
K Y B E R N E T I K A — V O L U M E 3 7 ( 2 0 0 1 ) , NUMBER 2, PAGES 1 8 3 - 2 0 4 

COMBINING FORECASTS 
USING THE LEAST TRIMMED SQUARES 

JAN ÁMOS VÍŠEK1 

Employing recently derived asymptotic representation of the least trimmed squares es
timator, the combinations of the forecasts with constraints are studied. Under assumption 
of unbiasedness of individual forecasts it is shown that the combination without intercept 
and with constraint imposed on the estimate of regression coefficients that they sum to one, 
is better than others. A numerical example is included to support theoretical conclusions. 

1. INTRODUCTION 

It is more that thirty year ago when the paper by Bates and Granger [1] opened the 
question of possible improvement of forecast of process in question by combining k 
individual forecasts. Bates and Granger proposed to utilize the framework of linear 
regression model, namely to consider forecasted process as the response variable and 
the individual forecasts as explanatory ones. 

Let us briefly discuss a background of this endeavour. One can trace out in the 
background the reasons of various types. What concerns heuristics they can be given 
as follows: 

- Firstly, if k forecasters used efficiently information which they had at hand 
and if their information was at least partially disjunct, we may try by com
bining their forecasts to employ all the information simultaneously and hence 
(hopefully) to obtain better forecast. 

- Secondly, if they used the information inefficiently and if the inefficiency did 
not "happened" in the same way by all of them, then, even in the case when 
all the forecasters had the same information, we may hope in an improvement 
of efficiency. 

Of course, the real situation will be somewhere in-between these two possibilities. 
But the task represents also very interesting theoretical challenge. Let us assume 

(or imagine, if you wish) that the forecasted process is "in fact" generated by a 
(dynamic) linear regression model with normally distributed random noise. The 

1 Research was supported by Grant 255/2000/A EK /FSV of the Grant Agency of Charles 
university. 
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converted commas around in fact indicate that usually we have no idea about a 
"mechanism" (if any1) which generates the forecasted process. Let us denote the 
design matrix of the respective model by Xt- We may then interpret the matrix Xt 
as the information accompanying the forecasted process, so that each single column 
represents one explanatory variable. Then, of course we may find the best possible 
prediction of the forecasted process by means of estimating corresponding regression 
coefficients (the best possible under given circumstances, i. e. e. g. in the case when 
we find that the data are contaminated - see e. g. Rubio and Visek [10] and on the 
other hand the specification test indicates correlation between explanatory variables 
and disturbances - see Visek [16], we can use robust version of instrumental variables 
- see Visek [15] or [19] or in the case when the design matrix exhibits a collinearity 
we may use M-estimators or the least trimmed squares subject to some (linear) 
constraints - see Rubio et al [9] or Visek [21], etc.). But the design matrix Xt is 
available neither to us nor to the individual forecasters. Nevertheless, let us assume 
that each forecaster has at hand some columns of this matrix, i.e. in other words, 
each of them has at hand some part of explanatory information. And we may assume 
that they have together the whole relevant information. Of course, sometimes this 
last assumption need not be realistic. 

Assuming moreover that (typically) the common criterion of a quality of predic
tion for all the forecasters is the minimum of the sum of squared errors of prediction, 
the question appears: 

Having at hand k individual forecasts^ is it possible to reconstruct - not neces
sarily by linear combination - the best possible forecast? 

Finally, the task of improving forecast has also its practical meaning. The fact 
that there is available several forecasts of process in question indicates that the 
forecasted process is of considerable importance at given time and place. But it 
hints: 

Even a small improvement of quality of forecast may be appreciated a lot. 

Since 1969, when the paper by Bates and Granger appeared, a large attention 
was devoted to the problems which of the many types of regression model should be 
used. In other words, the questions of the type: 

- Should some constraints be imposed on the coefficients of the model or not? 

- Should the intercept be included or not? 

- Should the coefficients be considered stable or moving in time and how? 

etc. were intensively studied. Less attention was paid to the problems of how the 
coefficients are to be estimated (in the cases when we decide for combining the 
forecasts by means of linear regression model). It is quite understandable since 
the least squares principle, sometimes with the maximum likelihood one, are still 
(unfortunately) nearly exclusive tools of econometrics and the advantages of robust 
methods did not yet attracted appropriate attention. 

It is nowadays already well known that the least squares are extremely vulnerable 
to influential points, either outliers or leverage points. Moreover, even in the case 

*Of course, it is a philosophical question, very interesting and in the interpretation of results 
also very important one, how far the idea that some mechanism generated data, is tenable. 
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that no influential point is present2, but the residuals are not normally distributed, 
the least squares is optimal estimator only in the class of linear estimator. And un
fortunately the restriction on the linear estimators is drastic, see e. g. again Hampel 
et al [4]. 

So, even today, more than thirty years after the pioneering paper by Bates and 
Granger the problem is still worthwhile to be studied. Of course, at first we may ask 
whether the idea to combine the forecasts in the framework of (linear) regression 
model is the most appropriate one in all situations. It is easy to see that in the 
case when the forecasted process (considered as vector, i. e. all past values of the 
forecasted process are taken as coordinates of one vector) is far away from the 
space generated by linear combinations of individual forecasts, no linear combination 
of individual forecasts may improve the situation too much. In opposite case the 
linear combination may give a satisfactory result. But then, admitting that among 
the values of forecasted process and/or of individual forecasts a portion of atypical 
points3 may appear, one should consider an alternative method to the least squares. 

