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LINEARIZATION BY COMPLETELY GENERALIZED 
INPUT-OUTPUT INJECTION1 

VIRGILIO LOPEZ MORALES, F. PLESTAN AND A. GLUMINEAU 

The problem addressed in this paper is the linearization of nonlinear systems by gener
alized input-output (I/O) injection. The I/O injection (called completely generalized I/O 
injection) depends on a finite number of time derivatives of input and output functions. 
The practical goal is the observer synthesis with linear error dynamics. The method is 
based on the I/O differential equation structure. Thus, the problem is solved as a realiza
tion one. A necessary and sufficient condition is proposed through a constructive algorithm 
and is based on the exterior differentiation. 

1. INTRODUCTION 

The problem addressed in this paper is the linearization of a nonlinear system by 
a generalized state coordinate transformation (cf. [5]), and completely generalized 
I/O injection (i. e. function of a finite number of input and output time derivatives, 
cf. [6, 15]). Its solution plays a key role in the synthesis of nonlinear observers 
[1, 2, 8, 16, 17]. The final goal is to build an observer, which has exact linear error 
dynamics, converges and is stable. 

The linearization by I/O injection has been mainly tackled with geometric tools 
[9, 11, 12, 18] and algebraic tools [6, 7, 10, 13], and used in also some practical 
applications [3, 14, 17]. Since about ten years ago, and specially in [17], time deriva
tives are used in the observer synthesis for bilinear systems with an application to 
biological systems. In [8], it is stated as a problem of resolution of partial differen
tial equations and solved only for 2 and 3 dimensional systems. In [16], only first 
order time derivatives are dealt with an algebraic method while [15] considers only 
input time derivatives. This paper is motivated by some recent results, where it is 
used numerical differentiation for observer synthesis (cf. [4]). Since the observabil
ity property assumption asked in [4], numerical differentiation is used to compute 
the necessary time derivatives of inputs and outputs, the state being derived with 
a static map. The main shortcoming is the high sensitivity to measurement noise 
(especially whether the derivatives are computed within a short sampling period). 

1Th is work was supported by the Institut de Recherche en Cybernétique de NANTES, IRCyN, 
UMR 6597, and CONACyT, Mexico. 
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In this paper, necessary and sufficient conditions (NSC) are given for the lineariza
tion of MIMO nonlinear systems by a generalized state coordinate transformation 
and completely generalized I/O injection. The fully constructive conditions of the 
existence of a solution are stated in terms of exterior differential systems. The 
method is based on the study of the structure of the I/O differential equations, and 
then the problem stated as a realization problem. Our practical goal is to build a 
Luenberger-like observer, which has stable linear error dynamics. 

This frame has been already used [6, 15]. In [6], a NSC is given for linearization 
by state coordinate transformation and I/O injection. In [15], linearization by a 
generalized I/O injection with only input time derivatives for MIMO systems is 
studied. This paper is a generalization of these results. The main problem for the 
generalization to MIMO case is that I/O differential equations associated to the 
output functions could be linearly dependent. The characterization of these output 
functions plays a key role in the solution of MIMO case. 

2. PROBLEM STATEMENT 

Let us consider the nonlinear system 

i = f(x,u), 

y = Kx)> 

where x G -Kn is the state, u G Mm is the input, y G Sip is the output; / and h are 
meromorphic functions of their arguments. 

In the sequel, nonlinear systems considered here are supposed to be generically 
observable [15] and will be called observable. 

Example . The following nonlinear system 

i i = x\u, 
(2) 

x2 = f(x,u), y = xx, 

is observable (generically) with a singular set in (x2 = 0, u = 0). 
Moreover, the k order time derivative of y (resp. u) is denoted t/*) (resp. u^). 

The system (1) is supposed to be under its I/O representation. Denoting A:,- the 
observability index of the output t/,- (cf. [9]). One gets a system of p I/O differential 
equations given by (1 < i < p) 

rikt) = Pi(yu--,y[kl-1\---,yP,---4k'-1\u). (3) 

where u := (u, u^\ • •, t^*1"1)) and Y%=i *f = n with ki > Ar2 > • • • > kp. 
The problem can be stated as a realization one and it consists in testing if the 

nonlinear system (1) is locally equivalent to a linear system up to a completely 
generalized I/O injection. The former system is assumed to be composed by p 
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blocks as follows (1 < i < p): 

CtT = C»2 

Ct2 = C»3 

C»5, = Ct«.+1 

6..+1 = Ci..+2 + ^ . . + i ( y ( 0 ) , - - , y ( 5 , ) , « , - - , « ( ? , ) ) 

