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INVARIANT FACTORS ASSIGNMENT 
FOR A CLASS OF TIME-DELAY SYSTEMS 

JEAN JACQUES LOISEAU 

It is well-known that every system with commensurable delays can be assigned a finite 
spectrum by feedback, provided that it is spectrally controllable. In general, the feedback 
involves distributed delays, and it is defined in terms of a Volterra equation. In the case 
of multivariable time-delay systems, one would be interested in assigning not only the lo
cation of the poles of the closed-loop system, but also their multiplicities, or, equivalently, 
the invariant factors of the closed-loop system. We answer this question. Our basic tool 
is the ring of operators that includes derivatives, localized and distributed delays. This 
ring is a Bezout ring. It is also an elementary divisor ring, and finally one can show that 
every matrix over this ring can be brought in column reduced form using right unimodular 
transformations. The formulation of the result we finally obtain in the case of time-delay 
systems differs from the well-known fundamental theorem of state feedback for finite di
mensional systems, mainly because the reduced column degrees of a matrix of operators 
are not uniquely defined in general. 

1. INTRODUCTION 

Let us consider a multivariable linear system with commensurate delays, of the form 

p v 

x(t) = J2 Akx(t -k0) + J2 Bk<t - k6) , t > 0 , (1) 
k=0 k=0 

where x(t) G R n is the instantaneous state, u(t) G R m is the control, 0 < 9 G El
and the nxn matrices Ak and nxm matrices Bk have real coefficients. The initial 
condition x(t) = <£(<), — pO < t < 0 is assumed to be known. 

System 1 is called spectrally controllable [15] whenever 

Rank (sln - A(e-°s), -B(e'0s)) =n} Vse€, (2) 

where the matrices A(e-°s) G H[e-sd]nxn and B(e~es) G H [ e - ^ ] n x m are defined 
by 

Жe-ŕs) = í > * e -ks 

*=0 
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and 
p 

B(e-ea) = ^Bke-kae . 
k=0 

As it is well-known, the system (1) is stabilizable by state feedback if condition (2) 
holds [13]. There is some freedom in choosing the class of systems among which one 
researches a stabilizing feedback. In particular, it was shown that the stabilizing 
feedback can always be chosen in the class of finite dimensional linear systems [8], or 
in the class of linear systems with localized delays commensurable to 0 [3, 5]. The 
design of a stabilizing feedback by these methods is rather involved, and one cannot 
fully assign the properties of the closed-loop system. In particular, the closed-loop 
system in general has an infinite number of poles. The larger class of feedbacks of 
the form 

rt ft v 
u(t) = h(t- T) U(T) dr -F / f(t - T)X(T) d r + V fkx(t - k9) , (3) 

Jt-pQ Jt-pB k=Q 

that include distributed delays, and which was introduced by Olbrot [13, 15], per
mits to overcome this difficulty. It indeed leads to a simple design of a stabilizing 
compensator, and, if the system is spectrally controllable, the designer can assign 
the closed-loop system to have only a finite number of poles, and arbitrarily choose 
their location. 

This paradigm, known as finite spectrum assignment, was first introduced for 
monovariable systems. The existence of such a simple design method is ultimately 
a consequence of the fact that the operator ring £ that includes distributed delays 
is a Bezout ring [1, 4]. It is still valid in the case of a multivariable system (see for 
instance [12, 18]). In the present paper, we go further in this direction, and precise 
the freedom in assigning also the multiplicities of the poles of the closed-loop sys
tem. The result is expressed in terms of the degrees of the invariant factors of the 
closed-loop system. At the contrary of finite-dimensional systems, the possible in
variant factor degrees are not constrained by some controllability indices of the pair 
(A(e~6s), B(e~6s)) or by some minimal column degrees of a denominator D(sye~es) 
of the transfer, defined by (sI-A(e-0s))-1B(e~es) = N(s,e~0s) D-^s^-08). How
ever the concept of column reducedness and column degrees of the denominator is 
instrumental to obtain the result, and for the design methodology. 