In Rubio et al [9] and in Visek [14] the first attempts were made to generalize 
result which is due to Clemen [3] and which holds for the ordinary least squares. It 
claims that in the case when the individual forecasts are unbiased, it is preferable 
to construct the combination of forecasts by means of the regression model with
out intercept subject to the constraint that the sum of coefficients and of course, 
also of estimates, is equal to one. It appeared that this result holds also for M-
estimators and numerical illustration showed that the best results were obtained by 
M-estimators with redescending ^-function. On the other hand, it is well known 
that firstly the breakdown point of the M-estimators is equal to A;-1 where k is the 
dimension of regression model in question, i. e. the number of explanatory variables. 
In our cases, as it follows from the first lines of this paper, it is the number of indi
vidual forecasts we have taken into account. In other words, the M-estimators have 
the breakdown point limited by dimension of corresponding regression model (see 
Yohai and Maronna [23]). Secondly, the M-estimators are not scale- and regression 
equivariant. To reach scale- and regression-equivariance one needs to studentize the 
residuals by an appropriate scale-invariant and regression-equivariant scale estima
tor, see Bickel [2] or Jureckova and Sen [7]. Although to evaluate such an estimator 
is possible (see Visek [17]), it is not very easy and quick. So it would be preferable 
to have a (theoretically supported) possibility to apply for combining forecasts such 
robust estimator which is scale- and regression-equivariant and, if possible, with ad
justable breakdown point. One of such estimators is just the least trimmed squares. 
Although we were able already earlier to demonstrate that combining forecasts by 
the least trimmed squares can give good numerical results, we were not able to prove 
a theoretical result analogous to Clemen's one. Nowadays, following steps in Visek 
[18] we can carry out corresponding proof. 

First of all we shall introduce notations and simultaneously recall Clemen's result. 

2There are however studies indicating that it is very rare (if not impossible) case, see Hampel 
et al [4] or Huber [6] and references given there. 

3The word atypical means that such point may (but need not) belong to the "true" model, or in 
other words, the point does not necessarily represent contamination, nevertheless its value is such 
that it worsens the result of prediction anyway. 
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We shall keep notations which were used by Clemen and which we have also used 
in Visek [14]. It will allow to follow easier the text to reader who is familiar with 
Clemen's one. 

2. NOTATION 

We shall denote by N the set of all positive integers, by R the real line and by R+ its 
positive part. Moreover, by Rk we shall denote the k dimensional Euclidean space. 
Finally, we shall consider for any t £ N the linear model 

6l = Ft -P°+et (1) 

where the forecasted process 0l = (0i, 02,..., 9t)
T plays the role of response variable 

(the capital " T " indicates transposition). We shall assume that the first column of 
design matrix Ft = (fij)]^\f2^'*k consists of ones, i.e. fn = 1 for i = 1,2,.. .,£, 
and the rest of it is created by (k - 1) individual forecasts (columns 2 , 3 , . . . , k). Re
gression coefficients are denoted by (3° = OS? ,/#>>••• > $b)T a n ^ *he v e c t o r of random 
disturbances in model by e1 = (ei,e2,.. .,et)

T. Moreover, zth line of the matrix Ft 

(considered as column vector) will be denoted by fi. (To avoid any misundeistand
ing what concerns vectors, we shall assume all of them to be column ones.) Now, 
the alternative form of the model (1) is 

ei = fT(3° + eh 1 = 1-2,...,*. 

Remark 1. Let us realize that the regression model given in (1) is not the regres
sion mechanism we have mentioned at the introduction that generates the forecasted 
process. Notice that, to emphasize it, we have used for rows of corresponding de
sign matrix of former model the letters Xt while for the latter model (i.e. (1) we 
utilized ft. 

By I{property describing the set A} (instead of I{property describing the set A}) we 
shall denote the indicator of set A. The reason is the fact that in what follows we 
shall use for description of sets (somewhat) complicated expressions containing also 
indices. 

Remark 2. There are well-known reasons for inclusion of the intercept into the 
model - except of a few situations when we are sure that the regression goes through 
the origin. Moreover, insisting on the absence of intercept implicitly indicates our 
belief in an absolute character of data which in turn means that we give up otherwise 
natural requirement of scale- and regression-equivariance of the estimator of the 
regression coefficients. Nevertheless, even with such situation we may meet as we 
shall see below. On the other hand, in the case of present paper we have started 
with the model with intercept to have a model as general as possible and we shall 
see later that another model may appear better (under some conditions). 

We shall need the following assumptions. 
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Assumptions A. The sequence { ( / 7 > i ) T } £ 1 (fi G Rp,Si G R) is the sequence 
of independent identically distributed random vectors with / n = 1» J^fij = 0 a n d 
IE/^- < oo for j = 2 , 3 , . . . , k or iE / i , = 0 and lEf^ < oo for j = 1,2,. . . , k. 
Moreover, Efi * fi = Q is regular. The marginal distribution function of h » s a y 
H(x), is absolutely continuous and such that 

'"* ,<<^<<, II«l = °p(1)- W 
l<t<£, 1<J<« 

The conditional distribution function -D(z|/) of random fluctuation e\ given / i 
is absolutely continuous with a bounded density d(z\f) which is positive and has 
bounded derivative on the R. Denote G(z\f) the conditional distribution function 
of e\ given f\. For some a G [0, ^) , u^ will be the upper a-quantile of G(z | / ) , i.e. 
P(e\ > i/2) = i-G(ul\f) = a and [(1 - a) - ua(d(ua\f) + d(-ua\f)] £ Q. Further 

lE(ell{e\<ul}\h) = Q and B(e\l{e\ < u\ }\h) = a2
£l (3) 

with of i G (0, oo). Finally, denote by [a] the integer part of a and for any t G TV put 
fce = [ ( l - a ) t ] . 

Remark 3. Notice that assumptions in (3) are analogies of the orthogonality and 
sphericality conditions. Of course, when we shall recall Clemen's result for OLS, we 
will assume (for a moment) that "ordinary" orthogonality and sphericality conditions 
hold, i. e. that 

E(et\Ft) = 0 and E(e* • [e*]* \Ft) = afc (4) 

for any t G IV (where " I " denote the unit matrix). On the other hand, the assump
tion (3) is quite natural, since it corresponds to computational reality. As we shall 
see below, the evaluation of the least trimmed squares estimator is equivalent to the 
application of the ordinary least squares on a subset of data. The subset has size 
h and is given implicitly by the extremal problem - see (7) below. Nevertheless, 
since the ordinary least squares evaluates the estimate so that it corresponds to 
the assumption of centered random noise, (3) is "implicitly fulfilled" by numerical 
algorithm. 

