
K Y B E R N E T I K A - V O L U M E 37 ( 2 0 0 1 ) , N U M B E R 1, P A G E S 7 9 - 9 0 

COMPUTING THE DISTRIBUTION OF A LINEAR 
COMBINATION OF INVERTED GAMMA VARIABLES1 

VIKTOR WlTKOVSKY 

A formula for evaluation of the distribution of a linear combination of independent 
inverted gamrra random variables by one-dimensional numerical integration is presented. 
The formula is direct application of the inversion formula given by Gil-Pelaez [4]. This 
method is applied to computation of the generalized p-values used for exact significance 
testing and interval estimation of the parameter of interest in the Behrens-Fisher problem 
and for variance components in balanced mixed linear model. 

1. INTRODUCTION 

Gil-Pelaez in [4] derived a version of the inversion formula which is particularly 
useful for numerical evaluation of a general distribution function by one-dimensional 
numerical integration: 

Theorem 1. Let (j)(t) = J^e1^ dF(x) be a characteristic function of the one-
dimensional distribution function F(x). Then, for x being the continuity point of 
the distribution, the following inversion formula holds true: 

™ • H f (! 
c(j)(t) - eltx(j)(-t) 

lit 

- HГ^Fñ^-
dt 

(1) 

P r o o f . See [4]. 

Furthermore, it is easy to observe that if the distribution belongs to the continuous 
type (if / \(/>(t)\ dt < oo) then the density function is given by 

f(x) = ±j (eitxct>(-t)-e-it^(t))^t 

*A version of this paper was presented at the conference DATASTAT '99 in Rusava-Jestřábí 
(Czech Republic), August 30-September 3, 1999. 
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1 r°° 
= - / Re (e-itx<t>(t)) At. (2) 

~ Jo 

The limit properties of the integrand in (1) are given by the following Lemma 1: 

L e m m a 1. Let F(x) be a distribution function of a random variable X with ex
pectation E(X) and its characteristic function (j)(t). Then 

Umlm (^'''M)} = E(X) _ x and lim Im (e~ltX(t>(t)\ = 0 (3) 
t->0 \ * / f-*00 \ t J 

P r o o f . We will show the first equality: 

9-it*AU\\ i /e-^(j) _e^(_£)\ , i m ,mf£ZM) = l i m U 
2í 

= 7 (« - * ' * ( í ) ) ' | í = 0 

= 7 ( H x ) e - " ^ ( i ) + e - i ' ^ ' ( i ) ) | t = 0 

= j(^'(.)Uo-^) = -5W-a:- (4) 

The second equality is direct consequence of the fact that the function e~ltx(f)(t) is 
bounded in modulus. • 

Consider now X = Yk=i ^kXk, a linear combination of independent random 
variables, and let <j>xk(t) denotes the characteristic function of Xk, k = l , . . . , n . 
The characteristic function of X is 

4>x(t) = 4>xl(Xit)~-4>xn(*nt), (5) 

and, the distribution function Fx(x) = Pr{X < x} is given by (1) with (j)(t) = <f>x(t). 
Notice that 

lim Im I6'11***®) = £ A*£(X*) - x, (6) 
^ ' k=l 

BmIm(«-»x(«n.ft (7) 
*->co \ t J V ' 

Formula (1) is readily applicable to numerical approximation of the distribution 
function Fx(x) using a finite range of integration 0 < £ < T , T < o o . In general 
a complex-valued function should be numerically evaluated. The degree of approxi
mation depends on the error of truncation and the error of integration method. 

