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CONTINUOUS-TIME INPUT-OUTPUT DECOUPLING 
FOR SAMPLED-DATA SYSTEMS 

OSVALDO M. GRASSELLI AND LAURA JMENINI 

The problem of obtaining a continuous-time (i.e., ripple-free) input-output decoupled 
control system for a continuous-time linear time-invariant plant, by means of a purely 
discrete-time compensator, is stated and solved in the case of a unity feedback control sys
tem. Such a control system is hybrid, since the plant is continuous-time and the compen
sator is discrete-time. A necessary and sufficient condition for the existence of a solution 
of such a problem is given, which reduces the mentioned hybrid control problem to an 
equivalent purely continuous-time decoupling problem. A simple necessary and sufficient 
condition for the existence of a solution of such a continuous-time decoupling problem is 
given for square plants (with and without the additional requirement of the asymptotic 
stability of the over-all control system), together with a parameterisation of all the decou
pling controllers. Moreover, for square plants, it is shown that, whenever the hybrid control 
problem admits a solution, any solution of the corresponding decoupling problem for the 
discrete-time model of the given continuous-time system is also a solution of the hybrid 
control problem. 

1. INTRODUCTION 

The problem of input-output decoupling is one of the most widely investigated for 
purely continuous-time or purely discrete-time MIMO control systems [3, 4, 6, 10, 
11, 12, 15, 16], since it is a very natural control objective (and, in addition, it 
can be a useful tool for other requirements, e.g. robustness [5]). In this paper, 
the problem of input-output decoupling is dealt with for sampled-data systems, 
which are considered in their hybrid nature (both discrete-time and continuous-
time). Therefore, the intersample behaviour is explicitly taken into account, in 
order to avoid undesirable ripple between sampling instants, which may become 
unacceptable if the sampling rates are small, or if unbounded exogenous signals are 
involved, since the amplitudes of such a ripple are modulated by the nonzero scalar 
exogenous signal [13]. Such an approach is now becoming classical in the study 
of sampled-data systems [8, 9, 14, 17], but, to the best of the authors' knowledge, 
has never been applied to the input-output decoupling problem. The mentioned 
contributions [8, 9, 14, 17] recognise that a continuous-time subcompensator may 
be needed in order to achieve continuous-time asymptotic tracking and regulation; 
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Fig. 1. The hybrid control system S. 

in this paper it will be shown that this applies also when a continuous-time input-
output decoupling is required. Here a unity feedback control scheme is assumed, 
as in several contributions on input-output decoupling for purely continuous-time 
plants [10, 12, 15]: a motivation of this choice is that unity feedback might be 
required in order to achieve further control objectives like, for example, asymptotic 
tracking, thus involving the presence of an internal model of the exogenous signals 
in the forward path of the feedback control system. 

2. PROBLEM FORMULATION 

In this section the problem of the continuous-time input-output decoupling will be 
formally stated for both the hybrid open-loop control system S in Figure 1 and the 
closed-loop system S obtained from S under a unity feedback (see Figure 3), since 
the continuous-time input-output decoupling holds for S if and only if it holds for 
S (see the subsequent Proposition 2), as it happens for purely continuous-time or 
purely discrete-time systems. 

The hybrid control system S is constituted by the following components: 

- the continuous-time linear time-invariant plant P, to be controlled, having 
x(t) G I R n p as state at time t G IR, and the strictly proper rational matrix 
P(s) as transfer matrix between the input u(t) G IRP and the output y(t) G IRg, 
q < p\ system P is described, in state space form, by the equations: 

x(t) = Ax(t) + Bu(t), (la) 

y(t) = Cx(tyt (lb) 

- the zero-order holder HsT, with holding period 6T, 6T G IR, 6T > 0, having 
uD(Ar) G IRP as discrete-time input, and u(t) as continuous-time output, ex
pressed by: 

ti(0) = 0, (2a) 

u(t) = uD(k)y k6T<t<(k + l)6Ti k G Z+, t G IR; (2b) 

- the sampling device SST, with sampling period 6T, having y(t) as continuous-
time input and yD(k) £ IRg as discrete-time output, expressed by: 

yD(k) = y(k6T)} * G Z + ; (3) 
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- the discrete-time linear time-invariant compensator K, having XK(k) G IR n K 

as state, rD(k) G IRg as discrete-time input, uD(k) as discrete-time output and 
the proper rational matrix K(z) as transfer matrix between rD(k) and uD(k). 

