
K Y B E R N E T I K A — VOLUME 36 (2000) , NUMBER 6, P A G E S 6 5 7 - 6 7 0

ON A FUZZY QUERYING
AND DATA MINING INTERFACE

JANUSZ KACPRZYK AND SLAWOMIR ZADROŽNY

In the paper an interface is proposed that combines flexible (fuzzy) querying and data
mining functionality. The point of departure is the fuzzy querying interface designed and
implemented previously by the present authors. It makes it possible to formulate and
execute, against a traditional (crisp) database, queries containing imprecisely specified
conditions. Here we discuss possibilities to extend it with some data mining features. More
specifically, linguistic summarization of data (databases), as introduced by Yager [16], is
advocated as an interesting extension of simple querying. The link between linguistic
(fuzzy) data summaries and association rules is discussed and exploited.

1. INTRODUCTION

A fuzzy querying interface, as meant here, makes it possible for a user to employ his
or her own dictionary of linguistic terms to be used in queries. These linguistic terms
provide for a direct representation of presumed vagueness and imprecision of queries.
For example, a customer of a real-estate agency looking for a house would rather
express his or her criteria using imprecise descriptions as cheap, large garden, etc.
Also, to specify which combination of the criteria fulfillment would be satisfactory,
he or she would often use expressions like most of them or almost all (should be
fulfilled). The semantics for such linguistic terms is provided by fuzzy logic. This
idea has been implemented in the whole family of fuzzy querying interfaces, notably
the FQUERY for Access package proposed and implemented by the authors [6].

The possibility to use fuzzy linguistic terms should be attractive not only for a
non-expert, casual user. An implicit aggregation power of the proposed querying
formalism may also be useful for some decision making related databases inquiries.
This may be made even more attractive as the same linguistic paradigm and user
interface may be applied for the purposes of data mining. Linguistic, imprecise
terms used to represent rules, patterns etc. may much more easily account for
noisy, incomplete etc. data. Moreover, using a linguistic representation for pieces
of discovered knowledge, we can immediately present it to the end-user, without
any additional representation transformations. For example, a database summary
like "most our customers are reliable" may be more useful than, say, "65 % of our

658 J. KACPRZYK AND S. ZADROZNY

customers have paid at least 70 % of their duties in less than 10 days". From this
perspective, fuzzy (linguistic) queries are directly applicable for the data mining
purposes. Both approaches may be regarded as dealing with the same building
blocks. Moreover, the data mining efforts may be guided by a recorded history of
fuzzy queries posed against a given database.

The structure of the paper is as follows. First, we briefly sum up Zadeh's calculus
of linguistically quantified propositions that is a formal foundation for our approach
to fuzzy querying as well as database summaries. Then, we briefly introduce Yager's
concept of linguistic summaries of databases extending it towards a richer structure.
We introduce a classification of database summaries based mainly on their complex
ity. In the next section, we propose to adapt well-known association rules mining
algorithms as a viable solution for mining more complex database summaries. Fi
nally, we present how the mining of linguistic summaries may be embedded within
our fuzzy querying interface. We conclude the paper with ideas for further research.

2. CALCULUS OF LINGUISTICALLY QUANTIFIED PROPOSITIONS

A calculus of linguistically quantified propositions, as introduced by Zadeh [17, 18],
makes it possible to calculate the truth-value of a proposition of the following type:

Qx's are S * (1)

where Q denotes a fuzzy linguistic quantifier (e. g., "most"), X = { # i , . . . , x n } is a
universe of discourse, and S(.) is a property (predicate) which is assumed fuzzy and
its interpretation may be informally equated with a fuzzy set, i.e.:

truth(S(xi)) = /JLs(xi).