The paper is organized as follows. We first show that these two elementary 
concepts, invariant factors and column reduced pseudopolynomial matrices, are well-
defined in the present context. Hence we show the independence between invariant 
factors and column degrees. There indeed exist column reduced pseudopolynomial 
matrices with arbitrary invariant factors and arbitrary column degrees, provided 
that the sum of the column degrees equals the degree of the determinant of the 
matrix, that is the sum of the invariant factors degrees. This leads to an algorithm 
for the design of a feedback assigning arbitrary invariant factors to the closed-loop 
system, provided that the degree condition holds. In particular, if the system is 
spectrally controllable, one can assign n finite poles to the closed-loop system, as in 
[18]. We finally point out some consequences regarding minimal realizations of the 
considered class of time-delay systems. 
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2. PSEUDOPOLYNOMIAL MATRICES 

A distributed delay is an input-output relationship of the form 

y(t)= I h(t-т)u(т)dт, 
Jt-

where 0 > 0 is a real number, y(t) is the output, u(t) is the input, and h(t) is a 
measurable fonction defined on [0,0], called the kernel of the distributed delay. The 
Laplace transform of this distributed delay is 

y(s) = C(h)(s)u(s) , 

where s is the Laplace variable, y(s) and u(s) respectively denote the Laplace trans
forms of y(t) and of u(t). The Laplace transform of the kernel is defined by 

C(h)(s) = h(s) = / h(T)e~STdT , 
jo 

which is a finite integral since the domain of definition of h(t) is finite. As a conse

quence, h(s) is analytic in the whole complex plane [11]. 
Let Q be the ring of those Laplace transforms of distributed delays that are 

rational in the variables s and e~^s, and £ be defined as the ring of polynomials in 
the variable s with coefficients in Q + ]R,[e~^]. 

Example 1. For instance, the distributed delay 

rt 
y(t) = / u(т) ňт , 

Jt-i 

can be rewritten in terms of the Laplace variable s 

1 — e~ s 

y(s) = - u(s) . 

Hence (1 — e~s)/s is a typical element of Q. It is analytic in the whole complex 
plane, and equals 1 at s = 0. Further, one can see that s + (1 — e~s)/s is in £, and 
that the transfer of the input-state system defined by the following Volterra integral 
equation 

x(t) = - X(T) d r + u(t) , 
Jt-i 

is a fraction of two elements of £, namely 

x(s) _ 1 

ti(s)-s+±f^' 
The elements of £ are called pseudopolynomials. They are fractions of the form 

a(s,e~0s) = n^(~) *\ where all the zeros of d(s) G H[s] are zeros of n(s,e~6s) G 
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R[s,e~^ s]. If a G C is a zero of n(s,e~0s) that is not a zero of d(s), it is clear 
that (3(s,e~0s) = (}L'*)dfl lies in £, hence a(s,e~0s) can be factored as a(s,e~0s) = 
(s — a)P(sJe~0s). Since the quasipolynomial n(s,e~0s) has in general an infinite 
number of zeros, it follows that £ is not a unique factorization domain. One can 
further show that two elements of £ are coprime if and only if they have neither 
common zero nor common factor of the form e~ks0, k G IN, and that two elements 
of £ have a greatest common divisor, that is unique up to a nonzero constant. 

T h e o r e m 1. [1, 4] The ring £ is a Bezout domain, i.e. every two elements 
a(s,e~0s), (3(s,e~0s) of £ are coprime if and only if they satisfy a Bezout identity, 
~7(s,e~**), 5(s,e~es) G £ such that 

a(s , e - " ) 7 ( * , e-0s) + fts, e~0s) 6(s, e~6s) = 1 . 

If a(s,e~0s) and /3(s,e~0s) are not coprime, then there exists /y(s,e~0s),8(s,e~0s) G 
£ such that 

a(s,e-0sh(s,e-es) + 0(s,e-0s)6(s,e-ds)=g(s,e-0s) , 

where g(s,e~0s) is the greatest common divisor of a(s,e~0s) and fi(s,e~0s). 