It is assumed that SsT and H&T are synchronised, as it is implied by (2) and (3). 
It is well known that the behaviour of the series connection Pu of the holder HsT, 

system P and the sampler SsT can be modelled at the sampling instants by a purely 
discrete-time system PD, whose state xD(k) G IR n p is defined by 

xD(k) :=x(k6T), k G Z, 

and whose transfer matrix between its input uD(k) and its output yD(k), denoted 
by -PD(^), is a strictly proper rational matrix. 

In the following, rDj(k) and yj(t) will denote the j th scalar component of rD(k) 
and y(t), respectively, j = 1, 2, . . . , q. 

The following definition can be referred to both the hybrid control systems rep
resented in Figures 1 and 3. 

Definition 1. (Continuous-time input-output decoupling) A hybrid system hav
ing a discrete-time input rD(k) and a continuous-time output y(t) is said to be 
continuous-time input-output decoupled if it satisfies the following conditions: 

(i) for each i = 1, 2, . . . , q, its output response y(-) from its zero initial state to 
an input function rD() with rD , ;() = 0, for j = 1, 2, . . . , 7, j ^ i, is such 
that yj(-) = 0 for j = 1, 2, .. ., q\ j ^ i; 

(ii) the transfer matrix between rD(k) and the sampling yD(k) of its continuous-
time output y(t) is nonsingular over the rational field. 

In Definition 1, in order to avoid trivial solutions, the discrete-time condition (ii) 
has been used; it is expressed in terms of the transfer matrix of the discrete-time 
model of the hybrid system under consideration (i.e., the matrix PD(z)K(z) for 
the open-loop system in Figure 1). A different "continuous-time" condition is the 
following one: 

(iii) in condition (i) the component T/J(-) of the output response y(-) is nonzero, for 
each function rDti() having a nonzero rational ^-transform. 

It is easy to see that, if condition (i) holds, then condition (ii) implies (iii), whereas 
the following counterexample, involving a continuous-time system P having p > g, 
shows that the opposite is not true, in general. 

Example 1. Let the 
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If 6T = 1, the transfer matrix PD(Z) can be easily expressed as follows: 

PD(Z) = 
0 0 

0 
1 

If the dynamic compensator K has the following transfer matrix: 

K(z) = 
1 0 

2 - Є - 1 

0 

then the following transfer matrix between 7\D(A;) and yD(Ar) is obtained: 

PD(z)K(z) = 

which is diagonal, but does not satisfy condition (ii). In order to prove that con
ditions (i) and (iii) are satisfied, it is convenient to compute the output responses 
y(l\t) and y(2\t), from null initial conditions, corresponding to the input signals 
r%\k) = [6g(k) 0]' and r%\k) = [0 6j?(k)]', respectively, where 6g(k) denotes 
the discrete-time unit impulse function. By means of standard computations, de
scribed in detail in [13], such output responses can be expressed by: 

where: 

y(
l)(k6T+e) = 

V{2)(e) = 

yV\k6T+e) = 

1 - e 

ГҪi(e) - Чг(є) 
0 

, Vг Є [0, 1), 

e -(-+«--) - e -(*+-«-i) - m(є)ï=±e-к 

0 

VÄ: > 0, І Є Z , VєЄ[0, 1) 

0 
m(є) 

0 

e -(*+e-l ) 

