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ON A CLASS OF LINEAR DELAY SYSTEMS 
OFTEN ARISING IN PRACTICE 

MICHEL FLIESS AND HUGUES MOUNIER 

We study the tracking control of linear delay systems. It is based on an algebraic 
property named 7r-freeness, which extends Kalman's finite dimensional linear controllability 
and bears some similarity with finite dimensional nonlinear flat systems. Several examples 
illustrate the practical relevance of the notion. 

INTRODUCTION 

We will here describe recent works [14, 25, 26, 27, 29] on the control tracking of 
linear delay systems. Our philosophy is guided by two major concerns: the first one 
(practical concern) is to discover structural properties that occur most frequently in 
practical applications; the second one (simplicity concern), related to the previous 
one, is to obtain the simplest properties for each class of applications. The practical 
concern has led us to a new property, called ir-freeness, which allows the tracking of 
a reference trajectory in a way which bears some analogy with flat finite dimensional 
nonlinear systems (see[12, 13] and the references therein). Through the simplicity 
concern, we discovered a novel class named quasi-finite delay systems, the control
lability and stabilization of which is very simple, and quite analogous to the one 
of systems without delays. 7r-freeness is an extension of the classic Kalman linear 
controllability, when viewed in the module-theoretic language of [7, 8, 14, 25]. Then 
a linear system is a finitely generated module over the principal ideal ring of linear 
differential operators. Kalman's controllability is equivalent to the freeness of this 
module, or what amounts to the same, to its torsion freeness. Infinite dimensional 
systems, like delay ones, yield modules over more general rings, where freeness and 
torsion freeness are no longer equivalent (see [10] for a more general discussion on 
controllability issues). Concrete case-studies (see [25, 27]) show that the correspond
ing modules are mostly not free but only torsion free. Freeness may nevertheless 
be recovered via a suitable localization, i.e., by taking the inverse of an element TT 
of the ring. Any basis of this free module is called a flat, or basic, output; it plays 
the same role as a Hat, or linearizing, output of a flat finite dimensional system 
(see also [23]). Quasi-finite systems are, roughly speaking, systems where the only 
variable that is delayed is the input. This class seems to encompass nearly all tech
nological examples of linear delay systems. To our knowledge, the only important 
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practical class that does not belong to the quasi-finite one comprises systems mod
eled by the wave equation without damping [27]. The paper is organized as follows. 
We first introduce abstract linear systems over arbitrary commutative rings and n-
freeness in this context. Finite dimensional linear systems are then presented within 
this framework. We proceed to delay systems, their controllability properties, and 
Quasi-finite systems. Some technological examples are then analyzed, and seen to 
be quasi-finite. Finally, an example of a flexible rod with an end mass relates to the 
boundary control of the wave equation. This example is not quasi-finite, but 7r-free. 

1. ABSTRACT LINEAR SYSTEM THEORY 

1.1. Basic definitions 

Any ring R is commutative, with 1 and without zero divisors. 

N o t a t i o n . The submodule spanned by a subset S of an .R-module M is written [P]. 
An R-system A, or a system over R, is an .R-module. Two .R-systems Ai and 

A2 are said to be R-equivalent, or equivalent over R, if the i?-modules Ai and A2 

are isomorphic. An R-dynamics, or a dynamics over R, is an .R-system A equipped 
with an input, i.e., a subset u of A which may be empty, such that the quotient 
.R-module A/[u] is torsion. The input u is independent if the i?-module [u] is free, 
with basis u. An output y is a subset, which may be empty, of A. An input-output 
R-system, or an input-output system over R, is an jR-dynamics equipped with an 
output. 

Remark 1.1.1. Kalman's module-theoretic setting [18] is related to the state vari
able description, whereas our module description encompasses all system variables 
without any distinction. 

Let A be an i?-algebra et and A be an .R-system. The _4-module A ®R A is an 
-4-system, which extends A. 

