is exponentially stable for 

F=-VlW, (14) 

called the stabilizing feedback gain, is called a stabilizing solution to the KPYS(E, J). 

Recall that V is said to be a stable proper deflating subspace (see Oara [17]) of 
an arbitrary matrix pencil XM — N if NV = MVS, MV is monic, 5 is Hurwitzian 
and V = (V) (V is any basis matrix for V). 
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Definition 3. The EHP(S) is said disconjugate if it has a stable proper deflating 
subspace V of dimension n and, in addition, if 

VI" 71 

V2 71 

VЗ 771 
v = 

is any basis matrix for V(V = (V)), then V\ is nonsingular. 

A relevant result of the generalized Popov theory is: 

Theorem 1. Let S = (Ay B\ Q, L, R) be a Popov triplet and J any sign matrix as 
in (10). Then the following statements are equivalent: 

1. R is nonsingular and the KPYS(S, J) has a stabilizing solution (X, V, W)\ 

2. The EHP(S) is regular and disconjugate and, in addition, if R is partitioned 
in accordance with J in (10), i.e., 

R = 
Rw R\2 

R\2 R-22 

then 
-R22 > 0 , sgnR=J. 

If 2 is true, then (see Definition 3) X = V2Vfl and F = V^Vf1. 

(15) 

(16) 

4. MAIN RESULTS 

In a first step, let us consider the following linear distributed time-delay system: 

x = Ax + A\xt{—ri)t 

+ (2 A2{9)xt(-e)d9 + Bu, (17) 
Jo 

x = <j> on [—r, 0] 

where x G R n is the state, u G R m is the input, A,A\ e R n X n , B G R n x m , A2(0) is 
a piecewise continuous function, r = max{ri, T2} is the delay and <j> is any continuous 
n-valued function on [—r,0]. 

Let S = (A,B]Q,L,R) be a Popov triplet where the entries A and B coincide 
with A and B in (17). Consider the extended time-varying Popov triplet associated 
with (17): 

E „ = A,[Ai A2(-) B];Q,[0 0 L], 
Rdi 0 0 

0 Яd 2(-) 0 
0 0 R 

(18) 
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where Rdi € R n X n and Rd2 is a continuous time-varying function with some sign 
constraints. Such extended Popov triplet allows us to reduce the control problem of a 
time-varying delay system to a time-varying system free of delay (here the retarded 
terms are seen like a perturbation in the system). For the sake of simplicity we 
shall not address such problem here. Note also that if A2 is a constant matrix, one 
recovers the time-invariant Popov triplet used in Niculescu et al [16], with Rd2 a 
symmetric and strictly negative-definite matrix. 

Consider also the extended time-invariant Popov triplet 

S e = \A,[Ai MHT2) B];Q,[0 0 L], 
Rdi 0 0 

0 - / „ 0 
0 0 R 

where 

M(т2)= Г A2( )Y-l( )A2( )тà 
jo 

(19) 

(20) 

for some Y(-) continuous time-varying function (seen as a parameter). We shall see 
in the proof given in the appendix how the considered control problem (2) for (17) 
is solved if some algebraic properties of the extended triplet S e are satisfied. The 
idea is to interpret such problem as a control problem of an appropriate system free 
of delay. 

Consider also the following (extended) sign matrix 

Je = 
~Һn 

-I: 2n 

-l m i 

-m2 J 

(21) 

where (mi +m2 = m), be considered. Let B, L and R be partitioned in accordance 
with J in (21): 

B = [Bi B2] L = [Li L2] R = 

The basic result of this section is 

Rц R12 

R12 R22 
(22) 

T h e o r e m 2. Assume that the KPYS(_Ee, Je) given by (19) and (21) has a stabi
lizing solution (XjVejWe). Let the stabilizing feedback gain Fe be partitioned in 
accordance with Je in (21), that is, 

Fe = -vr'We = 
ғ d 
Ei 
E2 

Let also u be split in accordance with B in (22): 

(23) 

U = 
U2 

77І1 

77І2 
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Let F b e a continuous time varying function. Assume further that 

X > 0 (24) 

Rn < 0 (25) 

Rd2(r2) < 0 (26) 
Q + L2F2 + FTLT + FTR22F2 + Rdl + Rd2(0) > 0 (27) 

where 

RdiiP) = R2+ f Y(0)d0, 0e[O,r2]. (28) 
Jo 

Then the state feedback 
u2 = F2x (29) 

stabilizes (17) for all r < T2, i.e., 
rT2 

(30) 
x = Ax + Axxtirn) + f 2 A2(0) xt(-6) d0 

Jo 

x = (f) on [—r, 0] 

defines an exponentially stable solution for all </>. Here A = A + B2F2. 

