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OPTIMAL RESOURCE ALLOCATION IN A LARGE 
SCALE SYSTEM UNDER SOFT CONSTRAINTS1 

ZDZISLAW DUDA 

In the paper there is discussed a problem of the resource allocation in a large scale 
system in the presence of the resource shortages. The control task is devided into two 
levels, with the coordinator on the upper level and local controllers on the lower one. 

It is assumed that they have different information. The coordinator has an information 
on mean values of users demands, an inflow forecast and an estimation of the resource 
amount in a storage reservoir. On the basis on this information it determines (by a nu
merical way) values of a coordinating variable transmitted to the local controllers. The 
ith local controller receives the measurement of the zth user demand and the value of the 
coordinating variable from the coordinator. On the basis on this information it calculates 
the decision on the resource allocation. 

For a coordination an isoperimetric constraint is proposed. Due to this, the lower level 
optimization problem consists in independent local tasks which depend on the coordinating 
variable. 

In the paper two strategies of the coordinator are proposed. The first algorithm is based 
on the open-loop feedback strategy, while the second one takes into account probabilistic 
constraints on the aggregate variable and on the amount of the resource in a storage 
reservoir. 

For static, scalar subsystems and a quadratic performance index some properties of an 
obtained solution are discussed. 

1. INTRODUCTION 

Control and optimization for large scale systems are usually based on a decomposi
tion of a global system into subsystems so as to decrease computational requirements 
and decrease an amount of information to be t ransmit ted to and processed by deci
sion makers. A conflict between local controllers is softened by the coordinator on 
the upper level, which performs some supervisory tasks. 

Decomposition and coordination methods have been developed for large scale 
systems . Studies on decomposition methods can be found e.g. in [3, 7, 8, 10, 11, 
13, 15]. A lot of these methods are applied to steady-state deterministic systems. 

1This work was partially supported by the Polish Science Research Committee under Grant No. 
8T11A01219. 
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Problems with different controllers and different available information are studied 
in the team decision theory, as well as in the hierarchical control [2, 6]. 

Control problems with decentralized measurement information become more com
plicated. In [16] it is shown that the Linear Quadratic Gaussian case is nontriv-
ial when the information pattern is nonclassical. Further results can be found in 
[1,2,14,17]. 

In the present paper there is discussed a problem of the resource allocation in 
a large scale system, in the presence of the resource shortages. The control task is 
devided into two levels, with the coordinator on the upper level and local controllers 
on the lower one. 

It is assumed that the coordinator has information on mean values of users de
mands, an inflow forecast and an estimation of the resource amount in a storage 
reservoir. On the basis of this information it determines (by a numerical way) values 
of an aggregate variable and then, (by an analytical way), values of a coordinating 
variable transmitted to the local controllers. 

The ith local controller receives the measurement of the zth user demand and 
the value of the coordinating variable from the coordinator. On the basis of this 
information it calculates the decision on the resource allocation. 

For a coordination an elastic constraint is proposed [4]. Due to this, the lower 
level optimization problem consists in independent local tasks which depend on the 
coordinating variable. 

The upper level numerical problem is the one of the coordinator, which chooses 
the values of the aggregate variables. 

In the paper two strategies of the coordinator are considered. 
The first algorithm is based on the open-loop feedback (OLF) control strategy 

and it is most closely related to [4]. From a problem statement it results, that 
some reserve capacity is necessary in a storage reservoir, which depends on a control 
variance. Sometimes it can be found by an analytical way. 

In the second algorithm the aggregate variable has a linear form and it is realized 
in a closed loop system. This strategy takes into account probabilistic constraints 
on the aggregate variable and on the amount of the resource in the storage reservoir. 

2. MODEL OF A SYSTEM 

Consider the system composed of M static subsystems (receivers of the resource), 
which derive the resources from the storage reservoir supplied by the inflow dn. 
Users' demands zn , £ = 1,2,.. . , M, n = 0 , 1 , . . . , 1V as well as the inflow dn, n = 
0 , 1 , . . .,1V, where N denotes the stopping time, are random variables with given 
probability distribution functions. 