1.2. Relations 

Let A be an jR-system. There exists an exact sequence of -R-modules [34] 

0 - r i V - > F - > A - > 0 (1) 

where F is free. The .R-module N, which is sometimes called the module of rela
tions, should be viewed as a system of equations defining A. Associate to A a free 
presentation [34], i.e., the short exact sequence of -R-modules 

-Fi -> F0 -> A -> 0 

where Fo and F\ are free. The -R-module A is said to be finitely generated, or of 
finite type, if there exists a free presentation where any basis of Fo is finite. It is 
said to be finitely presented if there exists a free presentation where any basis of Fo 
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and Fi is finite. The matrix corresponding, for some given bases, to the mapping 
F\ -> Pb is called a presentation matrix of A. If the ring R is Noetherian, it is 
known [34] that the conditions of being of finite type and of being finitely presented 
coincide. Then (1) may be chosen such that both F and N are of finite type. This 
latter case will always be verified in the sequel. 

Example 1.2.1. Let us determine the iZ-module A corresponding to a system of 
.R-linear equations 

Yl a**f* = °> a*« £ -V = 1, • • > * ' 
к = l 

where f i , . . . , fM are the unknowns. Let F be the free -R-module spanned by / i , . . . , /M. 
Let N C F be the module of relations, i.e., the submodule spanned by X)«=i ai«/«? 
i = 1,...,!/. Then, A = F/N. The f^'s are the residues of the /K 's, i.e., the 
canonical images of the /K 's. 

1.3. Different notions of controllability 

An i2-system A is said to be R-torsion free controllable (resp. R-projective control
lable, R-free controllable) if the .R-module A is torsion free (resp. projective, free). 
Elementary homological algebra (see, e.g., [34]) yields the 

Proposition 1.3.1. -R-free (resp. .R-projective) controllability implies .R-projective 
(resp. .R-torsion free) controllability. 

Take an .R-free controllable system A with a finite output y. This output is said 
to be flat, or basic, if y is a basis of A. 

1.4. 7T—freeness 

The next result [14] follows at once from [35, Proposition 2.12.17, p. 233]: 

Theorem and Definition 1.4.1. Let A be an .R-system, A an _R-algebra, and S 
a multiplicative part of A such that A is S~x -R-free controllable. Then, there exists 
an element n in S such that A is it[7r""1]-free controllable. The preceding system 
will then be called 7r-free. An output being a basis of -R[7r_1] ®# A is called n-Hat 
or 7r- basic. 

2. FINITE DIMENSIONAL LINEAR SYSTEMS 

2.1. Modules over principal ideal rings 

In this section R is the principal ideal ring k[£], whose elements are of the form 

£finitea"a£-> a " e fc> w h e r e k i s a field- A U M ^ ] - m o d u l e s a r e finitely generated 
and, therefore, finitely presented. 
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2.2. Controllability 

The three notions of free, projective and torsion free controllability over k[^] coin
cide. A fc[^]-system A is therefore said to be controllable [7], if the A;[^]-module A 
is free. 

3. DELAY SYSTEMS AND CONTROLLABILITY 

3 .1 . Linear delay systems 

Let R be the ring fc[^, o~i,... ,5r] = MdP ^] °f polynomials in r + 1 indeterminates 
over a commutative field A;, where the 6^s are (localized) delay operators of non 
commensurate amplitudes. A (linear) delay system (resp. dynamics) is a k[-^,5]-
system (resp. fc[^,5]-dynamics). 

3.2. Controllability 

The resolution of Serre's conjecture [36] due to Quillen [32] and Suslin [39] (see 
also [19, 42] for a detailed exposition) states that, on a polynomial ring, a projective 
module is free. Thus, in the present context, Quillen-Suslin's theorem may be stated 
as [14]: 

Proposition 3.2.1. A delay system is fc[^,5]-free controllable if, and only if, it 
is fc[^,5]-projective controllable. 

Very many notions can then be considered (through torsion freeness and freeness 
on the one hand, and through the variation of the ground ring on the other hand). 
Among these, the k[^, 5]-hee controllability is certainly the most appealing from an 
algebraic viewpoint. The existence of a basis is an extremely useful feature; but this 
notion seems quite rare in practice (see, e.g., [25, 27]). The 7r-freeness retains the 
main advantage of freeness (existence of a basis) while being almost always satisfied 
in applications. Indeed, we have [14] 

Proposit ion 3.2.2. A fc[^, 5]-torsion free controllable &[^, <5]-system A is 7r-free, 
where n may be chosen in k[5]. 