As a consequence, the usual definitions and characterizations of right and left 
coprimeness of polynomial matrices can be extended to matrices over £. 

T h e o r e m 2. [1, 4] Let be given A(s,e~0s) G £ m X r , B(s,e~0s) G £nxr. Then the 
following statements are equivalent. 

(i) Every square full rank matrix C(s, e~0s) G £rxr such that A(s, e~0s) = _4i (s, e~^s) 
C(s,e~0s) and B(s,e~0s) = B1(sye~0s)C(s,e~0s), for some matrices A1(s,e~0s) G 
£mxr and B^s.e-03) G £ n x r , is invertible over £, i.e. detC(s,e~"5) G R - {0}. 

(ii) There exists matrices X(s,e~0s) G £rxm and Y(s,e~0s) G £rxn such that 
X(s,e~0s)A(s,e~0s) + Y(s,e~0s)B(s,e~0s) = 1. 

(iii) r < n + m and there exist matrices N(s,e~0s) G £™x("+™-0 an fJ D(s,e~0s) G 
<rnx(n-fm-r) g ^ ^ ^ . j ^ t ^ e overall matrix 

/ A(s,e~0s) N(s,e-0S) \ 
\ B(s,e~0s) D(s,e~0s) ) 

is unimodular. 

One says that A(s,e~0s) and B(s,e~0s) are right coprime, and that their trans
poses AT(s,e~0s) and BT(s,e~0s) are left coprime, if one of these conditions holds. 

The procedures to construct the matrices X(s,e~0s), Y(s,e~0s), N(s,e~0s), and 
D(s,e~0s) as in Theorem 2 are constructive [1]. Further we have the following. 
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T h e o r e m 3. £ is an elementary divisor ring, i. e., every matrix A(s, e 0S) G £nxm 

can be factored as 

A(s,e-°s) = U(s,e~0s) ( ^ ^ ° ) V(s,e~0s) , 

where U(s,e~0s) G £nXn, V(s,e~0s) G £mXm are unimodular, r = rankA(s,e~^ s), 
A(s, e~0s) = diag {ai(s, e~* s ) , . . . , ar(s,e~*s)}, and a^s,e~0s)\ai+i(s, e~0s), for i = 
1 , . . . , r — 1. The pseudopolynomials ai(s, e~^s), i = 1 , . . . , r, are called the invariant 
factors of A(s,e~^s). 

P r o o f . Following [9] (see also [4] where a similar result is established), it is 
sufficient to show that if a(s,e~0s), /3(s,e~0s), and 7(s,e~^s) are three coprime ele
ments of £, then there exist p(s,e~0s), q(s,e~0s) G £ such that p(s,e~0s) a(s,e~0s) 
and p(s,e~0s)/3(s,e~0s) + <1(s,e~^s)7(s,e~0s) are coprime. One can indeed show 
that, since a(s,e~0s), (3(s,e~0s), and 7(s,e~^s) are coprime, there exists a con
stant k G R such that g(s) = gcd(/3(s,e~0s) -[- ka(s,e~0s),ry(s,e~0s)) has only 
a finite number of common zeros. There exists p(s,e~0s), q(s,e~0s) G £ so that 
[/3(s,e~0s) + ka(s,e~0s)]p(s,e~0s) + 7(s,e~*s) q(s,e~0s) = g(s), and another con
stant ki G H so that p(s, e~0s) + fc/7^'?^ ' and g(s) are coprime. The result follows. 