In the context of database querying, such a linguistically quantified proposition
may be exemplified by:

"Most (Q) rows (x's) match the query (5)". (2)

The scope of the quantifier F may be added yielding

QFx's are S (3)

exemplified by:

"Most (Q) rows (x's) passing filter (F) match the query (5)". (4)

Here, F may be treated as another fuzzy property, i.e.:

truth(F(xf)) = fJLF(xi)-

Basically, Zadeh's calculus consists in devising a way to find truth(Qx's are S)
in case of (1) or truth(QFx's are S) in case of (3).

On a Fuzzy Querying and Data Mining Interface 659

As mentioned above, properties S and F are assumed to be fuzzy and equated
with fuzzy sets in X. Linguistic quantifier Q is also represented by a fuzzy set, this
time in [0,1] as, e.g.,

{ 1 for y > 0.8

2 t / -0 .6 for 0.3 < y < 0.8 (5)

0 for y < 0.3.
Then
truth(Qx's are S) = fiQ (£Count (S) /£Count(.K)) = /xQ f -]T/xS(xi)) (6)

and

truth(<2PVs are S) = fiQ feCount(F and S) / £ C o u n t (F)) =

(n \ n

^(/ iP (Xi) AfiS(Xi) I / ^ M ^ i)) (7)
i= l / i= l

where "A" is the minimum operation, i.e., a Aft = min(a, b), that, in general, can be
replaced by another £-norm, and ^Count is (nonfuzzy) cardinality of a fuzzy set.

3. LINGUISTIC SUMMARIES OF A DATABASE CONTENT

Data mining, also known as knowledge discovery in databases, is concerned with
the seeking for interesting patterns, dependencies, regularities etc. in bodies of
data stored in databases. A database represents a part of the real word under
consideration as, e.g., customers, employees, orders etc. of a company, and their
relationships. Here we consider the relational database model. Then, the primary
component of a database is a table that may represent both particular objects of
the modelled reality and relationships between them. In the former case, the table
collects information on the whole class of objects of the same type (e. g., customers),
characterized by a set of attributes (columns). Each row of the table describes one
particular object from a given class. One of basic services offered by a database
management system (DBMS) is to find objects from a given class that meet some
conditions. Such conditions taken together form a query that is processed by the
DBMS giving as the result a set of rows (objects).

There are many formalisms used to construct queries, but the most popular is
without a doubt the Structured Query Language, SQL. SQL, supported by most of
the commercially used DBMS's, offers a rich functionality solving most of typical
business-related data processing tasks. Still, there are many enhancements as well as
completely new concepts around. For example, the object-oriented paradigm and its
associated query languages promise a better representation and processing of more
complex data structures. For the topic of this paper two other arguable limitations
of classical query languages, including SQL, are important.

660 J. KACPRZYK AND S. ZADROZNY

Firstly, a precise specification of conditions of a query is not always possible. The
use of linguistic terms, imprecise or vague, is often postulated. For example, the user
may be interested in retrieving some data concerning "young employees". While the
meaning of "young? is usually obvious for a human being, it may be difficult to
express it using a precise criterion of the form "age < T. Whatever number we put
in place of "?", the criterion will still be not satisfactory. Moreover, it is argued
that the concepts such as "young require to abandon binary logic: an employee
may be not only definitely young or not young, but also maybe young to some
extent, to a certain degree. There are some approaches based on the application of
fuzzy logic that address this problem. The concepts behind that as well as a pilot
implementation of the family of FQUERY packages proposed by the authors [6, 7]
belongs to them.

Secondly, sometimes the user would like to obtain some information on general
characteristics of the objects as, e.g., employees, whose description is stored in a
database. In such a case we might say that the user is looking for a summary of data.
The traditional query languages do not support well such queries as, e.g., "What
are predominant features of our employees?". Here, the user does not compose a
query but the situation is to some extent opposite. Namely, we expect some queries
matched by some majority of rows (objects) will be automatically constructed and
presented to us. This idea has been developed and studied by Yager [16].