Vee[0, 1), 

VJfc>o, kez, Vee[o, l), 

1 - e -2є 

Ъ(£) ••= ү-Гe^T' Ъ(є) := - Г ^ F ' V e Є ï°' П 

This is readily seen to imply that conditions (i) and (iii) hold (see also the plots 
reported in Figure 2). However, the singularity of PD(Z) K(Z) makes y^l\k6T) = 0, 
VA; £ Z + , so that y(l\t) can be considered as a mere ripple. • 

Condition (ii) has been preferred to the weaker condition (iii), since, as it is 
evident from Example 1, the latter would allow input-output decoupled systems in 
which the output response to some input functions (namely those having all the 
nonzero components in correspondence to the zeros in the main diagonal of the 
(singular) transfer matrix from r/)(.fc) to yD(Ar)) would be constituted only by ripple. 
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F i g . 2 . The nonzero components of the output responses y^(t) and i / 2 ) ( t ) considered in 

Examp le 1. 
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F i g . 3 . T h e hybrid control system E considered in Proposit ion 2. 

However, the subsequent Proposition 1, whose proof is reported in the next sec
tion, states that, for square systems, i.e., for p = g, both conditions (ii) and (iii) 
can be used to define continuous-time input-output decoupling, under the following 
assumption. 

Assumpt ion 1. For each eigenvalue A of matrix A, none of the complex numbers 
A + j2ni/6T1 i / 0, i G Z, is an eigenvalue of A. 

R e m a r k 1. Assumption 1 is commonly used in order to guarantee that the struc
tural properties of the continuous-time system P are preserved for PD [2], can be 
used for guaranteeing the reverse implication for stability [7], and can be easily 
satisfied by the choice of 6T (e. g., it is satisfied if 6T is small enough). 

Proposition 1. Under Assumption 1, if p = q, conditions (i) and (iii) imply 
condition (ii). 

On the basis of Definition 1, it is now possible to state and proof the following 
proposition. 
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Proposition 2. The hybrid control system E depicted in Figure 3 is continuous-
time input-output decoupled if and only if system S in Figure 1 is. 

P r o o f , (if) If system S is continuous-time input-output decoupled, then, consid
ering the control system in Figure 3, the transfer matrix from eL>(fc) to yD(k) of the 
discrete-time model SD of S is diagonal and nonsingular, hence also the discrete-time 
model E# of the hybrid control system E has a diagonal and nonsingular transfer 
matrix from r^(Ar) to t/D(Ar), so that condition (ii) is satisfied by system E. Hence, 
for every i = 1, . . . , q, for every reference input rD() such that rDj(k) = 0 for each 
k G Z + and for each j ^ i, one has yDj(k) = 0 for each k > 0 and for each j ^ i. 
This implies that the discrete-time signal eD(-), defined as eD(k) := rD(k) — *//>(&), 
k > 0, is such that eDj(k) = 0 for all k > 0 and for each j ^ i; this fact, since 
system S satisfies condition (i), implies yj(t) = 0 for all / > 0 and for each j ^ i, so 
that condition (i) is satisfied by E. 

(only if) If system E is continuous-time input-output decoupled, its discrete-
time model E D is input-output decoupled, whence, by means of purely discrete-time 
reasonings, wholly similar to those used in the (if) part of this proof, it is easy to 
see that the transfer matrix from eD(k) to yD(k) of the discrete-time model SD of 
5, is diagonal and nonsingular, thus implying that condition (ii) is satisfied by S. 
Hence, for every signal e£>() such that eDj(k) = 0 for each j ^ i and for each 
k > 0, since SD is (discrete-time) input-output decoupled, one has that yDj(k) = 0 
for each k > 0 and for each j ^ i; this implies that the discrete-time signal r/j>() 
defined by rL>(A:) := eD(k) + yD(A:) is such that rDj(k) = 0 for all k > 0 and for 
each j -̂  i. For such a reference signal, yj(t) = 0 for all t > 0 and for each j ^ i, 
since system E satisfies condition (i) of Definition 1. Since such a reasoning holds 
for every e/j>() such that eDj() = 0 for each j ^ i, and for each i = 1, . . . , q, then 
it is proved that the hybrid system S satisfies (i). D 