The proof is given in the appendix and makes use of the following Liapunov-
Krasovskii functional: 

V(xt) = xT(t)Xx(t)+ f . xT(6)(-Rdl)x(0)dO 

+ f xT(0)(-Rd2(t - 0)) x(0) dO, (31) 
Jt-T2 

where X = XT > 0 and Rdl = RT
X < 0 are given before; the time-varying matrix 

function Rd2(-) is given in (28). Note that since the inequality (26) is satisfied, it 
follows that — Rd2(£) is a symmetric and positive-definite matrix for each £ € [0,T2]. 

The idea is that one may see (31) as a quadratic index for an appropriate time-
invariant linear system free of delay, and, thus to apply the generalized Popov theory 
to such system. 

Remark 1. Since the Liapunov-Krasovskii functional (31) is very general, one 
may construct various S-parametrizations (not only linear!) of the time-varying 
matrix function Rd2(-), for which Theorem 2 is still true. 

Thus, due to the particular form of the distributed delay, if, for example, Rd2 is 
a continuous increasing (decreasing) function, one needs "strong" conditions only in 
2 points: 0 and T2, etc. 

Remark 2. Using the results developed in Niculescu and Ionescu [14], it follows 
that one may relax the condition Rdl < 0 to Rdl < 0, and thus to use more general 
forms for the corresponding J matrix. 
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Remark 3 . It is easy to see that if T\ is a continuous time-varying function, with 
bounded derivative: 

n(«) < / ? i < l , j S € R , (32) 

i 
-Rdi> Note that the correspond-then the theorem holds if one changes Rd\ to 

1 - Pi 
ing Liapunov-Krasovskii functional changes similarly. A similar technique can be 
used if one assumes that T2 is a continuous time-varying function. For the sake of 
simplicity, we shall not develop such extension here. 

A natural consequence of this theorem is: 

Corollary 1. If all the conditions in the statement of Theorem 2 hold, then 

x = Ax + A\Xt(—T\) 

+ f 2 A2(t - 6) xt(-9) d6 + B\uu (33) 
I Jo 

[ x = 0on [-r,0] 

defines a linear bounded input-state operator from L+
, m i into L+

, n . 

P r o o f . By L+ r we mean the Hilbert space of norm square integrable Cr-valued 
functions defined on [0, oo). The proof is a trivial consequence of the exponentially 
stable evolution defined by (30) (see also Hale and Verduyn Lunel [4]). Taking into 
account Theorem 1, an equivalent form of Theorem 2 can be stated as follows: 

Theorem 3 . Assume that the EHP(Ee) is disconjugate. Assume also that 

R22 > 0, sgn R = J, Rdl < 0. (34) 

If 

V2V^X > 0 

and both (25) and (27) hold, then (29) stabilizes (17). Here 

(35) 

VI n 

v2 
n 

Vз n + m 

is any basis matrix for the maximal stable proper deflating subspace of the EHP(Se) 
and 

Fe = V3V"1 

partitioned as in (23). D 
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Remark 4. Theorem 3 provides easy checkable sufficient conditions for the sta-
bilizability of the state-delayed system (17) in terms of algebraic properties of the 
associated matrix pencil. 

Let Q be any n x n symmetric matrix. Let £ = (A,B\QyL,R) be the Popov 
triplet constructed with Q and with entries of £e . Associate with £ the "usual" 
Popov index: 

MФ • , « ) - = ( 

X 

U 

Q L 
Lт R : ] > (36) 

r 2 , n -2,m 
where (x,u) G L+n x L+ 'm and x and u are linked via (17) for some (/>. 