Yager proposed to express a summary of the database using linguistically quan
tified propositions, as defined by (1) and/or (3). The former state properties of
the whole class of objects under consideration, e.g., "most employees are young".
The latter correspond to IF-THEN rules (i.e. have a conditional character) as,
e.g., "most young employees earn around 30,000 USD" what may be interpreted
also as "IF an employee is young THEN he or she earns around 30,000 USD". The
truth-value of a given linguistically quantified proposition, calculated as in (7), is a
primary measure of quality of a given summary. Practically, such a basic quality
indicator has to be supplemented with some measure of "interestingness" ("non-
triviality", "unexpectedness",...), see, e.g., [4, 5]. In his original approach Yager
does not envisage any specific algorithm to find "good" summaries.

In this paper we discuss the question of finding summaries in a more detailed
way. In order to do that we will analyse the structure of such a summary on an
example. Let us assume a database containing information on some companies.
Each company is described with a set of attributes, including Number of employees,
Volume of export and Profit. Then, we may consider the structure of the following,
exemplary, summary (corresponding to a linguistically quantified proposition, as
defined by (3)):

"Most companies employing small number of workers and exporting a lot ,~,
are highly profitable". ^ '

We can distinguish the following components of this summary (referring to the
filter F and query S mentioned in (3)):

Skeleton of the filter, i. e. the attributes that are constrained by the conditions

On a Fuzzy Querying and Data Mining Interface 661

appearing in the filter (here: Number of employees, Volume of export) together
with logical connectives (here: and).

Skeleton of the query, i. e. the attributes that are constrained by the conditions
appearing in the query (here: Profit) together with logical connectives (here
not used).

Fuzzy values defining actual fuzzy constraints put on the attributes in the filter
(here: small, a lot) and the query (here: highly).

Linguistic quantifier representing the fraction of rows (companies) matching filter
F that at the same time match the query S (here: most).

Now, let us consider a hypothetical subsystem of a database management system
that will support the generation of summaries. Basically, we can leave for this
subsystem all decisions as to the structure of the summaries sought. In a more
practical scenario, the user will indicate which table(s) and/or views are of interest.
Anyway, the search space includes here the skeletons of the filter and the query
as well as particular fuzzy values and a linguistic quantifier to be used. In such a
case the process of data summarization will be extremely time-consuming but may
produce really interesting results. Some approaches along this direction employed
genetic algorithm [3].

In order to limit the computational complexity of the problem, we may start
with a template of the summary, specifying most of its components and asking the
system to find the remaining ones. Again, in the extreme scenario, the user guesses
a candidate summary and the system only evaluates its quality.

There are many other scenarios, that locate themselves somewhere between these
two extreme cases, using more or less completely specified template of the sought
summaries. Let us consider the particular cases corresponding to the earlier identi
fied components of the summary. The simplest case concerns the linguistic quantifier
- it may be specified in the template or left out to be found by the system. In case
of filter F and query 5, more scenarios may be considered. Thus, depending on
the form of the template, we can introduce a certain classification of the summaries.
This classification is presented in Table 1. The components specified in the template
as well as sought are denoted in the following way:

• F (S) - the skeleton as well as embedded fuzzy values of the filter (query),

• Ffc (Sfc) - the skeleton of the filter (query),

Fv (Sv) - fuzzy values to appear in the filter (query)

Q - linguistic quantifier.

•

•

Summaries of type 1 and 3 refer to linguistically quantified proposition defined
by 1, while the other types are based on Definition 3.

The type 1 summary may be easily produced by a simple extension of fuzzy
querying as proposed and implemented in our FQUERY for Access package, see
the next section for more details. Basically, the user has to construct a query - a

662 J. KACPRZYK AND S. ZADROZNY

Table 1. Classification of summaries.