3. A SOLVABILITY CONDITION OF THE PROBLEM 

The following theorem provides a necessary and sufficient condition for the exis
tence of a solution of the continuous-time input-output decoupling problem, for the 
hybrid control system in Figure 1 or in Figure 3, by reducing such a problem to 
a purely continuous-time control problem, namely that of the existence of a static 
precompensator achieving input-output decoupling for the continuous-time plant P. 

Theorem 1. Under Assumption 1, there exists a discrete-time compensator K that 
achieves continuous-time input-output decoupling for the hybrid control system S 
in Figure 1 [or for the hybrid control system E in Figure 3], if and only if there exists 
a constant matrix M G JRpxq such that P(s) M is diagonal and nonsingular. If this 
condition holds, under the same Assumption 1, the static compensator K having 
K(z) = M as transfer matrix achieves continuous-time input-output decoupling for 
the same system S in Figure 1 [for the same system E in Figure 3]. 
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Remark 2. The latter statement of Theorem 1 stresses that, under Assumption 1, 
if continuous-time input-output decoupling can be achieved for system S [or for sys
tem £], a solution can be obtained in form of a static discrete-time controller A', and 
that its constant transfer matrix M can be designed by means of purely continuous-
time techniques. However, if plant P is not asymptotically stable but is stabilisable 
and detectable, in order to obtain an asymptotically stable control system £ it can 
be more convenient to design the discrete-time controller K as the series connec
tion of a dynamic subcompensator Ks and the static subcompensator having M as 
transfer matrix, and to choose the transfer matrix of Ks in form of a square non-
singular and diagonal rational matrix, if any, such that the discrete-time model £ # 
of the hybrid control system £ in Figure 3 is asymptotically stable, thus implying 
the asymptotic stability of £ (see Theorem 4 in [7]), and still guaranteeing for £ 
the continuous-time input-output decoupling (for square plants see the subsequent 
Remarks 5 and 6 and Theorem 3). 

P r o o f of T h e o r e m 1. Just the part of the statements concerning the control 
system S in Figure 1 will be proven, since the part concerning the control system £ 
in Figure 3 (which is stated in square brackets) can be derived from the former part 
by virtue of Proposition 2. 

(if) It will be shown that the hybrid system S in Figure 1 is continuous-time 
input-output decoupled, if the discrete-time compensator K is static and has transfer 
matrix K(z) = M. 

In fact, notice that, with this choice, the series connection HDM of K and HsT 

in Figure 1, has the same input-output behaviour as the series connection HCM of a 
g-dimensional zero-order holder followed by the static continuous-time compensator 
KCM having transfer matrix equal to M. With such a replacement, the resulting 
control system certainly satisfies condition (i), since the underlying continuous-time 
system, having P(s) M as transfer matrix, is input-output decoupled. In order to 
prove that condition (ii) holds, define 

r)}(k) = SEl(k)eil . = 1,2, ...,</, 

where et- denotes the zth column of the g-dimensional identity matrix, and 6z\(k) 
denotes the discrete-time unit step function, and apply the input function r/j>(-) = 
r D ( ) to the hybrid control system obtained from system S with the mentioned 
replacement; then, from the zero initial state, the following continuous-time output 
response y(t) = y%(t) is obtained: 

?(1).-С-Ч ЩМ- е,\, <еК,«>0, (4) 

since it is the output response of the series connection of KCM and P to the 
continuous-time input function 

«*(*) = «-i(*)-., (5) 
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where £ - i (0 is the continuous-time unit step function. By the diagonality of P(s) M, 
yx(t) can be expressed as 

yi(t) = y\(t)ei, (6) 

for some scalar function y\(t), and, by the nonsingularity of P(s) M, y\(-) is nonzero. 
Notice that, for each i = 1, 2, . . . , q, the input function (5) can be seen as a free 
response of a system Kj constituted by the parallel of q integrators, to be connected 
to KCM- Then, the discrete-time function yl