In principle, the considerations concern the case of the shortages of the resource 
which means that sometimes users' demands cannot be fully satisfied. 

The performance index defining the losses resulting from a deficit of the resource 
in some period of time has the form: 

N M 
7=££B4-02 (-) 

n = 0 i = l 
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where E denotes the mean operation, zn is the demand of the ith subsystem in the 
period of time [n,(n + 1)] and un represents an amount of the resource assigned to 
the zth subsystem in the period of time [n, (n + 1)]. 

The problem is to allocate the resource from the storage reservoir into M sub
systems so as to minimize the performance index (1) under the constraint on the 
storage capacity: 

M 

hmin <hn+dn-^2Un< ftmax, n = 0, 1, . . . , IV (2) 
» = 1 

where hn, hmm, / im a x are real, minimum and maximum admissible amount of the 
resource in the storage reservoir; dn is the inflow. 

Of course, one can introduce costs of the control ul
n and consider the performance 

index in the general form: 

N M 

I = E £ £ ( Q U 2 + Gn<zn + Hnu»). (3) 
n = 0 »=1 

3. PROBLEM FORMULATION 

The complexity of the solution depends on information and control structures. 
In the present paper it is assumed the two-level hierarchical control structure 

with the coordinator on the upper level and the local controllers on the lower level. 
Proposed structure is justified for large scale distributed systems large (M), in which 
transmission of the demands zn , i = 1,2, . . . ,M, n = 0 , 1 , . . . , N to one central 
controller is difficult to realize. 

It is assumed that the coordinator has the information on the mean values of 
the demands zl

n = Ezni i = 1,2,.. . , M, n = 0 , 1 , . . . , IV, the inflow forecast and 
the estimation of the resource amount in the storage reservoir. On the basis of this 
information it determines (at time n) the amount of the resource en to be preleminary 
allocated to the receivers and then it calculates a value of the coordinating variable 
An, which is transmitted (e.g. by radio) to the local controllers. 

The ith local controller receives at time n the value of zl
n and the value of the 

coordinating variable An from the coordinator. On the basis of this information it 
calculates the decision ul

n. 
From assumed information and control structures it results that admissible con

trol law of the ith. local controller and the coordinator have the forms: ul
n = 

an(zn ,An) and en = c n (m n ) , An = 6n(en, z n , . . . , z^), respectively, where m n 

denotes the information available for the coordinator at time n. 
Additionally it is assumed that the functions an and cn fulfil the elastic constraint 

ElmnJ2<() = en (4) 
i = l 

where E\mn(.) denotes the condition mean, given m n . 
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The information and control structures imply that the constraint on the amount 
of the resource in the storage reservoir in the form (2) can not be taken into account 
by the coordinator (un and dn are random variables). 

In the sequel are discussed two modifications of the constraint (2). 
The first one relies on replacement (2) by: 

^min + A/ln < hn + dn - e n < /imax, en > 0 (5) 

where Ahn is a reserve capacity, hn)dn are estimates of hn and dn, respectively. 
Notice that for chosen realization it may happen that: 

M 

E<>«n- (б) 
i = l 

It suggests that some reserve capacity Ahn taken into account in (5) is necessary in 
the storage reservoir. 

The second strategy of the coordinator takes into account the constraints [5]: 

Prob(emm <en< e m a x ) > 2a - 1, a G (0.5,1) (7) 

Prob(hmm <hn< /im a x) > 2/3 - 1, p e (0.5,1) (8) 

where a,/? are given numbers. 

4. SYNTHESIS OF THE LOCAL CONTROL LAWS 

From assumed information and control structures it results that the local optimal 
control laws an°, i = 1, 2,..., M, n = 0 , 1 , . . . , N can be found by the minimization 
of the performance index: 

M 

In = Ej2K~<)2 (9) 
1 = 1 

under constraint (4). 
Using the method of Lagrange multipliers, we can take into account the constraint 

(4) in (9) and perform independently, for each subsystem, the minimization of the 
Lagrange function: 

L„ = EmiaE^xM - 4 ) 2 + 2An«„] (10) 

where E\zi \n denotes the mean operation given z n , An; An is Lagrange multiplier. 