Then we have: 

Proposition 1. Let us consider a symmetric matrix Q satisfying 

> 0 . Q L2 

L2 R22 

(37) 

Assume also that all the conditions in the statement of Theorem 2 hold except (27) 
which is modified as 

Q + Rdl+Rd2(0)>Q. (38) 

If the controller (29) stabilizes the delay system (33), then there exists C > 0 s u c h 
that 

•fefO-tii) <-CIK - FlX\\l Vui6Lj m i (39) 

where 
JE(0,ui):=JE(0,u)|U2=F2l. (40) 

Proposition 2. Assume that all conditions in the statement of Theorem 2 hold. 
Assume additionally that 

Q + Rdl+Rd2(0)>0 (41) 

where 

Then 

Q := Q + LF + FTLT + FTRF. 

(42) 

x = Ax + A\xt(—T\) 

+ f 2.A2(0)x*(-0)d0 + .BiUi 
Jo 

v\ = — F\x + u\ 

(with x = 0 on [—r,0]) defines a linear bounded invertible operator on L^_'mi. 

Using all the results presented before, we shall state and prove the main result of 
this paper. 
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Theorem 4. Let (17) together with the quadratic cost defined by the right-hand 
side of (36) be given. For arbitrary mi, m2 such that mi +m2 = m, let S, L and 
R be partitioned as in (22). 

Assume that there exists two n x n symmetric matrices Q, Rdi and a positive 
scalar e such that the KPYS(Se, J e ), where S e and Je are defined by (19) and (21), 
respectively, has a stabilizing solution (X,Ve,We) and let the stabilizing feedback 
Fe be partitioned in accordance with (23). 

Let us consider a symmetric matrix Q and assume also that the following condi
tions all hold: 

1. X > 0 

2 Q L2 

L2 R22 

> 0 

3. Rn < 0 

where 

4. Rd2(т2) < 0 

5. Q + Rdl + Rd2(0) > Q 

6. Q + Rdí + Rd2(0) > 0 

Q = Q + LF + FTLT + FTRF 

Rd2(0) = R2+ f Y(0)d0 0e[O,<r2]. 
jo 

Then 

a) u2 = F2x stabilizes (17) for all r < T2. 

b) There exists CQ > 0 such that 

M0,ui)<-co\\ui\\l V u i e 4 ' m i 

where JE (0 ,UI ) has been defined by (40), (36). 

Proof, a) follows directly from Theorem 2 combined with 2. and 4. in the 
statement (see the proof of Proposition 1). 

b) From Proposition 2 it follows that there exists £i > 0 such that 

||«i||l--|K-F1x||l>Ci||«i|lli. (43) 

Using Proposition 1 the conclusion follows by substituting (43) in (39) and putting 

5. ft°°-CONTROL 

In this section the theory developed in Section 3 will be applied for solving the 
following 7^°°-control problem formulated for state-delayed systems. Such a problem 
is stated as follows. 
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Let the systém 

x = Ax +A1xt(-T1)+ [ * A2(6)xt(-6)d0 
Jo 

+B1u1 + B2U2 

2/i = Cix + -Diiíii + D12u2 í (44) 

(where x - = 0 o n [—r,0]) be given. Here x is the state (in the usual sense), tii and 
u2 are the disturbance and control inputs, respectively, and y1 is the output to be 
controlled. The state x is assumed to be accessible for measurement. We are looking 
for a state feedback law 

u2 = F2x (45) 

which stabilizes (44) and achieves 7-attenuation property for the closed-loop system, 
i.e., there exists en > 0 such that 

-7 2 | | « i | | ^ + | | j / i | | l < - c o l K | | l 

Vtii € £+'m i (46) 

or equivalently the system 

' x = (A + B2F2)x +Aix t(—ri) 

+ / 2 A2(9) xt(-9) d0 + BlUl (47) 
jo 

2/1 = (Gi + D12E2) x + Dntii Í 
(where x = 0 on [—r, 0]) defines a 7-strictly contractive input-output map. Here 7 
is a prescribed tolerance for the attenuation level. Then we have: 

Corollary 2. Assume that there exist two nxn symmetric matrices Q and Rd such 
that all the conditions of Theorem 4 hold with respect to the following particular 
data: 

mi m2 

B = [Di B2\ 

g = GiTGi, L = [l* L2] = OiT[Dn D12 

-R11 -R12 

(48) 

R = 
B12 B22 

-^I + D^Dn DГ1D12 
DГ2D11 DГ2D12 

Then for F2 given in Theorem 4, u2 = F2x is a solution to the H°°-control problem 
stated above. 