An interesting application of the above inversion formula was given by Imhof in 
[5] who derived the formula to calculate the distribution of a linear combination 
of independent non-central chi-squared random variables X = Yk=i ^k^k> where 
Xk ~ xlk(fik)i w ^ h vk degrees of freedom and the non-centrality parameter 8\. 
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Imhof's algorithm does not require evaluation of the complex-valued function. Ob
serving that the characteristic function of X is 

4>x(t) = f [ cf>Xk(\kt) = f [ ( l - 2i\kt)~^ exp{ l5}*f | , 
k = l k=l I k J 

Imhof applied (1) and derived the distribution function of X as 

(8) 

F*(*) = Pr{X<*) = i- lГ ï ïMd, , , (9) 
2 тг jo UQ(U) 

where 

-xuђ 

/>/ % 1 A / /, x #|AfcU \ 1 

#(«) = 2 -"-- V * a r c t a n ( A f c U ) + ! I X2ui ) - 2a 

k=l ^ k / 

*•> = fl^^'^'^i^W)}' (10) 

are real-valued functions. 
In [12] the inversion formula (1) was used for exact computation of the density 

and of the quantiles of linear combinations of t and F random variables. 

2. INVERTED GAMMA DISTRIBUTION 

Let Z ~ G(a,/3) be a gamma random variable with the shape parameter a > 0 
and the scale parameter ft > 0. Random variable Y = Z~l, known as an inverted 
gamma variable, Y ~ 7G(a,/3), has its probability density function fy(y) defined 
for y > 0 by 

frw-?iW o r "»{-»}• (n) 

Theorem 2. Let V ~ IG(a,(3) be an inverted gamma random variable with its 
probability density function fy(y) given by (11). Then the characteristic function 
o f F i s 

2(-ittfaKaU(-i0)h) 
Mt) = E (e-) = - ^ L, (12) 

where -f-Ta(̂ ) denotes the modified Bessel function of second kind. 

P r o o f . Using the result of Prudnikov et al, see the formula 2.3.16.1 in [7]: 

u_ 

J~y»-ie-*y-i dy = 2 Q 2 Kv {2(w)-} , (13) 
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where */, p, q are complex numbers with Re(p) > 0, and Re(q) > 0, and Kv(z) 
denotes the modified Bessel function of second kind (see [1], p. 374), we directly get 
the Laplace transform of Y: 

2(0)i"KaU(0)i\ 

*<«-">—&m— ' - <14> 
Substitute t by e-it, e being a small positive real number. Then, for e approaching 0, 
we get that the characteristic function </>y (t) of Y is given by (12). • 

L e m m a 2. Let Y ~ IG(a,/3) be an inverted gamma random variable with char
acteristic function </>y(£) given by (12). Consider Z = XY, where A be a real num
ber. Let Kz(t) denote the cumulant generating function of .Z, nz(t) = \og(j>z(t) = 
log0y(A£). Then the first and second derivative of Kz(t) are 

**(-) = 7 + , .?*.*(-) , (15) 

where 

Ä(í) = ГT гг- ( 1 7 ) 

кa{Џ-itxß)Ҷ 

P r o o f . The result is easy to obtain by using the following property: 

[Ka(z)}' = -Ka+1(z) + -Ka(z). (18) 
z 

See [1], p. 376, equation 9.6.26. • 

Consequently, the expectation and variance of Z are given by 

E(Z) = Km^^j-1—, fora>l, (19) 
t->o ^ (a - \)p 

K" (t\ \2 

Var(Z) = l m _ 2 i _ = 7 -£— - , for a > 2. (20) v ' t->o z2 ( a - l ) 2 / 3 2 ( a - 2 ) 

The following Lemma 3 gives simple recursive relation for evaluation of the char
acteristic function of the inverted gamma random variable IG(a, /?) with a = n + §, 
where n = 0,1,2, This could avoid calling of the modified Bessel function Ka{z) 
during the numerical calculation. 
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Lemma 3. Let Yn ~ IG(an,/3) be an inverted gamma random variable with 
an = n + 1 and f3 > 0 for n = 0,1,2, — Let w = %(—2it)*. Then the characteristic 
function <j)n(t) of Yn is given as 

0o (*) = exp{-w} 
c/)i(t) = exp{-w}(l+ w) 

02(*) = exp{-w} ( 1 + w + -w2 j . 