Ci..+2 = C i . . + 3 + V i . , + 2 ( » ( 0 ) , - - - , I V ( ' ' ) , « , - - - , « ( ' i ) ) 

U = m.(iv (0 ) ,---,y ( , , ) ,«,--,« (« , )) 

Vi = Ci 

(4) 

where: 

- Si is the higher time derivative order of the outputs in the generalized I/O 
injection terms, 

- qi is the higher time derivative order of the input in the generalized I/O injec
tion terms, 

- y(r) is composed by the r-order time derivatives of outputs, which have an 
observability index greater than r — 1. 

Remark 1. 

- Obviously ki > 5,-. 

- The I/O differential equation associated to each block (4) can be written as 
follows: 

^]= E 4"j)- (5) 
j = j . + i 

The synthesis of an observer with linear error dynamics for (4) is then an easy 
task. For 

C = AC + y ( y , y ( 1 ) , - - , y ( , ) , « , « ( 1 ) , - - - , « w ) (6) 

where A and C are dual of Brunovsky form, an observer closed to the Luenberger 
one exists 

C = AC + r (y, i/(1), • • •, y ( , ) , « , « (1 ), • • • ,« ( ? ) ) + IC(C - 0 - (7) 

The choice of the eigenvalues of (A+LC) allows to have an arbitrarily fast estimation 
error decay. 
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Pгe l iminaг ies 

The method descгibed in this papeг is based on a structuгal study of the system 

I/O diffeгential equations. T h e next L e m m a is helpful to verify the integгability and 

independency of some I/O functions in order to proof the main гesult. This Lemma 

is based on the Poincaré's Lemma. 

D e f i n i t i o n 1. Let us use the vaгiables a Є Лix (resp. 6 Є Mp) where a i , • • • ,aд 

(resp. 6i, • • •, bp) aгe lineaгly independent. Moreoveг, let us define K(a, b) as the set 

of meromorphic functions. 

L e m m a 1. (Poincaгé) The differentialfoгmu; Є Span^/д b\ {dcti, • • • ,daл, dбi, • • •, 

d6 p } (a Є Rx and b £ Rp) is locally exact if and only if, dш = 0. 

A modified version of this Lemma follows 

L e m m a 2. Let us consider a diffeгential form UJ Є Span^/^ 6Ч {dai , • • •, da\) 

(a Є Mx and 6 Є Mp). There exists locally a function r)(a,b) such t h a t 

л дrj 

дa{ E u 

if and only if du A d&i A • • • A dbp = 0. 

R e m a r k . From now on, take the set of meromorphic functions K(ayb) as 

3. MAIN RESULT 

3.1 . P r e l i m i n a r y e x a m p l e 

Let us consider the system 

xi = xi — x 2 , yi = x i , 

X2 = — #3 + (^2 — ^ l ) • X4 — (Xl ~ X2)2, 

X3 = - x i + x 2 - x 3 + (xi - x 2 - 2 ) ( x i - x 2 ) 2 , 

X4 = x i , y2 = x 4 . 

(8) 

T h e o u t p u t t/i (resp. r/2) has an observability index k\ (resp. fc2) equal to 3 (resp. 1). 

T h e I/O differential equations are described by 

yi3) = yFim + iy^+y^iyi + yr), 
(i) _ ( 9 ) 

1/2 = m-
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By using [15], it is proved that it does not exist a state transformation such that 
system (8) is locally equivalent to a linear system modulo an output injection (with
out time derivatives of output). Consider now the following system in the particular 
form (4) 

Cn = C12, 2/1 = Cn, 

C12 = Ci3 + v?i2 (y i ,y i 1 ) ,y2) , 
(10) 

yuy\ .2/2J, 

C21 = y > 2 i ( y i , 2 / 2 ) , 2/2 = C21, 

with si = 1(< k\) and s2 = 0(< k2). If system (8) is locally equivalent to (10), then 
equations (9) have to have the form (5) 

(3) (1) , (1) 
Vi =¥>12 + P - 3 , 2/2 = ¥>21. 