Differentiating the expression in the bracket [•] in (10) with respect to un and 
equating to zero, the optimal control law takes the form: 

ttn = 4 + A„ (11) 

The values of An, n = 0 , 1 , . . . , N are determined by the coordinator and transmitted 
to the subsystems. 

Notice that for An = 0 users' demands can be fully satisfied. 
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5. SYNTHESIS OF THE COORDINATOR CONTROL LAWS 

The task of the coordinator at time n is to determine the values of the variables en 

and An. 
Substituting (11) into (4) we obtain An in the form: 

K = jj(en-zn) (12) 

where z„ = Y ^ , Ez\ = Y!Lx 4 -
Substituting (11) into (1) and, resulting from (12), the performance index for the 

whole system takes the form: 

' = i^X>»-*«)2- (13) 
n=0 

The problem of the coordinator is a numerical minimization of the performance 
index (13) with respect to en , n = 0 ,1 , . . . , 1V under the constraint (5) or (7)-(8) 
and then the determination of An according to (12). 

Notice that for en = J2i=i *n — *n, ^n = 0, which gives ul
n = zl

n. 
Determination of the optimal en by the minimization (13) under the constraint 

(5) may be difficult, even numerically. Thus it is proposed to solve a suboptimal 
problem based on the open-loop feedback (OLF) control strategy. 

In accordance with this idea, the coordinator determines at time n values of 
variables en+jy/|n = {ejfc|n}, k = n, n-f-1,..., n + N', which minimize the performance 
index: 

n+N' 

In=J2 (C*l» " ^ ) 2 (14) 
k=n 

under constraints: 

/imin + A / l n + / _ i </ ln+j |n, 5 = 1, 2, . . . , N' + 1 (15) 

e n + j | n > 0 , j = 0 , l , . . . , 1 V ' , (16) 

where hn+j\n is the estimate of the variable hn+j given information m n , N' is a 
moving horizon of the control. 

For realization, at time n, only en = en |n is applied. 

The estimate hn+j\n may be determined from the equation: 

n + j - l n+ j -1 

^n+j|n = hn\n + 2^ ^ 1 " " 22 ek\n> (17) 
fc=n kzzn 

where ftn|n and dk\n sire the estimates of the hn and dfc, given information m n . 
Determination of random variable estimate is known in the literature [9] and it is 
not discussed in this paper. 
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As it was mentioned earlier, the surplus of the resource over en is necessary to 
satisfy randomly increased demands and the reserve capacity Ahn should be in the 
storage reservoir. 

From (11) and (12) it results that: 

M M 

£«!.==*.+ £(**»-**»)• (is) 
«=i »=i 

Let un be the minimal value of the resource for which the probability that 

zd=i un < un g i y e n en is equal to 7, i.e.: 

prfx<<kj=7 (19) 

After substituting (18) into (19) we have: 

M 

Y^{zn-žn)<u*n-en\en 
Li=i 

= 1 (20) 

From (20) it results that: 
M 

Ahn = Fz-n
1(j)-J2'zn (21) 

*=i 

where Ahn = un—en and F~l(y) is the value of the inverse of a distribution function 

of Zn = E i = i 4 f o r S i v e n 7-
If the random variables zn9 i = 1, 2 , . . . , M are gaussian —> N(zn) an), then the 

random variable zn is gaussian —» N(Y^,i=i *n> \/Z)i=i an)' For g-ven 7. th e value 
of - F ^ H T )

 c a n ^ e f°u n ( i with using e.g. a toolbox Stats in Matlab. 

Example 1. Consider the system composed of M subsystems with gaussian de
mands 4 ->-V(3-l). 