Remark 4. For any 1 < j , I < k we have 

t 

(FtF?)je = Y,fijfu, 
i= l 

i.e. t 

i=l 

Moreover, we have just assumed that lEfifJ = Q exist and is regular (and hence the 
matrix Q has all elements finite). Together with the assumption that the explanatory 
vectors /; 's are i. i. d. it implies that 

lim \FjFt = Q a.e.. (5) 
t->oo t l V ' 
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Since the matrix Q has finite number of elements and its determinant is positive 
(remember that it is positive definite), there is t0 € N such that for all t > t0 

determinant of jF^Ft is also positive and the same is true about determinant of 
FjFt. But it implies that F^Ft is for t > to also regular and hence we can evaluate 
an inversion matrix. Moreover, (5) then implies that 

(FjFtr^O^t-1). (6) 

3. THE LEAST TRIMMED SQUARES 

Let us denote for any (3 G Rk by r-;(/3) = 0» — fjfi the ith residual and by rJ{J/3) 
the order statistics of squared residuals (for i = 1,2,. . . , t). In other words, it means 
that we have for any ft G Rk (and any u) eil) 

O<r2
(1)(0)<rf2)(l3)<...<rtt)(0). 

Finally, let us recall that the ieasfc trimmed squares estimator is given as 

h 
p(LTS,t,h)= argmin V r L ( / 3 ) (7) 

peRk rzi 

where | < h < t. One can guess that the value of h implies the level of robustness 
of estimator, namely its breakdown point. 

Let us recall that for h = t, (}(LTSt>h) coincides with the least squares estimator 
p(LS>t\ given of course as 

t t 
p(LS,t)= argmin X ^ r ? ( £ ) = argmin X^^-fJfif. 

peRk r-f peRk r-f 
2 = 1 2 = 1 

4. RECALLING CLEMEN'S RESULT 

According to the well-known formula, the L£-estimate of ft0 is given as 

ftLSj) = ( F T F f ) - l F T 0 t ( g ) 

Naturally, one lag forward forecast is evaluated as 

k 

^if<} = E/'+w^L 5 , < ) where /«+i = (ii/*+i.2,..-i/«+i.oT 

3=1 

or in an alternative (and more convenient) form can be written as 

«Sf'0 = f7+J{LS'l)-
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A straightforward calculation gives the mean square error 

E {$£ •*> - 9t+1f\Ft,ft+1} = ^ ( / ^ ( F J E ^ - V m + 1), (9) 

for CTO see (4). 
In the case when the forecasts are unbiased (we can verify it by some test, see e. 

g. Holden and Peel [5]), we would expect that the model subject to the constraints 

fi = 0, # + # + . . . + /32 = 1 (10) 

will be more suitable for the combination and we naturally try to estimate /?° by an 
estimator which is subject to the same constraints. It is possible to impose other 
constraints e. g. that (10) holds and Pi G [0,1] for i = 1,2,.. . , k. Extensive literature 
discussing it and bringing arguments for and against can be found e.g. in the 
special issue of Journal of Forecasting devoted to twenty anniversary of the paper by 
Bates and Granger [1]. However, there are examples demonstrating that sometimes 
substantial improvement was achieved when some coefficients were either negative 
and/or some larger than 1. An explanation is simple. When the projection of the 
forecasted process into the linear space generated by the forecasts falls "outside" all 
forecasts (instead among them), it is clear that the best combination should contain 
also some negative coefficients. The heuristics for this case are straightforward. 
Simply all forecasters had interpreted some (common) information in a wrong way 
and hence only a possibility to "withdraw" this false step of all (or subtract this 
false interpretation, if you wish) can considerably improve the forecast. In such a 
case one may immediately object that then probably the individual forecasts are not 
unbiased and we should "recognize" it by previously mentioned test. However, it is 
sufficient to look into a one paper about testing unbiasedness of forecasts and one 
immediately learns that this topic is at least a bit controversial (see again Holden 
and Peel [5]). 

For theoretical considerations it will be convenient to have the constraints (10) 
in the matrix form 

S./3° = 7 (11) 

where S = (82j)}=i'>2,...,*;> 5 n = l>sij = 0 for j = 2,3, ..-.,&, s2i = 0, s2j = 1 
for j = 2 , 3 , . . . , A; and 7 = (0,1)T . So, we shall look for the least squares estimator 
under the constraint (11), i. e. we shall consider 

,§<"•«> = a r^mm j j > - tftf, SP = 7 } 

and we hope that it will work better than the OLS given in (8). Following Clemen 
[3] and using the Lagrangian technique we can find that 

fiLS.t) _ flLS.t) _ (FfFj-isfr [ 5 ( F t
T F , ) - 1 5 T ] " 1 (SflLS# - 7). (12) 

Again a straightforward calculation yields the mean squared error of the prediction 
0t+i based on the "constrained" estimator fiW, namely 

E {(íKř0-*m№./*+i} (13) 
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= <% {/m [(F?Ft)-* - (F?Ft)~W [S^FO-1^]"1 S(F?Ft)-i] ft+1 + l} . 

Evidently the matrix 

(E^)-1^.^^)-1^]"1^^)-1 

is positive semidefinite. It implies that (13) is not larger than (9). 
We have already mentioned that the main goal of this paper is to confirm (or 

reject) validity of this Clemen result for the least trimmed squares. Since there 
is not a close formula for f}(LTS,t,h)^ w e S_Q\\ u se^ similarly as in the case of M-
estimators (see Visek [14]), its asymptotic representation. So first of all, we shall 
recall it and try to find also a representation for the least trimmed squares under 
constraint (11). 