Then, the functions (p\2i y?i3, ^21 have to verify 

<P21 = 2/1-

Note that these two equations are not independent: the first equation depends on 

t/2 . Then, the differential equation t/j is a function of (2/1,2/1,2/1 ,2/2,2/2) but y2 

is a known function given by the second equation of (9). y\ is then a function only 

of (yi, 2/i> 2/i2)> y2). A solution is 

*>» = y (
1

1)-(y (
1

1) + J / 1 ) ' *" = y \ l ) - { y [ l f - y ? ) + y2), 
<p2\ = y i -

3.2. Necessary and sufficient condition 

The main result is obtained using the exterior differential system theory, and gives 
the linearizing generalized state coordinate transformation, whether it exists. Non
linear system (1) is supposed to be observable and previously transformed in the p 
I/O differential equations (after state elimination). 

G.I.O.I.d. Algorithm 

(Al) For i := 1 to p, set <pia. := 0 and (from (3)) Pt
5t := P,. 

(A2) Si := 0 (to be increased up to ki — 1 if necessary) 

(A3) qi := 0 (to be increased up to ki — 1 if necessary) 

(A4) For k := st- + 1 to £,-, set 

pt-.= pt-x-['Pik-ip--k+1). (ii) 
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Let d\ (resp. p8i) denote the number of outputs whose the observability index is 
greater than (ki — k + Si) (resp. Si — 1). The differential form u;* is defined as (with 
A as the exterior product) 

W * - = V ---- dt/.^ + V ---- d u ^ (12) 

and 

. . f Ady A • • • A d^*-"1) A dyW. A • • • A d t / ^ for rff < p. , 
A d y t ' ' l : = ; d - + 1 (13) 

[ Adj/Adj/1) A • • • A dj/^'"1) A 1, for d ,*=p. . . 

f A 1 for <?.- = 0, 
Adu^'l := { (14) 

[ Adu A du A • • • A dm'1 1), otherwise. 

- If dw* A dj/'*'l A du^'l = 0, the function y?,jt is a solution of 

Y " g y > " dt/ ( , , ) I V aV>'* du ( ? , ) - u* for Jfc<Jfc-

h^ h^r1 " <15) 
y?ifc. = P*1, for k = ki. (last step). 

Return to A4. 

- If duJi A dt/t**l A du^'J T*- 0, the algorithm stops. System described by the I/O 
differential equation (3) is not linearizable for both values Si and qi. Return (whether 
k < ki, otherwise algorithm stops) to A3, A2 successively. 

A necessary and sufficient condition for the existence of the linearizing transfor
mation C = <l>(x, u, it, • • •, u(q~1)) is given by the following Theorem. 

Theorem 1. Nonlinear system (1) described by (3) is locally equivalent to (4) if 
and only if 

dw? Adyf5»lAdu^l = 0, (16) 

where 1 < i < p, Si + 1 < k < ki and uf}Adj^8t\ and A d u ^ as in the former 
algorithm. 

Whether conditions of Theorem 1 hold, the generalized state transformation C = 
<t>(x}u, • • •, u ^ - 1 ) ) steers system (1) into system (4). This transformation can be 
obtained for each block associated to the output y;, (1 < i < p), from system (4) as 
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follows 
<.i = M * ) . C,-2 = /.S1), ••• 

C.-..+2 = h\'-+1) - <pu,+i&0), • • • - y ( a , )-«, • • • -« ( ? , )) (17) 

c,-,.+3 = / lS
, , + 2 ) -^. )+i(-) -^.+ 2 ( ) 

C„. = ̂ - ^ - ^ . + i " + 1 ) ) - ^ " + 2 ) ) - • • • - m.-

Remark 3. Theorem 1 generalizes the results of [15]. In order to find this former 
result, consider st- = 0 in (13) (i.e. no output time derivatives are allowed in the 
I/O injection). Then ps% := p (the number of outputs) and equation (13) becomes 

{ Adydfc . ! A • • • A dypi for d\ < p, 
08) 

Al, for df =p. 

as in [15]. 

P r o o f of T h e o r e m 1. 
Sufficiency. Suppose that condition of Theorem 1 is verified. Then, there exists a 
function such that 

V* d(pik dviSt) + V " dVih dti(.«° - u>k for Jb < *• 

k*i9i) k^rJ (19) 
<Pikt=P?\ for * = *--. 

It is then possible at the end of the algorithm, to derive from (17), the generalized 
state diffeomorphism, which transforms (1) into (4). 

At each step, one gets (fik(y, • • •, y^St), u, • • •, TI^»)) for each block associated to an 
output variable of system (1) and from (17), dynamics of state variables of system 
(4) are known. From (5) one has that the (ki — Sj)th dynamic depends on the last 
(ki — 5, — l)th's one. Thus, the whole coordinate transformation is well characterized. 
System (4) is then fully known: system (1) is then locally equivalent to the system 
(4) by a generalized state coordinate transformation (17). Sufficiency of Theorem 1 
is proved. 