P r o o f . Let S = (A,B;Q,L,R). Then 

^ = -7 2 IKIIl + llj/illi (49) 

as directly follows by simple computation from (48). Apply Theorem 4 to (49) and 
the conclusion follows easily. • 
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6. AN EXAMPLE 

In this section, two numerical examples are presented for comparing these stability 
criteria using a general form for Rd2(0) with the existing ones given in Niculescu 
et al [16] with a particular function. First let us calculate a maximal size of the 
distributed delay T2 for a fixed 7. It should be pointed out that there are few 
results in the literature addressed to this problem (Dugard and Verriest [3]). Let 
the following unstable distributed state-delayed system 

T2 ГT2 

x = x + <т~тx+ xt(- )å + ui +u2 
Jo 

yi = x + u2 (50) 

be given. Here x, tii, u2 and j/i are all scalars. The problem is to find a memoryless 
controller 

u2 = F2x (51) 

that achieves simultaneously closed-loop stability and 7-attenuation. The prescribed 
tolerance is 

7 = 2. 

The input data are 

A = 1, Ai = 1, ß i = 1, B2 = 1 

Ci = l , D11=0, D12 = l 

(52) 

(53) 

as directly follows from (50). Choose Rd = —10. 
Then the extended Popov triplet (see (19)) is 

S c = (1, [l M f o ) * l l ] ; Q , [ 0 0 0 1 ] , 

- 1 0 0 
0 
0 
0 

- 1 
0 
0 

0 0 " \ 
0 0 
-4 0 
0 1 / 

(54) 

We consider two values for Y(0). In the first case, we take non-linear form Y(0) = 
02 + 1 and with (20) we find that M(T2) = T2 — atan(r2). But (54) is equivalent to 
the algebraic Riccati equation (ARE) associated with S e , that is, 

0 = ATX + XA + Q - ([0 0 Lx L2) + X[AX M(T2)* BX B2}) 

( 
г 0 1 

{ 
0 

LÏ 
.LІ . 

+ 
Rd 0 0 0 
0 - 7 0 0 
0 0 B11 B12 

0 0 Rj2 R22 

After computations we find the stabilizing solution: 

X = 

M ( r 2 ) 2 

вï 
вl 

\ 

Q-i 
0.65 - M(т2) 

(55) 
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which is greater than 0 when Q > 1, and we can still find, a solution for r2mtLX = 1.69. 
Let us verify the conditions stated in Theorem 4. The first condition is fulfilled when 
Q > 1 as (55) shows. For the next ones, we obtain 

Rd2(r2) < 0, Q - 1 > -Rdi - Rd2(0). 

There are verified for all R2 < 0. Let R2 = - 0 . 1 and we obtain Q > 7.87. Therefore 
all of the conditions stated in Theorem 4 hold for Q > 7.87 and consequently 

-H u2 = - 0.65 - M 

is the desired feedback law. For the second case, we consider A2(0) = 0 and Y(0) = 0. 
2 

With these values we obtain M ( T 2 ) = ^-. This time we find T2max = 1.1, which is 
a more conservative one. And all of the conditions stated in Theorem 4 hold for 
Q > 10.45 

7. CONTROL OF THE UNCERTAIN SYSTEM 

Let us consider the following uncertain state-delayed system: 

x = (A + AA) x + (Ax + AAi) x(t - n ) + / * A2(0) xt(-0) d0 + Bu. 
Jo 

(56) 

Let £ = (A, B\ Q, L, R) be a Popov triplet where the entries A and B coincide with 
A and B in (56). The uncertainty [AA AAi] satisfies the following norm-bounded 
conditions Vi > to: 

AA = DF(t)E FT(t)F(t) < / , (57) 

AAX = A F i (*)£?! F i T ( ^ i ( * ) < ^ (58) 

with known matrices D G R n x i , Dx G R n x i l . The matrices E and Ex are given 
weighting matrices. 