D(k), obtained by sampling yl(t)} cannot 
be identically zero, because this would imply a loss of observability, due to sampling, 
of the series connection of Kj, KCM and P, which cannot take place, in view of 
Assumption 1, as can be easily shown. Hence, the z-transform yD(z) of yl

D(k) is 
nonzero, and by (6) can be expressed as: 

yb(z) = ylDti(
z)ei> (7) 

where yl
D {(z) is the z-transform of the sampling of y\(t). On the other hand, by 

the mentioned equivalence between HCM and HDM) it is easy to see that 

yi
D(z) = PD(z)M-^-[ei. (8) 

By (7) and (8) the ith column of PD(z) M is 

Z " 1 i ( \ 

—^--yDAz)zi, 

for each i = 1, 2, . . . , q, hence PD(Z) M is (diagonal and) nonsingular over the field 
of rational functions. 

(only if) Now, given a discrete-time precompensator K such that the hybrid 
control system S in Figure 1 is continuous-time input-output decoupled, a constant 
matrix M £ JRpxq will be determined, such that 

P(s)M = diag(mi(s), m2(s), . . . , mq(s)), 

with m,(s), i = 1, 2, . . . , q> being nonzero rational functions. 
For each i = 1, 2, . . . , g, for zero initial state of system 5, if the input of S is 

chosen as rD(k) = rD(k), with 

^ (AO^HvAOe . , fcGZ+, (9) 

where r t(-) is an arbitrary nonzero scalar function, then, in view of the obtained 
continuous-time input-output decoupling, the output y(t) can be written as: 

y(t) = yW(t) = £)(i)ei, V* > 0, (10) 

for some scalar function y\ (t)- In this situation, the corresponding input u(t) of 
system P can be written as: 

u(i) = uЩ) = үiа^S.1(ł-rSт), 
г = 0 
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for some ar
} G IR/\ r = 0, 1, ..., co. Then P(s)ar cannot be zero for all r = 0, 

1, . . . , oo, since otherwise y\ (-) would be zero, thus implying a contradiction with 
condition (ii), which is satisfied by hypothesis. Hence, define the integer r, as follows 

r. := min i r G Z+ : P(s) flW ± o} . 

Then, y^(t) can be decomposed as follows: 

y(i)(t) = yf\t - n M M * - Fi 6r) + y ( i ) (0 . - > o, 

where y? (t) denotes the output response of system P from zero initial state to 

the input _L')«5_i(0, expressed by yf\t) = C~l I P(s) ^ - 1, and yW(t) = 0 for all 

t _. (n + 1) 67-, so that 

yW(t) = y<f\t - rtSr) 6-i(t - fiSr), V< € [r.6T, (r. + 1) * r ] . (11) 

By (10) and (11), and by the meaning of y* (t), for each j = 1, 2, . . . , q, j ^ i, 

the jth component of y* (t) is zero for all t > 0. Then, denoting by y* (s) the 

Laplace transform of yy(t)y it satisfies 

a (0 
y(;\s) = P(s)^- = y^i(s)eil 

for some nonzero scalar rational function y* \(s). Since the above reasoning can be 
repeated for each i = 1, 2, . . . , g, the following relation holds: 

^ l . - . l a ^ 
r2 I I r g 

w [ 4? 14. 
= 5diag(y( ; ) ( S ) , j / (

2 )
2 (S ) ) . . . 1yW (s ) ) 

By defining m,(s) := s yf \(s), for i = 1, 2, . . . , q, and 

M : = (1) I (2 ) I I (?) 
r\ I r 2 I I r g 

the proof is completed. 