For n > 2, 0n+1(£) is given by the recursive relation: 

(21) 

^ + l ( t ) = (2n + l)(2n-l)^- l ( f) + ^ ( 2 2 ) 

Proof. Equation 10.2.17, [1] p. 444, states that 

**w = (hYexp-z> 

K§(z) = ( i L ) 5
e x p - z ( l + 3 z - 1 + 3 z - 2 ) . (23) 

Define 

fn(z) = (-l)n+1(£)hKnH(z), (24) 

then, according to the equation 10.2.18 in [1] 

/n_i(*) - /n + 1(z) = (2n + l)z-Vn(z). (25) 

Prom (12) we observe that for n > 1 

KnH(w) = [2(n - 1) + 1]!! (-£-) * w~n<t>n(t), (26) 

where w = j|(—2it)2, and we get the required result. • 

Consider now a sample of independent variables V(ai,/?i)j-- • > (̂an,/?n)> where 
y(afc,0fc) ~ IG(ak,Pk), with ajb > 0 and ,13*. > 0, k = 1,.. . ,n, and define X = 
Ylk=i ^kY(ak>pk) a linear combination of n inverted gamma variables, with real co
efficients A*. Let <f>k(t) = E(exp{itY(akipk)}) denote a characteristic function of the 
distribution of Y(akipky 

The characteristic function (f>x (t) of X is given by (5) and the formula for eval
uation of Fx(x) is given by (1), using </>(t) = </>x(t)> Prom (6) and (19) we get 
also 
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and from (7) we get 

timlm(Cl^fl)=0. (28) 

If ak £ (0,1) for some subset of indices /c, k = 1 , . . . , n, the limit (27) does not exist 
and the result becomes more complicated as the limit of the integrand could be +oo, 
- c o , or a finite number (depending on the coefficients a&, /?£, and Afc). This suggest 
that the numerical integration in the range close to zero should be carried out very 
carefully if ak € (0,1) for some k. 

3. SOME NUMERICAL RESULTS 

Davies in [3] gave a general method for selecting the sampling interval which ensures 
the maximum allowable error e. He suggested approximation of the integral (1) 
using the trapezoidal rule 

P r { x < x } i _ i f I m f**i-Hk + i)**)*xUk+l)V\ m 
2 * k=0 V (fc+2) / 

where A > 0 is chosen so that 

max 
P ľ { x < x - 2 i } > P ľ { x < x + ï } < є 

2' 
(30) 

and K is chosen so that the truncation error is also less then f, i.e. 

1 £ I m /^H(*+ł)Д,}fa<(t+ ł)Д}Ч ^ s ( м ) 

For more details on finding the bounds A and K see [3]. For other details on 
obtaining distribution functions by numerical inversion of characteristic functions 
see [9]. 

Table 1 presents some results of numerical evaluation of the distribution function 
of different linear combinations of independent inverted gamma random variables. In 
fact, the table presents the probabilities, rounded to the fifth decimal place, that the 
random variable X exceeds given number x. The algorithm is a adirect application 
of (1), (27), and (28). 

The integral was computed on the finite interval {0,Tub) if the integrand has 
a finite limit as t approaches 0, or on the interval ( l O - 1 2 , ? ^ ) if such limit does 
not exist. The upper bound Tub was chosen such that the integrand function is in 
absolute value less then 10~7 for t > Tub. 

The algorithm was realized in MATLAB environment where the package for nu
merical evaluation of Bessel functions of a complex argument and nonnegative order 
is implemented, see [2]. 
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Table 1. Probability that X, the linear combination of independent inverted 
gamma random variables, exceeds x. Notice that Pr{K > x} = 1—Pr{K < x}. 
limt->o stands for a limit of the integrand as t approaches zero. Tub stands for 
the upper bound of integration. 