5. ASYMPTOTIC REPRESENTATION OF THE LEAST TRIMMED 
SQUARES UNDER A CONSTRAINT 

Asser t ion 1. Let Assumptions A be fulfilled. Moreover write h instead of ht. 
Then 

^ ^(LTS,t,h) _ ̂  _ r | g - l [ ( 1 _ Q ) _ Ua{d{Ua\f) + d f - t ia l / ) ) ]" 1 X 

x E (°i ~ f?P°) fi' Jtf <<}+ oP(l) (14) 
i=l 

t 

= t-iQ-1 [(l-a)-Ua(d(ua\f)+d(-Ua\f)T1 _ e , / . • /{e? < U* }+Op(l)(15) 
i=l 

and p(LTS,t,h) j s asymptotically normal with mean value equal to /3° and covariance 
matrix 

V(ß(LTS,t,h)^D)_Q-l (1 - á) - ua(d(ua\f) -F d(-гz a | /)) 

-2 

/

ua 

zЧD(z\f), 
-Ua 

1. Є. 

c[Vt(p{LTS^h) -(3°)) ^Af(0,V(^LTS^h\D)) a s f - r o o . 

For the proof see Visek [18]. 

Now, let us consider the least trimmed squares estimator of ft0 which is subject 
to the same constraints as given in (11), i.e. the estimator given by 

p(LTS,t,h) _ argmin J J^ r2

(i) (/3) together with Sfi = 7 > . (16) 
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Employing Assertion 1, let us try to establish an asymptotic representation for 
jj(LTS,t,h) j n orcier to achieve it, we shall consider the linear regression model for 
the variables transformed in the following way. Put 0i = Oi — f^2, Jij = fi,j+2 — fi,2 
for i = 1,2,. . . , t and j = 1,2,... k — 2 and define a mapping T : Rk~2 —> Rk which 
for any J3 G Rk~2 gives J3 G Rk so that 

k-2 

j 8 i = 0 , ^ = 1 - ^ / 3 , - , Pe = fa-2 for £ = 3 ,4 , . . .k. 
i=1 

Let us notice that the image of the mapping T is the subset of Rk for which Sf3 = 7. 
Keeping in mind (11), let us put /3° = ( /J? , /^ , . . . ,/?£)T, i. e. /3? = /?£+2 for £ = 
1,2,. . . , k - 2. Then T(^°) = /3° and we may write for the model (1) the following 
sequence of equations 

k 

Oi = J > , 7 $ + * i = l , 2 , . . . , t , (17) 
i= i 

( k \ * 

i=3 / i=3 
fc-2 

Oi - fi2 = ^ ( / i , j + 2 - fi,2)Pj + Si 
3=1 

and finally 
0i = f7P°+£i (18) 

which implies that the random disturbances in the regression model for the trans
formed variables ^ ' s and /j's are the same as in the original model (1). Moreover, 
modifying a little the steps from (17) to (18) we obtain for any ~ G Rk~2 and 
P = T(P) 

k-2 k 

0i~2^, ftjPj — Oi-22, fvfo 
j=l j=l 

with SJ3 = 7. But it implies that for any J3 G Rk~2 and (5 = T(j3) we have for 
i = l , 2 , . . . , * 

fi(P) = Oi-fJp = 0i-fJp = n0) 
and of course also 

r2
{i)(P) = rfi)0). 

But then we have 

E*fo03) = E»fo09) 
i=l i = l 

and Sf3 = 7. However it means that if we find a solution of the problem 

p(LTS,t,h)= jn £ f ' . ) ( / J) , (19) 
i = l 
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we immediately have the solution of the problem (16). It is evident that p(LTS^h) = 
sj-(p{LTSyt,h)y g u t .^^ o u r p j a n j s s i m p i e \y e shaii ^ r y ^Q verify that Assumptions 

A hold also for transformed random variables <Vs and /i 's , so that we may write 
asymptotic representation (14) also for p(LTS^h)m Then we may try to modify this 
representation to obtain a representation of ^(LT5»*./l). Finally, employing both 
representations, i. e. of /3(LT5'>*>/1) and of f}(LTSt*h)^ w e m a y find which of these two 
estimators has smaller asymptotic variance. And that will be done in the rest of this 
paragraph. 

Let us recall that we have denoted by X the identity (or if you wish, the unit) 
matrix. We shall prove 

L e m m a 1. Let S • /3° = 7 hold. Then under Assumptions A we have 

^ 0{LTS,t,h) _ p0) 

= 4= [(1 - a) - ua(d(ua\f) -F dC-tial/)]"1 {X - Q-1ST(SQ~1ST)-1S} x 
vt 

t 
x < 2 - 1 £ fi (*• - /ir/5°) • -"{e? < ««} + op(l) as t -> oo. (20) 

1 = 1 

P r o o f . First of all, we shall show that for t > t n the matrix SQ~1ST is regular 
(for to see Remark 2). 

Due to the fact that the matrix S is created by two independent vectors, S may 
be "expanded" into a regular (p x p)-matrix, say 5, with first two lines equal just 
to S. 5 Q _ 1 5 T is then the main submatrix of the positive definite matrix SQ~lST, 
hence it is also positive definite and finally regular. 

Now, we shall verify that for the transformed problem (19) the Assumptions A 
also hold, so that we shall be able to use Assertion 1. For any t, r = 1,2,. . . , k — 2 
we have 

lEfukr = - E ( / M + 2 - / l , 2 ) ( / l f r + 2 - / l f 2 ) 

= <7M-2,r+2 ~ (#+2,2 — <72,r+2 + <12,2- (21) 

Denote the expression in (21) by qt,r and the corresponding matrix by Q, i.e. Q = 
fe,r)f,r=i,2,...,k-2 • Let us further consider the matrix A = (atj)tj=i,2,...,k such that 
att = 1, for t = 1,2, . . . , fc, at2 = — 1 for t = 3 ,4 , . . . , k and atj = 0 for all other 
indices. One easily finds that (AQAT)t+2,r+2 = <#,r for t,r = 1,2,... ,fc — 2, i.e. 
that Q is one of the main submatrices of AQAT. Since the matrix A is evidently 
regular, and the matrix Q is positive definite, AQAT is also positive definite and 
regular. So the assumption about regularity of matrix Q holds. Employing similar 
arguments, we may easy verify (2). The validity of the rest of Assumptions A for 
the transformed variables (or if you wish, for the transformed problem (19) ) follows 
from (17) and (18) and from properties of conditional moments. Now, recalling that 
we have denoted 