The degree of an element a(s,e~0s) = n ( s j ^ p G £, where n(s,e~*s) G R[s,e~^s] 

and d(s) G R[s], is the difference S = deg sn(s,e~0 s) - degd(s) G 2Z, and we write 
dega(s,e~^ s) = S. This degree function is endowed with the usual properties of a 
degree function, namely Va(s,e~^ s), P(s,e~0s) G £, deg(a(s,e~0s) + fi(s,e~0s) < 
max(dega(s,e~0s),degP(s,e-0s)), and deg(a(s,e~^s)^(s,e~^s)) = dega(s,e~0 s) + 
deg/3(s,e~0s). £ is not a Euclidian ring, because this degree lies in TL and not in IN. 
The degree of any element of £ can be negative. For instance 

deg = —1 . 
s 

This in particular implies that the degree of a divisor can be strictly less than the 
degree of some of its multiples. Consider for instance 

1 - e s = s . 
s 

One can see that if dega(s ,e~0 s) = S, then 

5 

a(s,e~ s)= ] Г ak(e~ s)sk, 
k=—oo 

where the coefficients afc(e 0s) G R[e ^s] are uniquely defined. a(s,e 0S) is said to 
be monic if as(e~0s) is a nonzero real constant. Notice the following. 
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L e m m a 1. [Division Algorithm] Let a(s,e 0S), P(s,e 6s) e£,k eTL, and assume 
that a(s,e~0s) is monic. Then there exist pseudopolynomials q(s,e~9s), r(s,e~0s) e 
£ such that P(s,e~0s) = q(s,e~0s)a(s,e~0s) + r(s,e~0s) and degr(s,e-* s) < k. 

This is clearly deduced from the existence of monic pseudopolynomials having 
negative degrees, e. g. 0s~1£e—-. We call division the operation described in Lemma 
1. The following will be useful on the sequel. 

T h e o r e m 4. [1] Let a(s,e~0s) € £. Then 

(i) a(s,e~0s) e G <=> dega(s,e~0s) < - 1 , 

(ii) a(s,e~0s) e G + WL[e~0s] <{=-)> dega(5 ,e"^) < 0. 

A matrix M(s,e~0s) e £nXm being given, and defining Cj as the degree of the 
j th column of M(s,e~0s), it appears that 

o 
M(s,e~0s)dmg{sCl,sC2,...,sCm} = J2 Mk(e~0s)sk. 

k=—oo 

M(s,e~0s) e £nxm is said to be column reduced, with column degrees ci,C2,. . . , c m 

if the matrix Mo(e~0s) is of full column rank. 

T h e o r e m 5. [1] Every matrix over £ can be brought in column reduced form 
through a right unimodular transformation. 

The column degrees of a column reduced pseudopolynomial matrix can be neg
ative. Hence the column degrees of a column reduced form of a pseudopolynomial 
matrix are not uniquely defined. Consider for instance the following unimodular 
matrix 

\ S s+m2 / 

This matrix is column reduced with column degrees c\ = 1, c<i = - 1 , unimodular 
since its determinant equals 1, with inverse 

/ 2 - e" 3 l - e " 3 \ 
U~X(s)= *+ln2 s ) 

K J V -s 8 + ln2 ) 

hence U(s) U~x(s) is also column reduced, with column degrees c\ = 0 and C2 = 0. 

L e m m a 2. Let k eTL. Then there exist a unimodular matrix over £, of the form 

mse-^-i^^ fl*e~!'M 
1 ' j V 7(*,e-'J) S(s,e~0s) ) ' 

where dega(s,e~0s) = k, degS(s,e~0s) = -k, and the degree of fi(s,e~0s) and 
7(s,e"^ s) is arbitrarily low. 

Lemma 2 clearly follows from the example above and Lemma 1. Taking Theo
rem 5 into account, it leads to the following characterization of the possible column 
degrees of a matrix in column reduced form. 
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T h e o r e m 6. Let D(s,e~9s) G £ m x m , ci ,c2 , ...,cme7L, and assume further that 
detD(s,e~0s) 7-- 0. Then there exists a matrix U(s,e~9s), unimodular over £, such 
that D(s,e~0s)U(s,e~6s) is column reduced with column degrees c i ,C2, . . . , c m if 
and only if 