X = Y^ЬkY(аk,ßk) limt- TuЬ Pr{K > x} 

X\ = Y(0.5,2) 

X2 = Y(0.5,2) + ^(0.5,2) 

X3 = ^(1.5,2) + ^(2.5,2) 

XA = 31^(1.5,2) — 5V(2.5,2) 

K5 = 5Y(2.5,2) + ^(1,2) — ^(1,2) 

X6 = 21^(1,1.5) + ^(1,2.5) 

K7 = 332.313y(4.5,2) + 733.949Y(3,2) 

K8 = 1265.96y(i,2) + 668.634y(9,2) 

Xg = X7 — Xs 

X10 = X\ -f h Xg 

1 -j-00 104.74 0.68269 

1 -fco 36.97 0.95450 

1 0.3334 73.91 0.34260 

0 1.3334 32.75 0.53515 

1 0.6667 26.13 0.57869 

2 -foo 43.98 0.69683 

100 130.9605 0.48 0.93429 

500 -f-co 0.29 0.74890 

0 —00 0.17 0.05341 

0 -foo 0.05 0.67722 

4. APPLICATIONS 

In this section we briefly mention two applications on testing hypotheses and interval 
estimation based on the generalized p-values which lead to the problem of evaluation 
of the distribution function of a linear combination of independent inverted chi-
squared random variables. As xl IS a special case of gamma random variable with 
a = I and /3 = 2 the above mentioned method of evaluation could be used. 

4.1. Definition of generalized p-values 

The concept of generalized p-values has been introduced in [8, 10]. Several applica
tions for testing variance components in mixed linear models were given in [13]. For 
more details see also [6] and [11]. 

Consider an observable random vector X such that its distribution depends on 
the vector parameter f = (0,13), where 9 is the scalar parameter of interest and 1? is 
a vector of the other nuisance parameters. Further, consider the problem of testing 
one-sided hypothesis 

H0 : 9 < 90, vs. # i : 9 > 90, (32) 

where 90 is a prespecified value of 9. Let x be an observed value of the random vari
able X. Then the observed significance level for hypothesis testing is defined on the 
basis of a data-based generalized extreme region, a subset of the sample space, with 
x on its boundary. In order to define such an extreme region a stochastic ordering 
of the sample space according to the possible values of 9 is required. This could 
be accomplished by means of generalized test variable, say T(X,x,£). T(X,x,£) 
denotes a random variable which functionally depends on the random variable X 
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and also on the (nonstochastic) observed value x of X and the vector of parameters 

* = (M). 
A random variable T(X, x, £) is said to be a generalized test variable if it has the 

following properties: 

1. £obs = T(x,x,£) does not depend on unknown parameters. 

2. The probability distribution of T(X,x,£) is free of nuisance vector parameter 

3. For fixed x and d, and for any given t, Pr{T(X, x,£) < t} is a monotonic 
function of 6. 

If Pr{T(X, x, 0 > t} = 1 - Pr{T(X, x, f) < t} is a nondecreasing function of 0, 
then T(X, x, £) is said to be stochastically increasing in 0. If Pr{T(X, x, £) > t} 
is a nonincreasing function of 0, then T(X,x,£) is said to be stochastically 
decreasing in 0. 

If T(X,x,£) is a stochastically increasing test variable then the subset of the 
sample space Cx(£) = {y : T(y,x,£) > T(x,x,£)} is said to be a generalized 
extreme region for testing ffo against ffi and p = s u p ^ ^ Pr{X G Cx(£)\0} = 
SUP0<0O PT{T(X,x,£) > T(x,x,£)\0} is said to be its generalized p-value for testing 
ffo- Notice that if T(X,x,£) is stochastically increasing then p = Pr{T(X,x,£) > 
T(x,x,£)\0 = #o} and this p-value is computable, since it is free of the nuisance 
parameter tf. If T(X,x,£) is stochastically decreasing then the p-value is p = 
Pi{T(X,x,0 <T(x,x,£)\0 = 0O}. 

If the null hypothesis is right-sided, then the generalized p-value for testing ffo is 
p = Pr{T(X,x,f) < T(x,x,£)\0 = 0O}, itT(X,x,£) is stochastically increasing, or 
p = I>r{T(X,x,£) > T(x,x,£)\0 = 0O}, if T(X,x,£) is stochastically decreasing. 