Necessity. Suppose that the generalized state coordinate transformation (17), 
which transforms (1) into (4), exists. Then the equation (5) is verified to both 
systems and for all the y,- functions. Applying the G.I.O.I.d. Algorithm, one gets: 

(k ) 
Suppose that i = 1 and k = s\ + 1, P[x := y\ , <p\Sl := 0 

P 5 - — f / iC * 1 " * - " 1 ) -1_ , „ ( * - - 5 - - 2 ) _L _L /„ 
M - V n + ¥>12 + }r{Plkl-3l 

Only the (k\ — l)th time derivatives of output functions that have an observability 
index larger to (ki — (s\ + l) + $i) := (k\ — 1) are independent of the lower-order time 
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derivatives, because the other time derivatives of output functions can be written 
as function on both I/O functions and their time derivatives with a smaller degree 
(see equation (3)). Note that all the generalized I/O functions of degree (Jfci — 1) 
are obtained from the <£>ii1_5l~ function. In d j 1 + 1 , one gets then the number of 
outputs that have an observability index greater than (ky — (s\ + 1) + si) = (ki — 1). 
Since the output function time derivative independency, and Lemma 2, there exists 
locally a function v^isi+i s u c h that a differential form (o>) can be written as follows 

rfM+-

Thus, (16) trivially holds for k = s\ + 1. The next steps follow the same lines for 
k = s\ + 2 to ki. Necessity is then proved for the first step, and by the same way 
for the following steps. D 

4. EXAMPLE 

Consider system (8) and the output yi (i = 1) (with k\ = 3). Set si = 0, (p\o := 0 
and Pi° := Pi . First one checks if there is a solution without output time derivatives 
in the output injection in the block associated to yi. 

Step 0. k = l. From (11), P / := P° - [y>i0]
(3) = Pf. 

By definition d\ (resp. pSl := po) is equal to 1 (resp. 2). 

The differential u\ is derived from (12) as u\ := [y\ +2y[ M dyi. 

From (13), da;} Ady2 ^ 0. Theorem condition does not hold. Then, a state coordinate 
transformation steering system (8) into (10) with s\ = 0 does not exist. 

Set 5i = 1, Pi := Pi and p n := 0. 

Step 1. k = 2. From (11), Pj2 := P / - fcnp) = P / . 
By definition d\ (resp. p\) is equal to 1 (resp. 2). 

From (12), one gets as u\ := [y\ +2y[ M dy[ K 

From (13), du\ A dyi A dy2 A dy^ = 0, Theorem condition holds and from (15) a 
solution reads as 

(1) , ( - )2 

v?i2 := yi -y\ + y\ • 

Step 2. k = 3. From (11), P 3 := Px
2 - [<pl2]M = y[l) • ( y ^ 2 - y ^ + w ) -

By definition, one gets df = 1, p\ = 2. 

From (12), one gets a;3 := (3y(
x

1)2 - 2y(
1
1) + y2) dy[l). 

From (13), da;3 A dyi A dy2 A d y ^ = 0, and then Theorem condition is satisfied. 
From (15) a solution reads as 

( i ) 3 , ( i ) ( i ) 2 

pis := y\ + y\ - yi - y\ • 
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The algorithm converges for the output t/i. 

Applying the algorithm, in a similar way, a solution reads for the output y2 as 
<P2\ = 2/1-

System (8) is then locally equivalent to: 

Cu = C12, 2/1 = Cii, 

C12 = Ci3 + 2/(
1

1)-(y(
1

1) + y 2 ) , 
' (20) 

; (i) / (1)2 (i) , \ v ' 

C13 = y \ } • \y\} -y\J + y2J , 

C21 = 2/1, 2/2 = C21-

where the state coordinate transformation defined by (17) follows: 

C11 = x\, 

C12 = xi-x2i / x 

t 4. ( 2 1 ) 

Cl3 = X\- X2 + £3 , 
C21 = X4. 

5. CONCLUSIONS 

A constructive Necessary and Sufficient Condition was obtained for the problem 
of linearization of nonlinear systems by generalized state coordinate transformation 
and generalized I/O injection for MIMO system case. The results are based on 
the computation of some differential one-forms and integrability conditions and is 
motivated by some recent results [4]. A practical goal of this result is the nonlinear 
observer synthesis with linear error dynamics, depending on both time derivatives 
of I/O functions if necessary. 

(Received December 11, 1998.) 
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