Type Given Sought Remarks

1 5 Q Simple summaries through ad-hoc queries

2 5 F,Q Conditional summaries through ad-hoc queries

3 Q,s'c Sv Simple value oriented summaries

4 Q,S*C,F Sv Conditional value oriented summaries

5 nothing 5 , F , Q , General fuzzy rules

candidate summary. Then, it has to be determined what the fraction of the rows
matching this query is and what linguistic quantifier best denotes this fraction. The
primary target of this type of summarization is certainly to propose such a query
that a large proportion, e.g., most, of the rows satisfies it. On the other hand, it
may be interesting to learn that only few rows satisfy some meaningful query. The
type 2 summary is an extension of a type 1 summary by addition of a fuzzy filter.
For more on these types of summaries, see for instance [8], and [2] for a non-fuzzy
approach.

The summary of type 3 is computationally much more difficult to be found. Its
most restricted (and most practical) version may be interpreted as expressing the
typical value of an attribute. In such a special case, query S consists of only one
simple condition built of the attribute whose typical value is sought. For example,
the template for such a query may look like follows: "Most customers are of (fuzzy
value) size". Here the system has to determine what fuzzy value (e. g., large, middle,
small), if any, makes this summary valid, i.e., true to high enough degree. If there
is such a fuzzy value, it may be interpreted as typical value for the attribute Size
of our customers. This type of summaries may be used with more complicated,
regular queries but it may quickly become computationally infeasible (due to the
combinatorial explosion) and the interpretation of results becomes vague. The type
4 summary may produce typical value of selected attribute for some, possibly fuzzy,
subset of rows.

The type 5 summary is the most comprehensive form considered here. Namely,
we do not assume anything about the structure of the summary sought. Thus, in
general what we receive is a set of IF-THEN rules. For a general form of such a rule
it is difficult to devise an effective and efficient generation algorithm, as mentioned
earlier. In the next section, we discuss a special case of Type 5 summary, for which
computationally efficient algorithms are known in the literature.

On a Fuzzy Querying and Data Mining Interface 663

4. LINGUISTIC ASSOCIATION RULES

The classification of summaries presented in the previous section clearly indicates
the type 5 summaries as the most interesting but most difficult to find. Here, we try
to explore a subset of type 5 summaries exploiting their similarity to what is known
in the literature as association rules [1].

Originally, the association rules wrere defined for binary valued attributes in the
following form:

A1AA2A...AAn->An+1. (9)

Such an association rule states that if for a database row all the attributes from
the set {Ai,A2,..., An} take on value 1, then also the attribute ;4n+i takes on value
1. A row in a database is said to support a set of attributes {Ai}i£i if all attributes
from the set take on in this row value 1. This form of association rules was motivated
by their early applications for so-called customer's basket analysis.

There are two measures of the quality of an association rule used:

- the support of a rule (9) is the fraction of the rows supporting the set of
attributes {.A*}, i G { 1 , . . . , n + 1}, and

- the confidence of a rule is the fraction of the rows supporting the set of at
tributes {-4;}, i € { l , . . . , n + l} among all rows supporting the set of attributes
{ A i } , t e { l J . . . , n } .

Thus, while the support determines a statistical significance of a rule, the con
fidence measures its strength in the database. Usually, we are interested in rules
having values of the support measure above some minimal threshold and a high
value of the confidence measure. Setting the threshold in a reasonable way, we can
essentially reduce the size of the space of possible association rules and at the same
time not ignore any interesting rule.

A number of efficient algorithms for finding all association rules possessing a
required support measure were devised, see, e.g. [1, 12]. The original concept of
the association rule essentially evolved over time but still the same algorithms are
applicable. The extensions to the initial form of the association rule include:

I. the right-hand side of (9) containing a conjunction of the attributes instead of
just one attribute,

II. so-called generalized association rules where cardinality of attributes' domains
may be grater than 2 and a hierarchies may be imposed on domains; [13],

III. numerical, real-valued attributes may be used in rules [14],

IV. some constraints may be imposed on combinations of attributes used in rules
[15].

In the context of database summaries the most important is the extension III.
Basically, the idea is to discretize the continuous domain and to treat every discrete
value as a new, artificial binary attribute. This way, it is possible to employ standard

664 J. KACPRZYK AND S. ZADROŽNY

association rules mining algorithm for binary attributes. Thanks to this extension,
we can interpret the association rules as a subset of our type 5 summaries. This
may be verified by the following observations. The left-hand and right-hand sides
of the association rule (9) correspond to the filter F and the query S of the sum
mary, respectively. The structure of such a filter and query is rather limited (just
a conjunction), but this simplicity secures the existence of efficient algorithms for
rules generation. The truth-value of the summary, defined by (7), corresponds to
the confidence measure of a rule.