^CІ = degdetD(s,e- s) 
» = i 

3. APPLICATION TO FINITE POLE PLACEMENT 

The matrices sln — A(e~ds) and B(e~0s) that appear in equation (2) are clearly 
polynomial in s, e~~0s. They have a fortiori their entries in £. Applying Laplace 
transform, equation (3) becomes 

u(s) = H(s,e~0s)u(s) + F(s,e~0s)x(s) , 

where 

H(s,e~0s)= lV h(T)e~0sdT, 
Jo 

pp0 P 

F(s,e~0s)= / ( r ) e " s r dr + £ / f c e 
Jo 

-ks 

к=0 

If the entries of H(s,e~0s) and F(s,e~0s) are rational in the variable s, e~0s, then 
they also lie, respectively, in Q and in Q + El[e~^]. Thus the closed-loop system 
reads 

"<•••-> ( w > ) - ( y ) • 
where (f)(s) depends from the initial condition of the system, and 

Mis e-e°) - ( Sln ~ AKS) -B(*-es)a \ 
is a matrix with entries in £. Notice that the entries of H(s,e~0s) lie in Q, and that 
of F(s, e~0s) lie in Q + H[e~0f] if, and only if, the entries of the kernels / ( r ) and Q(T) 
are linear combinations of exponentials, of the form e a r , a G H, e R e ^ ) r cos(Im(/3)r), 
or e R e (^ r sin(Im(/3)r), defined on the compact support [fci0,&20], k\ < fc2 G IN, and 
of their derivatives [2, 7]. 

The design of a stabilizing feedback hence comes down to choosing F(s,e~0s) 
and H(s,e~0s) over £ so that the zeros of M(s,e~0s) lie in the left half complex 
plane. The finite spectrum assignment is obtained when M(s,e~0s) has only a finite 
number of zeros, say g G N . In that case, the determinant of M is a polynomial in 
5 of degree q. Such an assignment is possible for every given self-conjugated set of q 
zeros if and only if the pair (A,B) is spectrally controllable [13, 15, 18]. The design 
procedure [12] is almost similar to the classical design method for a linear time-
invariant system [6, 10], thanks to the properties of the operator ring £. The first 
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step of this procedure consists of finding matrices X(s,e~0s), Y(s,e~0s), N(s,e~0s), 
and D(s,e~0s) over £, such that 

U(se-°')-( X{s'e~lS) * ( ' . e " " M U(s,e )-y Y(s,e-9') D(s,e-0S) J 

is unimodular, i. e. it possesses an inverse over £, and 

(sln - A(e~6s) -B(e~Ss)) U(s, e""') = ( / „ 0 ). 

Hence it is easy to see that the zeros of M(s, e~6s) are those of 

D„F(s,e-Bs) = (In-H(s,e-es))D(s,e-es)-F(s,e-6s)N(s,e-es) , (4) 

for every choice of H(s, e~0s) and F(s, e~0s). Further we can notice that N(s, e~0s) 
and D(s,e~0s) are right coprime over £, and assume that D(s,e~0s) is column 
reduced. The second step consists of choosing a matrix -Di/F(s,e~*s) that is col
umn reduced, with the same column degrees as D(s,e~0s). Hence there exists a 
solution H(s,e~0s), F(s,e~0s) to equation (4). By division, we can assume that 
degF(s,e~0s) < 0, hence it appears that indeed H(s,e~0s) lies in £ m x m

? and that 
F(s, e~0s) is a matrix over Q + R[e~*']. Using Theorem 5, it appears that the free
dom in choosing the invariant factors of the closed-loop system, that are those of 
DHF(s,e~0s) is only limited by n. 