(Q)lr = E(A,t+2 ~ /l2)(/l,r+2 - ha) 
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and putting 

tf = [(1 - a) - ua(d(ua\f) + d( - t i« | / ) ) ] , 

we can apply Assertion 1 to the transformed setup and we obtain (from (15) ) 

t 
tM/3(LT5,t,M-/30) = r ^ - 1 Q - 1 _ r / i e i - / { £ ? < « 2 } + o _ ( i ) as t _+ oo 

i= l 

or, denoting e. • l{ef <u2
a} by AC„ 

3=1 

t 

= f"2 Y^ fitiKi + op(l) as t ->oo for £ = 1 ,2 , . . . , k - 2 . (22) 
i = l 

Similarly the representation (15) may be rewritten as 

* * i2n$LTS*M - fl) 
3=1 

t 

= f-z^fijKi + OpW as t - > o o for £ = 1,2,...,fc. (23) 

i= l 

Using (21) we may modify (22) and we obtain 

k-2 

<* i? ^2(qe+2,j+2 - qi+2,2 - qj+2,2 + q2,2)(PfTS'iM - tfj+2) 
3=1 

t 

= t~* ^~X/i,*+2 ~/i,2)«i + oP(l) as t - > o o for e= 1 ,2 , . . . , A; - 2. 
i = l 

Combining it with (23), we arrive at 

* * ( _ > « - ^ o ^ r ™ -0S)+(».. -««)EG3iLT5,l,fc) - * - ) 
( j = 3 i = l 

k 

= H i ? £ ( ^ - ? 2 ; ) ^ ^ a s M o o for * = 3,4,...,fc. 
i= i 

Since we have assumed that ti / 0 we may omit it and taking into account that 

~^TS,t,h) = fiLTS,t,h) for ^ = 3 f 4 f . . .> f c f frTS,t,h) = 1 _ z*=j(LTS,t,h) ^ 

j£LTS,t,h) _ Q ( a n ( j __„ ^o _ 0 ) ) w e o b t a i n 

j = i 
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= ** E(«J-72j)( j8fT S" t > f c )-^)+o p(l) 
i=i 

as «->oo for ^ = 3,4, . . . ,* 

and finally 
k 

t*Zu*ФLTS*'h)-ti) 
i = i 

= '* E {9«09J L T 5 A f c ) - tf) + q,j{ß?TS't'h) - ^T S '*' f c ))} + op(l) 

as t —r oo for £ = 3,4 ? . . # /^ 

Putting 
k 

A< = ̂ E9«^r M ) ^r i ' ' l ) ) for ' = - . - . (24) 
i=i 

we obtain 

i=i 

= t i E « w C S , < , f t ) - ^ ) + ̂  a s M o o , (25) 
3 = 1 

and for £ = 2 , . . . , k we have 

^E^osr^- is?) 
3 = 1 

k 

= «* £q tAP? T S % t % h ) ~ 0j) + ̂  + op(l) as * -> oo (26) 
3 = 1 

(notice, please, that (25) is just an equality). Moreover 

Sp(LTS,t,h) = 7 ( 2 7 ) 

Putting A = (Ai,A2)T, we may rewrite (25)-(27) into the matrix form 

** Q(^LTS^ - (3°) = ti Q0(LTS,t,h) _ ^0) + 5 T A + 0 p ( 1 ) a n d Sp(LTS,t,h) = 7 

We have thus obtained 

<- ^ ( i T 5 - ' - f t ) = t i Q0VTS,t,h) + 5 T A + 0 y ( 1 ) a n d Sp(LTS,t,h) = ? 
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Expressing piLTS^h) as p^s,t,h) + t-hQ-^STX + op(t~i) we may write 

7 = SpLTS>l>V = S [$(LTS'^ + H Q - ^ A + op(r-)] 

and so 

A = i- [ 5 Q - 1 5 T ] " 1 (7 - S^LTS^) + op(l) 

(keep in mind that at the beginning of the proof we have shown that SQ~1ST is 
regular). This means that we have arrived at 

p(LTS,t,h) _ p(LTS,t,h) + Q-lg- [5Q-15T]-1 (/y _ Sp(LTS,t,h)) + 0p(t~hy 

We have assumed that 7 = 5/9° so that 

t- ( / j ^ 5 . ^ ) - /?°) 

= i- {(/J*-™,/-) _ ^ + Q-1ST [5Q-15T]-1 5( /30 _ ^(LTS.t.h)) J + Q p ( 1 ) 

Now, employing asymptotic representation of >/t0^LTSityh^ — /3°) once again we 
obtain 

rf 0(LTS,t,h)_^) = J_^ - i | X _ Q- i 5
T (5Q- 1 5 T ) - 1 5} x 

X Q 1 X l / i [ £ i , / { e i - w«}] + ° P ( 1 ) as í - r o o 
i = l 

which concludes the proof. D 

R e m a r k 5. Since S-p° = 7 implies that /?? = 0 and the same holds for J3(LTS,n,h)^ 
it may be of interest to verify that the expansion (20) is consistent with it. 