4.2. The Behrens-Fisher problem 

Let X = (Xu...,Xm) ~ N(fiu<rl) and Y = (Yu...,Yn) ~ N(fi2,a
2) be two 

independent random samples from two normal populations characterized by pa
rameters fix, fi2, a2, and erf . L e t X = -^^Xk, Y = ^Y^k denote the sample 
means and S2 = ^- ]C(^k - X)2, S2 = £ J2(Yk - Y)2 denote the sample variances. 
(X,Y,S2,S2) consist a sufficient statistic for the parameters of the distribution. 
Notice that 

X~N(IH,^\ and Ý ~ N L2, ^) , 

m & 2 o r , j n c 2 2 

(33) 

- 2 ^ - x ^ - i and - ^ S f - x L i , (34) 
al a2 

are mutually independent random variables. 
Let 0 = fi\ — fi2 and d = (of, af)* The hypothesis of interest is 

ffo : 0 = 0O vs. ffi : 0 ^ 0O. (35) 

In this testing problem the parameter of interest is 0 and d is the vector of nuisance 
parameters. 
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Let x = ( x i , . . . , x m ) be observed X and y = (yi , . - . -yn) be observed Y. For 
testing Ho and interval estimation of 0 we shall define a generalized test variable 

T(X,Y,x,y,9,#) - {o± ~ ^ - - ^ + - - - j j • (36) 
\̂  m * n J 

Notice that for any given 0 = 0O, t0DS = (x — y — 0o)2 does not depend on unknown 
parameters and under Ho denote To = T(X, Y,x,2/,0o>$)- Then the distribution of 
T0 is 

\Am—1 An—1 / 

where Xi> Xm-i anc^ Xn-i symbolically denote independent random variables with 
chi-squared distribution with 1, m — 1 and n — 1 degrees of freedom. For fixed x, 
2/, and d = (cr^crl), T is stochastically decreasing for 0 > x — y and stochastically 
increasing for 0 < x — y. 

For any 0 the generalized p-value is defined as p(0) = P r{T > toos\0}. The 
significance test of the hypothesis Ho is based on p(0o)'-

p(9o) = P r / ^ L + ̂ L.(£^)!>0}. ,38) 
U m - 1 An-1 Al J 

We reject iIo if the p-value is small (smaller than chosen critical p-value, say pcrit = 
0.05). 

The 100(1 - Pcrit) % generalized p-value interval estimator of 0 is 

(x-y)±6crit (39) 

where the Scr[t is given by the following identity: 

Pcrit = Pr{^î- + - Ѓ - - % > 0 ) 
IXm- l Xn-1 Xl J 

(40) 

Example. We have generated two random samples X{ ~ iV(3,4), i = 1,..., 7, and 
Y,- ~ iV(5,9), j = 1,... ,10, and observed x = 2.871, y = 5.8685, 8? = 4.1014, and 
si = 7.5135. 

Then according to (38) the p-value for significance testing of the hypothesis H0 : 
0 = 0 against Hx : 0 ^ 0 is 

„ [4.1014 7.5135 (-2.9975)2 J „ ^ 0 „ / i l l X p = Pr{ =— + s 5 — ^ > ° f = 0.0424, (41) 
I Xe X9 Xi J 

so, for pcrit = 0.05, we reject the null hypothesis that 0 = 0. According to 
(39) and (40) the generalized p-value 95% interval estimate of 0 = jxi — /12 is 
(-5.8732;-0.1218). 
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4.3. Variance components in balanced mixed linear model 

Zhou and Mathew, [13], considered a problem that deals with hypothesis testing 
for variance components in balanced mixed linear model where exact F-tests do 
not exist. Satterthwaite's approximation of the distribution of the test statistic is a 
standard solution to the problem. The other possibility is the test using generalized 
p- values. 