The applicability of the linguistic terms (fuzzy values) for the construction of the
association rules was quickly observed, see, e.g. [10]. The concept of the querying
employing linguistic terms, as implemented in our FQUERY for Access package,
offers an interesting framework for the association rules mining. For example, the
discretization of the continuous domain is readily available. Namely, the domain of
an attribute is covered by linguistic terms, that are used for querying purposes. A
fuzzy querying-interface makes it even simpler as a dictionary of linguistic terms is
maintained for the user. Moreover, these linguistic terms are familiar for the user
as they were defined and tested by him or her in some fuzzy queries. Thus, the
meaning of rules produced using such linguistic terms (fuzzy values) should be much
more clear to the user.

The suitability of a fuzzy querying interface for association rules mining purposes
is verifiable also from the software engineering perspective. In the next section we
briefly present how it can be organized.

5. FUZZY QUERYING AND DATA MINING VIA FQUERY FOR ACCESS

Basically, the fuzzy querying, as meant here, consists in a use of linguistic terms in
queries. The meaning of linguistic terms is often vague. Thus, some special formal
means have to be adopted to deal with them. Moreover, it would be unreasonable to
require the answer for a vague query to be completely precise, following the classical
yes-no logic. Instead of a crisp set of matching database rows, a fuzzy query yields
a fuzzy set of such rows. Namely, each row is accompanied by its matching degree
against the query. We employ fuzzy logic to represent the meaning of the linguistic
terms used in queries. The following types of linguistic terms are considered:

- numerical fuzzy values, exemplified by young in "young employee",

- non-numerical fuzzy values, exemplified by Central Europe in "country is
in Central Europe",

- fuzzy relations, exemplified by much greater than in "export is much greater
than import", and

- linguistic quantifiers, exemplified by most in "most conditions have to be
met".

All these linguistic terms, are represented as fuzzy sets. Numerical fuzzy values
may be used in a query along with a numerical attributes and are defined as trape
zoidal fuzzy numbers in the domain of this attribute. In our approach, we make

On a Fuzzy Querying and Data Mining Interface 665

it possible to define the universal, context-independent numerical fuzzy values; for
more details see, e. g., [6]. Non-numerical fuzzy values are appropriate for qualitative
attributes. For example, an imprecise term "Central Europe" is meaningful only in
the context of attributes related to the country.

Classically, in a query particular conditions may be combined using the classical
logical connectives AND and OR. In our approach, linguistic quantifiers provide for
a more flexible aggregation scheme of conditions in queries. For example, instead of
requiring that all simple conditions are met, using an appropriate linguistic quan
tifier one may indicate that most of them are to be met. The linguistic quantifiers
are interpreted as in Zadeh's calculus of linguistically quantified propositions, see
Section 2.

The definition of a linguistic term consists of a label and a membership function
of the associated fuzzy set. Definitions of all linguistic terms known to the system,
including these defined by users as well as predefined in the system, are maintained in
the dictionary. This feature supports also data mining functionality, to be discussed
next. The concept of fuzzy querying, briefly presented here, has been implemented
in our software, the FQUERY for Access package. It is an add-in to Microsoft Access
providing the user of this popular desktop database management system with fuzzy
querying capabilities.