First of all, notice that due to Assumptions A in the case when we assume model 
with intercept (and hence the constraint S • /3° = 7 has a sense), the matrix Q has 
the form 

i, oT 

0, H 

where 0 = (0 ,0 , . . . ,0 ) T . Due to the assumption about regularity of Q, also H is 
regular. Hence 

1, oT 

o, H-1 Q - 1 ^ 

Now let us look on the structure of matrix 1 - ( 5 _ 1 5 T ( 5 Q ~ 1 5 T ) - 1 5 . Taking into 
account the structure of matrices Q~l and S we easy verify that 

- l o T \ - l _ (SQ^S1) 
1, 0 
0, v 
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where v = [VJ*=i E*=i &/] for qit = [Q x] w But then 

Sr{SQ-1STy1S = 

where {T)u = v (for all i and £) and finally 

Q-1ST{SQ-1ST)-1S = 

It means that 

Z - Q - 1 5 T ( 5 Q - 1 5 T ) - 1 5 = 

1, o т 

0, T 

i, o т 

o, я-^т 

0, o т 

0, I-H~lt 

6. COMBINING FORECASTS USING LEAST TRIMMED SQUARES 
ESTIMATOR WITH CONSTRAINTS 

Prior to a comparison of the combined forecasts based on the least trimmed squares 
estimators with and without constraints, let us return for a moment to (9) and (13), 
and let us find how large is the difference of the corresponding mean squared errors. 
We easy find that the variance of the prediction <^+1 is equal to 

var (e\L

+

sAFuft+l) = E {{0^ - m%sfy*\Ft,ft+1} = *lfJ+1{FjFt)-ift+1. 

Taking into account (6), we conclude that var f^t+i' \Ft,ft+i) is also of order 

O p(J" 1). On the other side, the mean squared error is close to the conditional 
variance of Ot which is equal to o\. Similarly, in (13), the term 

&i [(-Ftf)-1 - (i^JFl)-1^ W E o ^ S T 1 SiFfFt)-1] ft+1 = Op{t~l) 

represents the conditional variance of the prediction 0\+{ . Now comparing (9) 
and (13) we conclude that the gain obtained by using the constrained least squares 
estimator instead of the unconstrained one, decreases in the rate t~l when t increases. 
Nevertheless, having left aside how large the gain is, the expressions (9) and (13) 
imply that there are part of the mean squared error which may be influenced by 
the selection of our approach while remainders are given by circumstances which are 
beyond our control. In other words, the mean square error of the prediction consists 
of variance of process in question and of variance of prediction. The former is given, 
the later is under our control. So keeping in mind that in both (9) and (13) the 
terms crlft+i(F?Ft)-1 ft+i and 

"o2/tT+i [(FfFt)-1 - (F, T F,)-S T [SiFfFtyS?]-1 S(F?Ft)-] fw 

represent the conditional variances of t9.i+1' ' and of 0.j+1

f , respectively, it was suffi
cient to compare the conditional variances of combined forecasts to find the respec
tive gain (or loss). So in what follows, we will compare var(*9^+1 ' ' '\Ft>ft+i) with 
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var(0J+^5 , t , /^|i5*> ft+i) rather than their respective mean squared deviations from 
Qt+\. Denoting 

Qt+i — ft+iP 

and then using Assertion 1 we obtain 

^(LTS,t,/i) _ rT Q^LTS^h) 

1 * 

= -̂fi + T^"Vt+ iQ" 1 E^^ 7 H^ w «} + °^ri) a s t-*00* 
1 i = l 

I . Є . 

St0(LTS,t,k)_dO+i) 

1 ' 

= ^ - V t + i Q ^ - T i E / i e d l e i ^ W a l + í V Í l ) as t - ) o o . (28) >Г*І І=l 

Unfortunately, this relation does not permit us to obtain either IE \9t+i ' ' Wu ft+i) 

"t+i ' ' \Ft,ft+iJ because of presence of op(t~2) within it. Due to this well-
known problem (see e. g. Huber [6]), in such cases we usually consider the asymptotic 
mean and the asymptotic variance (more precisely, the mean and the variance of the 
asymptotic distribution of the given statistic). It has even advantage against the 
precise (mean and) variance of the respective statistic because it depresses the influ
ence of large and rarely appearing values of the statistic in question (these values are 
"hidden" in the term o p ( l)) . In other words, it eliminates the influence of values of 
the statistic which the statistic attains for uJ's from the sets of very small probability, 
or, still in other words, it avoids misleading effect of atypical values of the statistic 
in question, see Visek [12] and compare also Huber [6], page 744. Taking this into 
account we will be able to give a generalization of Clemen's result in the following 
theorem and corollary. Earlier however we shall prepare a lemma. 

L e m m a 2. Let Assumptions A be fulfilled. Then the random vectors 

Z(t) =t-l>d-lQ-^fieiI{e2

i <ul) 
1 = 1 

and 

C« = t-U~l [Q-1 - Q-1ST(SQ~1S'rr1SQ-1]_Zfi ej{el < «*} 
i = l 

are asymptotically distributed as fc-dimensional normal vectors with zero means and 
covariance matrices given by 

tf-VO"1 (29) 



198 J.A. VISEK 

and 

respectively. 

d~2aeiQ-1 [X-ST{SQ-lSrí)-lSQ-1] , 

P r o o f . We shall use Varadarajan theorem (see Assertion A.l of Appendix). 
Let b £ Rk be nonzero otherwise arbitrary vector. We shall verify of course the 
assumptions of the central limit theorem for bT^ and bT^l\ Denoting for j , £ = 
1,2, — , A; qji = {Q~l)jt, we have 

5 T í W = t-^-lbTQ-1^2f.Єil{є2<u2a] 

І=l 

= t-ïů-^Єiąє2 KulVYbjJ^ fu. 
3=1 1=1 i=l 

Put 
k k 

Wi = t-h-'eiltf < u*})J>£«?,//«. 
3=1 1=1 

F o r i = l,2,...,tandj,t= 1,2,...,k we have E {E [e.J{e? <ul})fi(\fi]} = 0, 
so that 

EWi = 0. (30) 

Similarly 

EW2 = t~Ч-2a2

ЄlE 
k k 

j=l £=1 

п 2 

= t-l-d~2a2

eiE 
k k 

YbjY,ЯjefiЄ 
j=l e=i 

t-Ч^alўQ-^EІFjғĄQ-Ч 

Y^br^Qrsfa 
.r=l s=l 

= ů-2a2
ЄlЬ

тQ-lЪ < o o . 