Theorem 7. Let the system (1) be given and assume that it is spectrally control
lable, and ipi (s, e~^s), ^2(5, e~* s ) , . . . , ipm(s, e~0s) G £. Then there exists a feedback 
(3) such that ipi(s,e~0s),ip2(s,e~08),... ,ipm(s,e~0s) G £ are the invariant factors 
of the closed-loop system if and only if the pseudopolynomials V>i(5> e~0s) are monic, 
ipi(s,e~0s) divides without remainder i>i+i(s,e~0s), i = 1,2,... ,m - 1, and 

m 
~TdegV>i(s ,e-* s ) - -n . 
i = l 

Corollary 1. [Finite pole placement] Under the same condition (2), one can 
choose a feedback (3) such that ^1(5)^2(5) , . . . ,ipm(s) € R[s] are the invariant 
factors of the closed-loop system if and only if the polynomials ipi(s) are monic, 
tpi(s) divides without remainder ^i+i(s), i = 1,2,... ,m — 1, and 

m 

~y2degx/ji(s) = n, 
i = l 

where here the degree is understood as that of a polynomial in s. 

Example 2. For instance, consider the system 
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Hence the matrices N(s,e~0s) and D(s;e~0s) as above can be taken as 

"I8-6"' = ( 7 .-• ) • 
and 

-•<•••->=(_•, " / ) • 

One can then verify that (4) is satisfied taking 

H(. p-s) _ ( -a(s,e- s ) -(3(s,e~s) \ 
*{s,e )-y _ p i s e - s ) _ a ( s > e - . ) ) > 

F(se-*)=( ~^S>e~S) ° ^ 
1 ' j V 0 7(«,e"s) ) ' 

l + «(l-2f5f^e-+1) 

аnd 

where 

а(s,e s) 

ß(s,e~s) = 

s 2 - l 

s + 1 - 2 fE f ^e - * + 1 

s 2 - l 

аnd 

7 ( 5 , e - s ) - - 2 e Є Є 

- P - 1 e - e 

4. CONCLUSION 

The freedom in assigning the closed-loop invariant factors of a system with com
mensurable time-delay system has been described, provided that it is spectrally 
controllable. An algorithm has been proposed, for the synthesis of the assigning 
control law, which in general is expressed in terms of a Volterra integral equation 
that involves both localized and distributed delays. This provides a slight improve
ment in the method proposed in [18] where the closed-loop system is nilpotent, 
i. e. has a unique nonunit invariant factor, which may in application ameliorate the 
transient behavior of the system. 

There are many more applications to the control of systems with commensurable 
delays, of the theory of pseudopolynomial matrices. For instance, using standard 
techniques (see for instance [6]), one can see that if a transfer matrix is factored as 

T(s,e-0a) = N(8,e-ea)D~l(8,e-0a) 

where N(s,e~0s) and D(s,e~0s) are right coprime, D(s,e~0s) is column reduced, 
with column degrees c\ > c_ > . . . > cm > 0, then it has a minimal realization. The 
following is hence a clear consequence of Theorem 5. 
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T h e o r e m 8. Let T(s,e~0s) be the transfer matr ix of a t ime-delay system. Then 
T(s,e~0s) admits a minimal realization, i .e. spectrally controllable (in the sense 
of (2)) and spectrally observable, if and only if every right coprime factorization 
of T(s,e~0s) over £, in the form T(s,e~0s) = N(s,e~0s) D~1(s,e-0S), is so that 
degdetD(s,e~0s) > 0. 

For instance, the transfer function 

T(s,e~ңs) = 
1 + e - 2 * 

does not admit any minimal realization since a coprime factorization is provided by 
T(s,e-6s) =N(s,e-9s)D-1(s,e-es), where 

N(s,e~9s)=1 + e~2° , 
K ' s2 + £ 

and 

D(s,e~ s) = ^ - , s + fe" 
2 i î l 

— л 

One hence checks t h a t d e g d e t - D ( s , e " ^ s ) = — 1 . There are still some difficulties 

when applying this theory. First, the calculations are quite involved, and the absence 

of any specialized toolbox is a serious drawback. Second, the robustness of the 

control law is not ensured. In particular, some experimentations have shown t h a t a 

numerical implementat ion of Volterra integral equations may result in an unstable 

closed-loop system [17]. Further studies are needed for practical implementations. 

(Received November 22, 2000.) 
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