The fuzzy querying interface is itself an interesting tool for data mining. Ad-hoc
created queries, one of the simplest data mining techniques, become much more
powerful when linguistic terms are supported. Nevertheless, the implementation
of various types of summaries mentioned in Section 3 seems to be worthwhile. The
dictionary of linguistic terms plays here crucial role. These linguistic terms are main
building blocks of summaries. We need only an efficient, compatible with the rest
of the fuzzy querying system, procedure to find summaries. The type 1 summary
(referred to also as simple summary) require determining a linguistic quantifier best
describing the fraction of rows satisfying query S. Hence, we are looking for a fuzzy
set A in the space of linguistic quantifiers, such that:

VA(Q) = truth(Qx's are S) = JUQ I ^ / x s (x ;) / n J (10)

wrhere X = {x\,..., xn} is the set of rows.
FQUERY for Access processes the query in the usual way calculating the degree

of matching for each row. Additionally, all matching degrees are summed up yielding
the sum in (10). Then the results of the query, i. e. rows accompanied by a matching
degree, are displayed in the usual form. In another window, the sought fuzzy set of
linguistic quantifiers is shown, as shown in Figure 1. Currently, FQUERY for Access
does not support fuzzy filters. As soon as this capability is added, also summaries
of type 2 will be available.

In case of a type 3 summary (referred to also as typical values summary), the
quantifier and the structure of the query are given, but some conditions of the query
are not fully specified. Let us consider a simple example, where the query has the
form "export is ?". Thus, the query is not fully specified and the system has to check
with which linguistic term to replace the question mark so as to receive highest truth

ббб J. KACPRZYK AND S. ZADROŽNY

Fig. 1. An example of Type 1 summary.

value of resulting linguistically quantified proposition. Hence, in this case we are
looking for a fuzzy set B in the space of linguistic terms (numerical fuzzy values)
{VJ}, such that:

MB(Vi) = truth(Qx x.export = V*) (11)

where x.export denotes the value of attribute export for row x.
During the query processing the question marks are treated in the same way as

regular numerical fuzzy values. However, the matching degree is calculated not just
for one, concrete fuzzy value, but for all fuzzy values defined in the dictionary. The
matching degrees of the whole query against the subsequent rows, calculated for
different combination of fuzzy values are summed up. Finally, it is computed for
particular combinations of fuzzy values how well the query is satisfied when a given
combination is put into the query. Obviously, such computations are extremely
time-consuming and are practically feasible only for one question mark used in a
query.

Finally, we will briefly discuss how we implement a subset of type 5 summaries
using association rules mining algorithms. Our implementation of association rules
is based on Agrawal and Srikant's AprioriTid algorithm [1]. Basically, the original
algorithm (for binary data) consists in finding the iarge itemsets, i. e. the itemsets
for which the support measure (see Section 4) is greater than certain, pre-defined
threshold value. An itemset containing k items is called a fc-itemset.

On a Fuzzy Querying and Data Mining Interface 667

In our implementation we deal with real-valued attributes. Thus, following pre
viously mentioned approaches, for each such an attribute we introduce a number of
artificial attributes (items) which may be treated as binary attributes. For exam
ple, the attribute PRICE may be replaced with the following artificial attributes:
PRICEIsLow, PRICEIsMedium and PRICEIsHigh. The meaning of these attributes
is obvious: a row supports, for example, PRICEIsLow, if the value of the original
attribute PRICE in this row falls into interval identified as 'Low'. Instead of the
intervals of values, employed in non-fuzzy approaches, we use fuzzy values (linguistic
terms). The use of fuzzy values implies that a row supports given artificial attribute
to a degree from [0,1]. It is possible to use such a degree directly or to "defuzzify"
it employing a threshold.

The current implementation of the associations rules mining algorithm in our
FQUERY for Access package consists of the following steps.

Step 1. Selection of attributes and linguistic terms (fuzzy values) to be used
in association rules sought. The use of all attributes defined in the database (ta
ble or view) may be impractical for two reasons. First of all, it requires a lot of
computations. Secondly, some attributes may be a priori judged as non-interesting
components of the rules sought. The former reason applies also to the linguistic
terms (fuzzy values).