Let of, / = l , . . . , r denote the variance components in balanced mixed model 
that has r random effects. Denote 9 = a\. The generalized testing problem is 

H0:9<90 vs. H1:9> 0O, (42) 

where 80 is a given constant. Let SSk, k = 1 , . . . ,ra, denote the required analysis of 
variance sum of squares such that 

SSx^iEMSi)^ SSk~(EMSk)xlk, A: = 2,...,ra, (43) 

where EMS\ = (a\9 + YA=2
 aiaf) a n d EMSk = ( ^ [ = 2 b^af), &1 and bki are known 

nonnegative scalars, and xlk> k = l , . . . , r a are independent central x2 random 
variables with i/ki k = l , . . . , r a , degrees of freedom. We shall suppose that the 
variables SSk, k = 2 , . . . ,ra, are sorted and denoted such that the unbiased analysis 
of variance estimator of 9 could be expressed as 

0 = L(^i + y ^ - y ^V (44) 
ai V Vl & Vk 4ti Vk ) 

Let ssk be the observed values of SSk. Denote SS = (SS i , . . . SS m ) , 85 = (ss i , . . .ssm), 
and i? == ( a ! , . . . , of). Then, the random variable 

T{SS, ss, 0, tf) = ~ < 1 T M < ! ^ <45> 
Z^k=lKEMSk)ssk' 

is the generalized test variable for testing H0 against .Hi. 
Notice, that £0bs = 1, so it does not depend on the unknown parameters, and 

that the distribution of T does not depend on the nuisance parameters a\,... ,a^, 
as 

« i * + ££•«•» j £ 

E q ssk 

Finally, since 6 appears with a positive coefficient in the numerator of T, it is clear 
that T satisfies the condition 3, and T is stochastically increasing in 9. 

For any 9 the test variable T is used to derive the generalized p-value 

p(0) = Pr{T>l\e} = FrU(±^- ± ^] < o) (47) 
[ ai \k=i x»>° k=q+i x»« J J 

T(SS,S3,9,4) ..-,, ,-,, * • (46) 
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Table 2. A study of the efficiency of workers in assembly lines in 
several plants. The sum of squares, degrees of freedom, and the ex
pected values of the mean sum of squares obtained by applying Khuri's 
transformation. 

Sum of squares DF Expected mean squares 

SBQ = 1265.96 2 Уlа2

а + За2
ß + 4 

SSß = 332.313 9 За2+а2
ßy + а2 

SB7 = 733.949 6 4<т7 + а2
ßl + а2 

SSßy = 668.634 18 а2
ßy + а2 

55 є = 246.245 47 а2 

For significance testing of Ho we use p(0o). We reject Ho if the p-value is small 
(smaller than chosen critical p-value, say pCrit = 0.05). 

The 100(1 - Pcrit) % generalized p-value interval estimator of 9 is 

(0L;0tf)n(O;oo), (48) 

where the lower and upper bound are given by the following identities: 

,-"-4-fes-i-s)<4 (49> 

for given p\ and p 2 , such that p\ +P2 = Pcrit, Pent G (0; 0.5). 

Example. A problem that deals with a study of the efficiency of workers in assem
bly lines in several plants was considered in [13]. The original data were unbalanced, 
with unequal cell frequencies in the last stage, however, by using the transformation 
given by Khuri, see [6], the exact F-test can be constructed for testing the signifi
cance of all the variance components except a^. Table 2 gives the sum of squares 
and the expected values of the mean sum of squares obtained by applying Khuri's 
transformation. 

The generalized p-value for testing .Ho : cr£ = 0 against the alternative Hi : a^ > 0 
is according to (47) equal to p = P r f -Xg < 0} = 0.0534, X9 is given in Table 1. 
Thus, comparing with pCrit = 0.05, the data do not provide strong evidence against 
H0. Choosing pi = p2 = 0.025, and according to (48) and (49), the generalized 
p-value 95% interval estimate of <j\ is (0; 2067.8). 
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