In Table 1 are presented the values of Ah for different M and 7. 
Notice that for given 7, the ratio ^Mh _. decreases when number of the subsys-

terns increases. 

5.1. Synthesis of the aggregate variable en under the constraints 
( 7 ) - ( 8 ) 

The strategy of the coordinator presented above requires the determination of the 
reserve capacity Ahn and a good inflow-forecast. 
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Table 1. The influence of M and 7 
on the reserve capacity Ahn. 

7 ЛД 

0.98 6.5 

м = 10 0.90 4.05 

Eыi *» = 3 0 0.85 3.30 

0.80 2.65 

0.98 14.52 

M = 50 0.90 9.06 

ĽEi*» = "0 0.85 7.33 
0.80 5.95 
0.98 45.90 

M = 500 0.90 28.65 
£ £ *n = 1500 0.85 23.10 

0.80 18.80 

Now, it will be presented a strategy of the coordinator, which minimizes (13) 
under constraints (7)-(8) . In this algorithm it is assumed that: 

Єn = en + G(hn - Лn) (22) 

where e n , hn are mean values of the variables e n , /in, respectively, and hn is described 
by the equation: 

M 

-Wi = hn + dn-^2un. (23) 
1 = 1 

Substituting (18) into (23) we have: 

An+i = hn+dn-en (24) 

>M 
where dn = dn - J2i=i(*n - < ) • 

In the sequel it̂  is assumed that the random variables dn and ho are gaussian 
->i\r(Jn,<7d*), N(ho,<rh0), respectively. 

Substituting (22) into (13) it is obtained: 

1=TІE X > " - *«)2+G2(л« - л-)3]- (25) 
n=0 

After performing the mean operation of the both sides in (24) and subtracting from 
(24) we have: 

hn+1 = (l-G)hn + dn-dn (26) 

where hn+i = hn+i ~ hn+i • 
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Notice that the stochastic process hn, n = 0 , 1 , . . . does not depend on en. Then, 
the task of the coordinator is to minimize the performance index: 

N 

r = E^(en-zn)2 (27) 

n=0 

with respect to en , under the constraint: 

hn+i -K+dn-en. (28) 

Further constraints on en result from (7)-(8) and will be discussed in the sequel. 

5.2. Analysis of the constraints (7) — (8) 

Write the constraint (7) in the form: 

Prob(emin -en<en< emax - en) > 2a - 1 (29) 

where en — en — en. From (22) it results that 

en = en -en = Ghn. (30) 

Notice that the random variable en is gaussian —• IV(0, erg )> where cr\ = G2Ehn = 
G2a\ . 

It is seen that the inequalities: 

Prob(en < emax - en) > a (31) 

Prob(en < emin - en) < 1 - a (32) 

guarantee a fulfilment of the constraint (29). 
The inequalities (31), (32) can be written in the form: 

^ e n ( e m a x - e n ) > a (33) 

Fen(em\n - en) < 1 - a (34) 

where Fgn is the distribution function of the variable en. 
From (33) it results that: 

en <emSiX-Frn
1(a) (35) 

For a gaussian distribution function with a zero mean value it is true that F(z) = 
1 — F(—z). Then (34) can be written in the form: 

en>emin + Frn\a). (36) 

Finally we have: 
emin + Frn\a) <en< emax - Fin(a). (37) 
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After similar analysis we can write (8) in the form: 

hmin + Fr\l3) <hn< / im a x - Fr\l3). (38) 
*-n nn 

Notice that the constraints (37) or (38) are unfeasible in the case, when: 

I 7 » > CmaX " e m i" ~ ^ (39) 

or 

Fr\(3) > femax^min = - ^ . (40) 

The inequalities (39), (40) can be written in the form: 

« > -". (x) <41) 
-̂ ( 2 J ' / » > " . _ h r - (42) 

Remember that the random variables hn oraz en are gaussians —• 1V(0,o"- ), 
N(0,Gcren), respectively. Then the distribution functions Fgn(-) and Fj (•) in (41) 
and (42) depend on the distribution function of the random variable hn. 