Step 2. For each pair (attribute,fuzzy value) new, artificial item is constructed,
as it is described earlier. All items constitute the set of 1-itemsets, LIS.

Step 3. The support for each 1-itemset is calculated. Here, the fuzzy querying
module is employed, as it is required to compute the matching degree of each item
(containing linguistic terms) against every row in database (table, view). Thus, as a
result we obtain a fuzzy set of rows supporting given item - the membership degree
equals the computed matching degree. Then, the the fuzzy support measure of the
item is the J^Count of this fuzzy set, while the standard, "crisp" support measure
corresponds to the classical cardinality of the a-cut of this fuzzy set (a corresponds
to one of the parameters of the algorithm - the threshold of matching). Optionally,
this or, other support measure may be employed in the next steps of the algorithm.

Step 4. The items with the support below the thresholdl and above the threshold2
are removed from the set LIS. The former condition is standard for the association
rules mining algorithm. The second condition is added here to avoid the items that
are present in almost all rows (this threshold is set 80-90%).

Step 5. The calculation of the support for 1-itemsets requires the matching degree
computation and is rather expensive. As this has to be repeated for fc-itemsets,
k > 1, we adopt here the idea of AprioriTid algorithm. Thus, the transaction table
indicating for each row, which 1-itemsets are supported by this row to the degree
higher than matching threshold, is created. This trick trades CPU complexity for
disk storage requirements.

Set k = 2

Step 6. The fc-itemsets are constructed, i.e., itemsets containing k items. This is
done as in the original AprioriTid algorithm.

668 J. KACPRZYK AND S. ZADROZNY

Step 7. The support for fc-itemsets is calculated. This is done as in the Step 3,
but this time the transaction table generated for (k - l)-itemsets is employed.

Step 8. These fc-itemsets that are supported to the high enough degree (above
thresholdl, are added to the set LIS.
IF no fc-itemsets were added to the set LIS THEN GOTO Step 10

Step 9. Similarly as in Step 5, the transaction table is constructed but this time
for fc-itemsets.
SET k = k + 1; GOTO Step 6

Step 10. Generate rules from large Z-itemsets collected in the set LIS. This is
done as in the standard algorithm.
STOP.

The procedure of generating association rules in FQUERY for Access is illustrated
in Figure 2.

Fig. 2. Setting parameters for Type 5 summaries (association rules) mining.

6. CONCLUDING REMARKS

We have advanced the concept of linguistic summarization of the database content.
The proposed classification of summaries takes into account their complexity. We
conclude that in case of some types of summaries it is fairly easy to find them. In
some other cases, especially type 5 summaries, it is generally very difficult. We

On a Fuzzy Querying and Data Mining Interface 669

consider the possibility to use well-known association rules mining algorithms t o

find a subset of type 5 summaries. In order to do that , we analyse the similarity of

both concepts. Finally, we discuss how summaries mining may be combined with

the flexible (fuzzy) querying. We briefly present a pilot implementation done within

our FQUERY for Access package.

Further research on efficient algorithms for linguistic association rules may be

fruitful. We are going to explore also the connections of the association rules and

classifiers as pointed out by some authors [11].

(Received June 13, 2000.)

R E F E R E N C E S

[-:

[2:

[з:

н:

[5:

[e:

[7:

[s:

[э:

[ю:

[ii

[12:

[iз:

R. Agrawal and R. Srikant: Fast algorithms for mining association rules. In: P r o c
20th Internat. Conference on Very Large Databases, Santiago 1994.
T. M. Anwar, H. W. Beck and S. B. Navathe: Knowledge mining by imprecise querying:
A classification based system. In: Proc. Internat. Conference on Data Engineering,
Tampa, USA 1992, pp. 622-630.
R. George and R. Srikanth: Data summarization using genetic algorithms and fuzzy
logic. In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay,
eds.), Physica-Verlag, Heidelberg - New York 1996, pp. 599-611.
J. Kacprzyk and P. Strykowski: Linguistic data summaries for intelligent decision
support. In: Fuzzy Decision Analysis and Recognition Technology for Management,
Planning and Optimization - Proceedings of EFDAN'99 (R. Felix, ed.), Germany
1999, pp. 3-12.
J. Kacprzyk and P. Strykowski: Linguistic Summaries of Sales Data at a Computer
Retailer: A Case Study. In: Proceedings of IFSA'99 (Taipei, Taiwan R.O.C), vol. 1,
1999, pp. 29-33.
J. Kacprzyk and S. Zadrozny: FQUERY for Access: fuzzy querying for a Windows-
based DBMS. In: Fuzziness in Database Management Systems (P. Bosc and J.
Kacprzyk, eds.), Physica-Verlag, Heidelberg 1995, pp. 415-433.
J. Kacprzyk and S. Zadrozny: Flexible querying using fuzzy logic: An implementa
tion for Microsoft Access. In: Flexible Query Answering Systems (T. Andreasen, H.
Christiansen and H. L. Larsen, eds.), Kluwer, Boston 1997, pp. 247-275.
J. Kacprzyk and S. Zadrozny: Data mining via linguistic summaries of data: An
interactive approach. In: Methodologies for the Conception, Design and Application of
Soft Computing (T. Yamakawa and G. Matsumoto, eds., Proceedings of IIZUKA'98),
Iizuka 1998, pp. 668-671.
J. Kacprzyk and S. Zadrozny: On summarization of large datasets via a fuzzy-logic-
based querying add-on to Microsoft Access. In: Intelligent Information Systems VII,
Malbork, IPI PAN, Warsaw 1998, pp. 249-258.
J.-H. Lee and H. Lee-Kwang: An extension of association rules using fuzzy sets. In:
Proc. Seventh IFSA World Congress, Prague 1997, Vol. 1, pp. 399-402.
B. Liu, W. Hsu and M. Yiming: Integrating Classification and Association Rule Min
ing. In: Proc. Fourth Internat. Conference on Knowledge Discovery and Data Mining
(KDD-98, Plenary Presentation), New York 1998.
H. Mannila, H. Toivonen and A. I. Verkamo: Efficient algorithms for discovering asso
ciation rules. In: Proc. AAAI Workshop on Knowledge Discovery in Databases (U. M.
Fayyad and R. Uthurusamy, eds.), Seattle 1994, pp. 181-192.
R. Srikant and R. Agrawal: Mining generalized association rules. In: Proc. 21st Inter
nat. Conference on Very Large Databases, Zurich 1995.

670 J. KACPRZYK AND S. ZADROŽNY

[14] R. Srikant and R. Agrawal: Mining quantitative association rules in large relational
tables. In: Proc. ACM-SIGMOD 1996 Conference on Management of Data, Montreal
1996.

[15] R. Srikant, Q. Vu and R. Agrawal: Mining association rules with item constraints.
In: Proc. 3rd Internat. Conference on Knowledge Discovery in Databases and Data
Mining, Newport Beach 1997.

[16] R. R. Yager: On linguistic summaries of data. In: Knowledge Discovery in Databases
(G. Piatetsky-Shapiro and W .J . Frawley, eds.), AAAI Press/The MIT Press, Menlo
Park 1991, pp. 347-363.

[17] L. A. Zadeh: A computational approach to fuzzy quantifiers in natural languages.
Comput. Math. Appl. 9 (1983), 149-184.

[18] L. A. Zadeh: A computational theory of dispositions. Internat. J . Intelligent Systems
2 (1987), 39-64.

Prof. Dr. Janusz Kacprzyk and Dr. Slawomir Zadrožny, Systems Research Institute,
Polish Academy of Sciences and University of Information Technology and Management,
ul. Newelska 6, 01-447 Warszawa. Poland.
e-mails: kacprzyk, zadrozny@ibspan.waw.pl