I oo 

(31) 

Since the sequence {TVi}^ is the sequence of independent and identically dis
tributed random variables, and b was arbitrarily selected vector from Rk, taking 
into account (30) and (31) and employing Lindeberg-Levy and Varadarajan theo
rems, we conclude the proof of the first assertion of lemma. 

The second assertion of lemma can be proved along similar lines. • 

T h e o r e m 1. Let Assumptions A be fulfilled. Then the conditional asymptotic 
variances 

v a r ^ ^ r ^ - ^ + J I / m ) and var (7* $£"•'•*> - 6°t+1)\ft+1) 



Combining Forecasts Using the Least Trimmed Squares \QQ 

are given by 

and 

0-20eif?+iQ-1ft+i (32) 

0" 2 * e J t+ i [Q'1 - Q-lST(SQ-1ST)-lSQ~1] ft+1. (33) 

P r o o f . Let us fix an arbitrary <5 G (0,1) and find K > 0 so that for any t € N 
for 

Bt = {u, € fi : H/tMII > K} 

we have P(Bt) < S (due to the fact that all /i 's are identically distributed, it is 
possible). Moreover, denoting by D^t)(y) the distribution function of £ ^ and by 
Dtf(otV) (v) fc-dimensional normal distribution with zero mean and covariance matrix 
V given by (29), due to Lemma 2 we may find t0 G N so that for any t > t0 

sup \Det)(y)-DM{0iV)(y)\ < —. 
y£It Iv 

Now for any t > t0 and any u G -Bt+i we have 

S l ^ + i ^ 0 ^ ~ ^(o,AT
+ 1v/ t + l )(»)l < * 

where we have denoted by D^T ^ (O (J/) and D^-^JT v/f+1)(y) the distribution func
tions of fj+i^ and of normal random variable with zero mean and variance fj+l V/t+i-
Since 5 was arbitrary, the proof of the first assertion of the theorem follows. 

The second assertion can be proved in a similar way. • 

Corollary 1. Let the Assumptions A be fulfilled. Then the approximate confi
dence interval (on any significance level) for Q(^S^H) JS n 0^ w i d e r than that one for 
MLTS,t,h) 
ut+i 

P r o o f follows from the definite positivity of the matrices at (32) and (33). 

7. NUMERICAL ILLUSTRATION 

As we have promised we shall give now a numerical example demonstrating how the 
theoretical result works. To offer comparison with the previous results for LS- and 
for M-estimators, we shall use the same data as in Visek [14]. They were originally 
given in Holden and Peel [5] and they describe the economic growth in United 
Kingdom since 1977/1 to 1985/2. The abbreviation in the next table means that 
the forecasts were prepared by the Henley Centre for Forecasting, by the London 
Business School, by the National Institute of Economic and Social Research, by the 
Organization for Economic Co-operation and Development and, finally, by Phillips 
and Drew. The data are presented in the following table. 
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Table 1. Economic growth in U.K. 

Case Yeaг нcғ LBS NI OECD PD Gгowth 

1 1977/1 2.5875 2.650 1.270 1.125 -0.400 1.76899 

2 1977/2 3.0375 2.360 3.310 1.000 1.000 3.62319 

3 1977/3 3.4500 2.240 3.150 1.875 1.500 3.40205 

4 1977/4 3.0750 2.050 2.570 1.500 -0.400 2.76075 

5 1978/1 3.1000 3.470 3.460 2.875 -3.000 2.04499 

6 1978/2 2.9125 3.340 1.470 2.000 2.200 3.39661 

7 1978/3 3.2125 1.660 0.830 2.125 3.000 2.79163 

8 1978/4 3.1375 2.820 2.620 1.750 4.500 2.58706 

9 1979/1 2.7000 3.160 2.960 1.875 3.500 2.30461 

10 1979/2 1.9250 3.100 1.980 1.500 0.900 -2.70532 

11 1979/3 0.3375 -0.930 1.100 2.625 -0.400 -3.68575 

12 1979/4 -0.1375 -0.100 0.820 1.000 0.800 -5.04364 

13 1980/1 -1.9000 -0.980 1.850 -1.625 1.500 -3.91773 

14 1980/2 -1.0125 -0.040 0.470 -0.500 -3.700 -2.58193 

15 1980/3 -0.6375 -0.200 1.600 2.750 -2.600 -0.50352 

16 1980/4 -0.5500 1.980 1.130 -1.000 -5.000 2.04290 

17 1981/1 1.4000 2.270 -0.050 -1.000 -5.600 1.63099 

18 1981/2 -0.4500 2.480 -0.230 -1.250 -4.500 2.34455 

19 1981/3 0.5500 2.560 0.150 -0.250 -2.400 1.31579 

20 1981/4 1.4500 2.470 0.530 0.750 -0.500 1.10111 

21 1982/1 -1.7500 2.790 0.310 1.000 1.000 3.10932 

22 1982/2 1.6375 3.020 1.090 1.750 1.800 2.49004 

23 1982/3 1.9375 2.910 0.860 1.750 1.200 4.09591 

24 1982/4 2.2875 2.180 1.850 1.625 0.400 4.05940 

25 1983/1 1.6250 2.210 1.780 1.500 1.300 3.11285 

26 1983/2 2.1375 2.120 1.250 1.625 2.400 2.62390 

27 1983/3 2.5125 2.920 1.200 2.375 3.000 2.69714 

28 1983/4 2.0875 2.430 1.100 2.250 3.400 2.66413 

29 1984/1 2.5000 2.360 1.980 2.250 1.700 3.30189 

30 1984/2 2.2500 4.050 3.050 1.750 3.900 4.92424 

31 1984/3 2.1000 2.220 3.740 2.750 2.710 3.45794 

32 1984/4 2.3500 2.180 2.950 2.000 2.980 2.78035 

33 1985/1 2.8300 3.400 1.360 3.630 2.810 2.37442 

34 1985/2 2.4500 2.600 1.350 2.880 2.740 1.35379 
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The next table (Table 2) was taken from Vfsek [14] to give the reader a possibility 
to compare directly the predictions prepared by means of the least squares and 
by means of the least trimmed squares. Both tables (Table 2 and 3) gather the 
successive sums of squared differences (d[!£s'tth\-0t+i)2 and (^f5 ' i , / l ) - 6t+1)

2 

for the period since 1982/2 to 1985/2, i.e. for the same period as in Visek [14]. 
(We have started from 1982/2 and not from 1982/1 because the combined forecast 
prepared by means of p^LS^ had very large error just when predicting on 1982/1.) 
As it is indicated at the head of tables we have considered all possible models, i. e. 
models with or without intercept, with or without constraints and the sums 

£ (C* t , f c ) - ft+0' and £ (*[£*'•*> - 0ř+iy 
t=22 t=22 

(34) 

for £ = 22,23,. . . , 34 were collected in the tables. 