3.2.1. Criteria for fc[^,<S]-free and fc[^,5]-torsion free controllability 

We establish [14] two criteria for fc[^, 5]-free and fc[^, 5]-torsion free controllability. 
The first one uses the resolution of Serre's conjecture [32, 39], and the second one1 

uses [41]. 

xSee [43] for related results. 
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Theorem 3.2.1. A delay system A with presentation matrix PA of full generic 
rank /? is fc[^, <S]-free controllable if, and only if, 

V(s, zi,..., zr) e kr+\ rk -k PA (5, zu...,zr) = P 

where k is the algebraic closure of k. This rank criterion is equivalent to the common 
minors of PA of order /? having no common zero in fcr+1. 

Theorem 3.2.2. A delay system A is A;[^, 5]-torsion free controllable if, and only 
if, the gcd of the /? x /? minors of PA belongs to k. 

1. The system y + Sy = u is MB* , <5]-free controllable, with basis y. 

2. The system y = Su is A;[^,<5]-torsion free controllable, but not fc[^,5]-free 
controllable. 

3.2.2. Reachability, weak controllability 

Consider [14] the fc[^,5]-dynamics T = [x,u] with equations 

x = F(S)x + G(S)u 

where x = ( x i , . . . , £ n ) , u = (u\,... , u m ) , and the matrices F(S) G fc[5]nXn and 
G(S) G k[S]nXm. The classic notions of reachability and weaic controllability may 
be found in [24, 37]. 

Proposition 3.2.3. The dynamics T is reachable if, and only if, T is free control-

id!3 lable over k[4i,S]. 

Proposit ion 3.2.4. The dynamics F is weakly controllable if, and only if, the 
A;(5)[^]-module k(S)[^] ® A_ T is free, where k(S) denotes the quotient field of 

k[S\. 

3.2.3. Spectral controllability 

We use the ring k[s,e~hs], viewed as a subring of the convergent power series ring 
k{{s}} (where 5 plays the role of ^ , and e~hs = (e~hlS,... ,e~hrS), the h{'s (h{ e 
R,hi > 0) being the amplitudes of the corresponding delays). The mapping ^ »-> s, 
Si i-> e~hiS yields an isomorphism between the rings k[-^,S] and k[s,e~hs]. Thus, 

by a slight abuse of language, a finitely generated A;[s,e"hs]-module will still be 
called a delay system [14, 26]. The following definition of spectral controllability 
extends previous ones (see, e.g., [4, 33]) in our context. 
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Definition 3.2.1. Let A be a delay system defined over the ring k[s,e h s ] , with 
presentation matrix PA of full generic rank /?. It is called spectrally controllable if 

V s E C , vkcPA(s,e-hs) = p. 

Set 6 r = k(s)[e~hs,ehs] fl <£, where <E denotes the ring of entire functions. We 
have the following interpretation of spectral controllability [26]: 

Proposition 3.2.5. Let A be a delay system over k[s, e~hs], such that A is fc[s, e~h5, 
ehs]-torsion free controllable. Then A is spectrally controllable if, and only if, it is 
©r-torsion free controllable. 

The following result [14] gives implication relationships between the notion of 
8ai . . . J"r-freeness, a i + . . . + a r > 0, and the above quoted ones. 

Proposition 3.2.6. Let A be a fc[^, 5]-system. The following chain of implications 
is true 

A spectrally controllable => A 5ai ... Sar-free =-> A fc[^,5]-torsion free. 

P r o o f . The proof follows directly from the inclusion chain k[~,S] C fc[^, 5,5_ 1] 
C 6 t . D 

3.3. Quasi-finite systems 

3.3.1. Definition 

A seemingly important class for applications is one in which only the input is delayed, 
which will be called quasi-finite systems. Controllability and stabilization of these 
systems are quite similar to the one of systems without delays, hence the name. 