From (26) it results that: 

<+1=(1-^M.+4_ (43) 

where <r], = £ « - < ) 2 . 

Let for given G and some n = n* the variance of the variable <J\ is maximal. 
Then the variance of the variable en* takes the maximum, too. Then for n = n* the 
distribution functions F-^ (-|--) and F ^ A i ) take minimal values, which depend 
on chosen G. 

The constraints (37) and (38) are feasible if: 

°<r,..(££) (44) 

C < f i , ( f ) . (45) 

The maximization of the expression: 

m
G a x - ( E - „ . + I \ . ) (46) 

provides the feedback gain G in (22) and gives the possibility to choose the values 
of a and /? as good as possible. 
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Example 2. Consider a system composed of M subsystems with gaussian demands 
zn -> 1V(1,3). Assume that emm = 0, emax = J2i=i ^>J*min = 0, ^max = 2 £ . = 1 z\. 

The values of G for given M, 1V and a\ = E(dn - dn)2 are presented in Table 2. 

Table 2. The influence of M, N 
and <Tdn on G. 

M N < G 

10 2 0 0.415 
. 5 0 2 0 0 

500 2 0 0 

10 3 0 0.480 

50 3 0 0 

500 3 0 0 

10 2 10 0.485 
50 2 50 0 

500 2 500 0 

10 3 10 0.485 
50 3 50 0 

500 3 500 0 

From Table 2 it is seen that for a large number of the subsystems the coordinator 
determines en in the open-loop system. 

From numerical investigations it results that for data from Table 2, the values of 
a and /? may be less then one. 

In the Tables 3 and 4 are presented the admissible values of en and hn resulting 
from (37) and (38) for M = 50, N = 2, tr_n = 0, G = 0 and M = 50, TV = 2, a\n = 
50, G = 0, respectively, given a and /?. 

Table 3. Admissible ên and hn for M = 50, N = 2, <i2
dn = 0, G = 0 

and chosen a, /?. 

a ß Rаnge of e n Rаnge of hn 

0 < o < 150 14.5 < Лi < 285 
0.98 0.98 0 < êi < 150 

0 < 2 < 150 

20.5 < Л2 < 279 

0 < ë0 < 150 9.06 < hг < 291 

0.90 0.90 0 < i < 150 

< 2 < 150 

12.8 <h2< 287 
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Table 4. Admissible ën and hn for M = 50, N = 2, adn = 50, G 

and chosen a, /3. 

(X ß Rаnge of en Rаnge of hn 

0.98 0.98 

0 < o < 150 

0 < ëi < 150 

0 < 2 < 150 

20.53 < Лi < 279.5 

29.04 <h2< 271.2 

0.90 0.90 
0 < ê0 < 150 
0 < i < 150 
0 < 2 < 150 

12.8 < Лi < 287.1 

18.1 <h2< 281.9 

Notice t h a t for G = 0, the variance of <r? increases when n increases, while the 

variance of o\n = 0. T h e n the range of en is e m i n < e n < e m a x , while the range of 

hn decreases for increased n. 

6. CONCLUSIONS 

In the paper the control of the resource allocation in the large scale system is con

sidered. An interesting point of the considerations is the assumption t h a t particular 

decision-niakers have different information . 

For assumed information and control structures it is possible to partially decom

pose the calculations and to realize the partially decentralized control. 

The problem stated in the paper and the proposed method of the solution make 

it possible to obtain the analytical optimal control laws of the local controllers. 

Two numerical algorithms for the coordinator are proposed. In the first strategy 

it is necessary to determine the value of the reserve capacity in the storage reservoir. 

For some distribution functions it can be done by an analytical way. 

In the second algorithm are introduced the probabilistic constraints on the control 

and state variables. T h e control law is assumed to have the linear form. Then the 

deterministic problem is solved during the realization of control. 

(Received January 22, 1999.) 
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