Table 2. Cumulative losses of forecasts - Least squares. 

Period Forecasted 

value 

Cumulative łosses 

Period Forecasted 

value 

With intercept Without intercept Period Forecasted 

value Without 
constraints 

With 
constraints 

Without 
constraints 

With 
constraints 

1982/2 2.490 0.073 0.310 0.000 0.457 

1982/3 4.096 3.527 1.304 2.076 1.269 

1982/4 4.059 9.739 5.012 7.250 4.697 

1983/1 3.113 12.356 6.236 9.406 5.825 

1983/2 2.624 13.328 6.236 9.515 5.825 

1983/3 2.697 13.370 7.012 9.748 6.620 

1983/4 2.664 13.691 7.077 9.763 6.704 

1984/1 3.302 15.099 7.741 11.121 7.282 

1984/2 4.924 15.708 9.312 14.081 8.752 

1984/3 3.458 18.479 12.556 19.705 12.553 

1984/4 2.780 18.997 12.710 20.253 12.978 

1985/1 2.374 21.240 15.418 21.803 14.653 

1985/2 1.354 22.444 17.910 23.574 16.709 
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Table 3. Cumulative losses of forecasts - the Least Trimmed squares. 

Period Forecasted 

value 

Cumulative losses 

Period Forecasted 

value 

With intercept Without intercept Period Forecasted 

value Without 
constraints 

With 
constraints 

Without 
constraints 

With 
constraints 

1982/2 2.490 0.1811 0.1822 0.7018 0.1257 

1982/3 4.096 4.1263 4.8516 3.7062 4.6367 

1982/4 4.059 8.5138 7.9669 7.8661 8.1897 

1983/1 3.113 9.5638 8.5913 8.5033 9.1743 

1983/2 2.624 11.7590 8.9688 8.6232 9.4879 

1983/3 2.697 12.1565 9.7919 8.9712 10.2122 

1983/4 2.664 14.0899 9.9348 9.0334 10.4225 

1984/1 3.302 14.3538 10.0405 9.5536 11.3630 

1984/2 4.924 17.0939 12.2915 14.0979 12.3501 

1984/3 3.458 18.4300 13.7886 14.4764 12.7249 

1984/4 2.780 18.4305 14.0241 14.4825 12.8664 

1985/1 2.374 22.4658 22.6739 15.2322 12.9524 

1985/2 1.354 23.6412 23.5476 16.0211 13.2033 

We may see that the cumulative sums given in the last row of Table 2 and 3 are 
smaller for models without intercept. It may seem to be in a contradiction with the 
assertion that it is usually recommended not to delete intercept from the regression 
model, even in the case when it is indicated (by the corresponding t-statistics and 
p-value) that the intercept is not significant, see e.g. Visek [13]. 

First of all, we have to distinguish between the situations when we look for an 
explanation of data and when we look for a forecast (in the latter one, the quality 
of the forecast is typically measured by the mean square error). In situation when 
we look for a forecast, as after all Clemen's result showed, under assumption that 
the "true" model does not include the intercept, the results are better for model 
without intercept. 

One can compare the desired results, namely sum of squared errors of the forecasts 
prepared by means of the ordinary least squares (Table 2) and by means of the least 
trimmed squares (Table 3). Relatively small values of sums of squared errors of 
forecasts prepared by means of the least squares (see the last value in the last row 
of Table 2) indicated that the data are not too much contaminated. Nevertheless 
the least trimmed squares have succeeded to improve a bit (about 21%) the final 
results. 
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8 . CONCLUSIONS 

It suffices a brief look into e . g. Journal of Forecasting and one cannot longer hesitate 
tha t combining the forecasts occupies a considerable par t of theoretical research and 
plays an important role in applications. After all, we have already in the introduc
tion reminded the reason for it. We have also recalled why employment of robust 
methods, especially with high breakdown point, may be effective in combining the 
forecasts. Hence it is plausible tha t the theoretical considerations which had been 
made in present paper have confirmed tha t Clemen's result could be generalized also 
on the least t r immed squares. The short numerical s tudy presented above than gave 
a very first idea how useful the employment of such method may be. On the other 
hand, as the rows at the middle of the Tables indicate, the asymptotics will work 
bet ter for larger data . To give a more complete picture of possibilities of robust 
procedures in combining the forecasts a large study is to be carry out with more 
contaminated data . T h a t is why the implementation of method is offered to be sent 
on request. 

A P P E N D I X 

A s s e r t i o n A . l . Let Dt be the distribution function of k-dimensional vector 
(/a» / i2, • • • » /i/c)T) i = I? 2 . . . . and D^^ the distribution function of the linear com
bination bifn + b2fi2 + . . . + bkfik- Necessary and sufficient condition for the conver
gence of the distribution function Dt to a ^-dimensional d. f. D is t ha t Dbit converges 
to a d.f. for any b. 

For the p r o o f see Rao [8] (also Varadarajan [11] or Wald and Wolfowitz [22]). 

Specification of the assertion for normal distribution (which also shows tha t re
spective moment correspond) can be found also in Rao [8] (such assertion is not 
isolated there, however it is simple consequence of Assertion A . l ) . 

(Received September 10, 1999.) 
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