Let P G k[-gi,8]Pxa be a presentation matrix of A, i.e., A is isomorphic to the 
fc[^, 5]-module spanned by w -= (w\,... ,wa) subject to 

P(&,6)w = 0 

P is said to be special if P € k[-^]f3xoc. We will say that a k[-^, <$]-system A is special 
if 

A = *[A,*]®*[*]A'pac 

where Aspec is a finitely generated &[^]-module. Alternatively, it can be defined by a 
special presentation matrix. Then, a fc[^, 5]-dynamics A is said to be special if there 
exists Aspec such that u] belongs to it. A such Aspec, being unique, will be called 
the fundamental dynamics and designated by AQPGC. A special fc[^,<5]-system with 
input u and output y is said to be quasi-finite if the dynamics is special, and if there 
exists p non negative real numbers L i , . . . ,L p such that SL^I^ • • • $LpyP € AQPGC. 

See [17] for more details. 
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3.3.2. State representation 

All the technological examples presented below will be of the following form 

x = Ax + BSu (2) 

where A e knXn, B e knxm. For this restricted class, we have the following equiva
lence result. 

Proposition 3.3.1. For (2), the three following conditions are equivalent: 

1) it is torsion free controllable, 

2) it is spectrally controllable, 

3) it is 5-free, 

3) rk(B,ABy...,A
n-1B) = n. 

P r o o f . The equivalence between 1) and 4) has been proved in [14]. The equiv
alence between 2) and 3) follows from ([30, 21]) and e~hA = £,,><, hvAv/v\. The 
implication 3) => 1) is obvious. Let us show the inverse implication. Set nii(s,z) 
(i G { 1 , . . . ,7}) as the nxn minors of (si — A \ —zB) (where s stands for d/dt and z 
for S), and consider them as functions over C2 . Let also M(s, z) = YH=I lm*(5> z)\2-
Then, one has: ((2) J-free <3> V(s,z) G C x C*, M(s,z) ^ 0) and ((2) weakly con
trollable ^ V s G C , M ( S , Z) ^ 0). The minor of (si — A) depends only on 8, so that 
evidently 

(V(8,z) G C x C*M(8,z) # 0) «-> (Vs G C, M(s,z) / 0) 

wherefrom the result. • 

4. TECHNOLOGICAL EXAMPLES 

All of the following examples, like a great majority of technological examples, are 
quasi-finite. 

4.1. Crude oil mixing 

Consider two tanks of crude oil C\ and C2 with respective octane numbers I1 and 
I2. The output of C\ (resp. C2) is u (resp. D — u) where D is a constant. The 
two outputs are mixed in a pipe and transported to a tank C3. The transportation 
lag corresponds to a delay 5, and the mixture in C3 has the octane number Ib. 
Supposing that, at time t, the volume of the mixture is Vt and the octane number 
in C3 is Ib, one has, from t to t + dt: 

IbVt + S(llu + I2(D - u)) = Vt+dtI
b+dt. 
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d 

Ѓu 

* P i 

I2(D-u) 

Ilu + P(D-u) 

Fig. 1. Crude oil mixing. 

Thus: i-t(IbV)(t) = I2D + (I1 - I2)u(t - h) where h designates the amplitude of 
the delay S. Set y = IbV and v = u + PD/(Il - I2): 

y = (I1- I2)v(t - h). 

The system is quasi-finite, with basis y: 

1 
V = 

(P-P) s-гў. 

Suppose we want to obtain a desired output trajectory yd = I^Yd- The following 
control law allows to achieve the tracking: 

ud(t) = 
P-P 

(ýd(t + h)-ЃD). 

4.2. A teleoperated robot arm 

Let us consider a flexible teleoperated robot arm. More precisely, take a simple 
model of the first mode for a one link flexible robot, actuated by a motor wich 
recieves its orders from a distant module. Denote: 

- by r the orders transmission time, 

- by qr(t) the rigid displacement, 

- by qe(t) the first mode of the elastic displacement, 

- by C(t) the motor's torque actuating the arm. 

Newton's law yields: 

(Mrr Mre\ (qr\,( 0 \ _ (C\ 
\Mer Mee) \qe)

 + \Keqe) ~ \<)) 
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U 

Fig. 2. Teleoperated robot arm. 

where Mxy denote the equivalent masses and Ke the elastic stiffness. In addition, 
the motor being teleoperated, the orders u(t) are transmitted from a distant module 
and arrive with a transmission delay r: 

«(ť) = C{t - т). 