We can obtain an equivalent of Theorem 2 (uncertainty case), using an appropri
ate extended Popov triplet: 
Let Rdi e R n x n and consider the extended Popov triplet for the system (56)-(58): 

S Є P - - U Ј A ! D Dx Mfo)1'2 B];Q,[0 0 0 0 L], Rdp 0 
0 R ), (59) 

with 
Rdl 0 0 0 

0 -h 0 0 
0 0 -Id 0 
0 0 0 - / 

Rdp = 

Remark 5. In this section of the paper, because we only deal with the control 
problem, we will use a simplified KYP-system with J = /, but we can easily extend 
these results for the H°° problem (according to Sections 3 and 4). 
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Theorem 5. Assume that the KPYS(S e p ) is given by 

S e p = (A,[A! D Dr M{T2)
1I2 B];Q,[Q 0 0 0 L], ** R \ (60) 

has a stabilizing solution (X, Vep,Wep). Let the stabilizing feedback gain Fep be 
partitioned in accordance with S e p , that is, 

Fe = -V-iWe, = 
ғdp 
El 
F2 

Let also u be split in accordance with B in (22): 

u = u2 

ГП\ 

77І2 

Let Y be a continuous time varying function. Assume further that 

X>0 

Rd2(r2) < 0 

Q _ ETE - EfEi + Rdl + Rd2(0) > 0 

where 

Raiß) = R2+ í Y( )d , ØЄ[0,r2]. 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

Then the state feedback 
u2 = F2x 

stabilizes (56) for all T <T2, i.e., 

f x = Ax + A1xt(-T1) + f^A2(9)xt(-e)d9 

\ x = c/> on [-r, 0] 

defines an exponentially stable solution for all </>. Here A = A + B2F2. 

A n example . 

x = (l + 0.2sin(t))a; + (l + 0 - 2 c o s ( t ) ) x ( t - r i ) + / 0xt(-0)d9 + u2 

Jo 

y = x + 2u2. (68) 

Here D = D\= 0.2 and E = Ei = 1. The problem is to find a memoryless controller 

u2 = F2x (69) 
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that achieves the closed-loop stability. 
We choose Rdi = — 1,-R = 1. The extended Popov triplet (see (59)) is 

/ 

Jep 1, [10.2 0.2 M(r 2 )* 2];Q,0, 

V 

- 1 0 0 0 0 
0 - 1 0 0 0 
0 0 - 1 0 0 
0 0 0 - 1 0 
0 0 0 0 1 

\ 

ì 
(70) 

We consider for Y(6) a non-linear form Y(6) = 92 +1. After computations the KPY 
system is reduced to: 

x2(2.92 - M(r2)) +2x + Q = 0. (71) 

We find a stabilizing solution whenever 0 < Q. The maximal r for which the solution 
is still positive is r* = 4.21s. For these values, we find x = 35.84 and the feedback 
law P2 = —94.041 The conditions of the theorem become 

r 3 

Rd2(0)=Rd2(0) + Y+T<° 

Q + Rd2(0)-3>0 

which are fulfilled for Rd2(0) = - 2 9 and VQ > 32. 

8. CONCLUSIONS 

An extension of the generalized Popov theory to the case of delay system with 
discrete and distributed delays has been done. Our interest has been focused on the 
memoryless controller design for 7^°°-control problem. As future research direction 
we suggest the investigation of observer-based compensation technique. 

APPENDIX: PROOF OF THEOREM 2 

Since (X,Ve,We) is a stabilizing solution to the KPYS(£e>^e)> it has the following 
form: 

Rdi 0 0 

-I 0 
0 R 

1 

= V?JeVe 

[0 0 L] + X[Ax M(T2)* B] = WiJeVe 

Q + ATX + XA = WTJeWe 

(72) 

Taking into account Definition 2 in conjugation with (21), the first equation in (72) 
leads to the following structure for Ve: 

Ve = vdp 
V 

vdp 
Vn 0 
V21 V22 

(73) 
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where 

vdp 
Vdl 

Vd2 

Let We be partitioned accordingly, i. e. 

w* = [ wäp ] = 
\wdp ] 

Wl 
W2 w 

= 
\wdp ] 

Wl 
W2 

(74) 

where Wjp = [Wjx Wj2). Substituting (73), (74) in (72), leads to the following form: 

[Rdx -I R) = [-VlVdl -Vj2Vd2 VTJV) 

[xAx XM(T2)*] = [-WjxVdx -Wj2Vd2) (75) 

L + XB = WTJV 

Q + ATX + XA = -WjlWdl-Wj2Wd2 + WTJW. 

Using (23) one gets 

F,= 
Fdp -vd~p

lwdp 

- v ~ x w 

г ғdЂ 

Fx 
F2 j 

-vd~
lwd 

^{Wx 
V22

xV2xVl-l

lWx-V22

lW2 

where the structure (13) has been also taken into account and where 

A + [Ax M(T2)> B] 

(76) 

Fdl 

Fd2 

ғ 
is uniformly asymptotically stable. 

Let now 

Fea := 
' 0 

L ^ Ь J = 

0 

0 

F2 

(77) 

and let Ee>2 be the Fe^-equivalent of S e in (19). Following Theorem 1 and taking 
into account the zero structure of Fe,2 in (77), the updated form of the last equation 
in (75) corresponding to Eej2 is 

ATX + XA = -Q- WjxWdl - Wj2Wd2 + (W + VF2)
TJ(W + VF2). (78) 

Furthermore 

w + vғ2 = 
Wx 
W2 

+ 
Vxx 0 
V2x V22 V^V-гxV^Wx -V2үW2 \ 

Wx 
VъV^Wx 
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from which 

(W + VF2)
TJ(W + VF2) = -WfWx + W?V{[TV2

TV2lV{[lWi 

= ^^(-ViTVii+VzT^OV-^W!. (79) 

Taking into account (22), the second equation in (75) yields, by equating the (1,1) 
entries 

Rn = -v?1v11 + vTv21. (so) 
With (80) in (79) and then with (79) in (78), one gets eventually 

ATX + XA=-Q- WTWdl - Wj2Wd2 - WTV{iTRn V{[lWx (81) 

where 
Rn ~ -Rn > 0 (82) 

as follows from (25). 
We introduce the Lyapunov functional 

V(xt) = x (t)Xx(t)+ í xт( )(-Rdl)x( )d 
Jt-тi 

f xт( )( 
Jt-т2 

+ / x1 (9)(-Rd2(t - 9)) x(0) d0, (83) 
Jt-T2 

where X = XT > 0 and Rdl = RT

X < 0 are given before; the time-varying matrix 
function Rd2(-) is given in (28). Note that since the inequality (26) is satisfied, it 
follows that — Rd2(£) is a symmetric and positive-definite matrix for each f £ [0,72]. 
Simple computations prove that there exist two positive numbers d1, d2 such that 

di\\x(t)\\2<V(tjXt)<d2 sup ||x(0)||2. (84) 
ee[t-T,t] 

Taking the Lyapunov derivative of (83) with respect to (30), one obtains: 

V(xt) = xT(ATX + XA) x + x(t- nfAjXx + xTXA1x(t - rx) 

+ (f 2 A2(0)x(t-6)do\ Xx + xTx(fT2 A2(0)x(t-0)do\ 

+ xT(-Rdl) x - xT(t - r1)(-i?di) x(t - n ) + xT(-.Rd2(0)) x (85) 

т 
— X 

(t - т2)(-Rd2(т2)) x(t - т2) + £ xт( +1) ( ^ ^ ) x( +1) d . 
-T2 

Since 

2xTX [ 2 A2(9)x(t-0)d9 
Jo 

rT2 

< xтX( Í 2 A2( )Y( )-1AT( ) d )Xx + í xт(t + )Y( ) x(t + ) d 
jo jo 

= xтXM^MV*Xx - Ґ xт( +1) (-^g---) x( +1) d , 
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an since we have (75), we can write the corresponding equations of the KPYS(£ e ,2 , Je) 

(see the structure of Fe>2 in (77)), and (85) becomes: 

V(xt) < -xTQx - xTWj1Wdlx - xTWj2Wd2 - xTWTV1-l
TR11Vl-l

1W1x 

- xTWj1Vdlx(t - n ) - x(t - n)TVTWdlx - x(t - n)TVTVdl(t - r2) 

- xTRdlx-xTRd2(0)x-xT(t-T2)(-Rd2(T2))x(t-T2)+xTXM1/2M1/2 

< -xT(Q + Rdl+Rd2(0))x(t) (86) 

where both (27) and (81) have been used. W i th (84) and after some algebraic 
manipulations the proof is completed via the Krasovskii stability theorem (Hale and 
Verduyn Lunel [4]). 

(Received November 22, 2000.) 
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