The system's equation are then: 

Mrrqr{ť) + Mreqe{ť) = u{t - т) 

Merqr{t) + Meeqe{t) = -Keqe{ť) 
(3) 
(4) 

This system is quasi-finite, with basis 

Indeed: 

u(t) = MeTqr{t) + Meeqe{t). 

(5) 

(6) 

Ц()_^Ц(+т) + £(_^_м„)_,> ( í+r , m 

For a desired trajectory u)d(t) from rest to rest, we obtain an open loop control law 
yielding an exact tracking of the form: 
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Fig. 3. Desired trajectory u)d(t). Fig. 4. Open loop control Ud(t). 

5. PHYSICAL EXAMPLES: TOWARDS DISTRIBUTED PARAMETER 
SYSTEMS 

5.1. T h e wave equat ion: tors ional behavior of a flexible r o d 

Consider [27] the torsional behavior of a flexible rod with a torque applied to one 
end. A mass is attached to the other end. The system is described by the one 
dimensional wave equation. 

2д
2q( , д2q. 

Џz(r,0) = -u(r), Џ(r,L) = -jЏ(r,L) 

q(0,z) = q0(z), Џ(0,z) = qi(z) 

(8) 

Here g(r, z) denotes the angular 
displacement from the unexcited 
position at a point z G [0,L] at 
time r ^ 0, as shown in Fig
ure 5; L is the length of the rod, 
cr the inverse of the wave propaga
tion speed, J the inertial momen
tum of the mass, u(r) the control 
torque and go? Qi describe the ini
tial angular displacement and ve
locity, respectively. 

Fig. 5. The flexible rod. 



On a Class of Linear Delay Systems Often Arising in Practice 305 

5.1.1. Delay system model 

As well known, the general solution of (8) may be written 

<7(T, Z) = C/)(T + oz) + I/J(T - oz) 

where <j> and ip are one variable functions. The control objective will be to assign a 
trajectory to the angular position of the mass; the output is thus 

y(T) =q(r,L). 

Set t = (O/J)T, v(t) = (2J/o2)u(t) and T = oL. Easy calculations (see [27] for 
details) yield the following delay system (compare with [6]): 

ÿ(t) + ÿ(t - 2Г) + ў(t) - ў(t - 2T) = v(t - T). 

One readily has 

v = (6-1+5)y + (6-1-5)y 

which implies 

P r o p o s i t i o n 5.1.1. System (9) is J-free, with basis y. 

5.1.2. Tracking 

Equation (10), yields the open loop control (see Figure 6) 

vd(t) = yd(t + T)+ yd(t - T) + yd(t + T) - yd(t - T) 

(9) 

(10) 

1 1 1 . 1 1 1 1 ì 

0.6 ; \ І...Ш І ; І | 
0.6 | I | ң | ( I  
0.4 ; : ; j l Í ; І 
0.2 

0 

| 1 1 1 |\1 | | І 0.2 

0 

Fig. 6. The desired output y2. F i g . 7 . T h e c o n t r o l u. 

The displacements of the other points of the rod (see Figure 7) can be obtained 
as (see [27]) 

qd(z,t) = l[yi(t-z + T) + yd(t-z + T) + yd(t-T + z)-yd(t-T + z)]. 
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Fig. 8. Angular displacements q(z,t). 

R e m a r k 5.1.1. Stabilization around the reference trajectory may be achieved by 
standard passivity methods or by the following feedback loop [27] 

v(t) = X0y(t - T) - 2y(t -T) + XlV(t - T) 

with A0 E]0,2[, A0 ^ 1 and Ai < l / (A 0 -2) (see [22]). Note that such type of feedback 
involving past derivatives of the state has already been used for stabilization purposes 
(see, e.g., [5]). 

6. CONCLUSION 

Some concrete examples of quasi finite systems as well as robust and simple stabi
lization schemes through generalized PI controllers and predictors are to be found 
in [16, 17]. 

(Received November 22, 2000.) 
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