Remark 3. Notice that Assumption 1 is not needed in the necessity proof of 
Theorem 1; then, the existence of a static precompensator, which achieves input-
output decoupling for the given continuous plant P is needed, in order to solve the 
continuous-time input-output decoupling problem for the hybrid control system S in 
Figure 1 or for the hybrid control system E in Figure 3, even if such an assumption 
is not satisfied. Hence, if it does not exist, a continuous-time subcompensator must 
be inserted both in Figure 1 and in Figure 3 between H^T and P in order to achieve 
the continuous-time input-output decoupling. 
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P r o o f of P r o p o s i t i o n 1. Notice that, if condition (ii) does not hold, then 
either of the square matrices K(z) and PD(Z) has to be singular over the rational 
field. 

In order to show that matrix PD(Z) cannot be singular, for each i = 1, 2, . . . , q, 
consider the same input function r^(fc), vectors a}• , r E Z + and integer r,-, defined 
in the necessity proof of Theorem 1. It follows that the output response y^l\t) of 
system P , from the zero initial state, to the input function u(t) = u^l\t), with 

rf%) :=a^6^(t), t>0, 

is nonzero. Letting y^ (k) be the sampling of y^l'(t), its z-transform yp (z) is given 

by 
ti\z) = PD(z)aU-^-, (12) 

and, by property (i), can be expressed as 

.$(*)--5g!,(-)e., 

for some scalar function ife \(z). Now, notice that for each i = 1, 2, . . . , q, u^l\t) can 
be seen as a free response of a system K\ constituted by the parallel of q integrators 
to be connected to P. Therefore the function Wj^(k) cannot be identically zero, 
since otherwise this would imply a loss of observability, due to sampling, for the 
series connection of Kj and P , which cannot take place under Assumption 1, as it 
can be easily shown. Hence, the function y^t(z) is nonzero, for each i = 1, 2, . . . , 
q. By defining the matrix M ELS in the necessity proof of Theorem 1, in view of (12), 
the following relation holds: 

PD(z) M=Z-^± diag (5g>.(r), . . . . yg) f (*)) , (13) 

which implies that PD(z) is nonsingular. 
If, vice-versa, K(z) is singular, then, if Ki(z) denotes the ith column of K(z), 

i = 1, 2, . . . , g, there exists an integer j , 1 < j < g, such that 

Kj(z) = J2ck(z)Kh(z), (14) 
* = 1 

Ch(z) being suitable scalar rational functions. Let rp(z) a polynomial function of z 
such that, for each h = 1, 2, . . . , q, h ± j , the function Ch(z) defined by Ch(z) : = 
ch(z)/rp(z) is proper. Then, consider the input function r£>(A;) having rjr>(z) := 
\ci(z) . . . Cj-i(z) 0 Cj+\(z) ... cq(z)] as z-transform; let UD(Z) be the z-transform 
of the output response ii£>(A:) of K to the input r/)(Ar) from the zero initial state. In 
view of (14), one has 

«D{z) = Kj{z)1L.. (15) 
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By property (i), it follows that the j th component Vj(t) of the output response y(t) 
of S to the function rD(k), from zero initial state, is zero for all t G IR, t > 0. But, 
in view of (15), uD(z) is also the z-transform of the output response of A", from zero 
initial state, to the input rD(k) having 

ŤD(Z) := 
rþ(z) -;> 

as z-transform, so that yj(t) must be nonzero, in view of condition (iii), yielding a 
contradiction. • 

Remark 4. As a byproduct of the proof of Proposition 1, it is easy to see that, 
for arbitrary p and q, p> q, if condition (i) of Definition 1, and condition (iii), given 
right after the same definition, hold, then: 

- K(z) has full column rank; 

- under Assumption 1, PD(z) has full row rank. 

Notice that such properties, which are obvious if (ii) holds, are implied also by 
the weaker condition (iii). • 

4. THE CASE OF SQUARE SYSTEMS 

The following theorem states a relevant property of the class of square systems that 
can be continuous-time input-output decoupled and satisfy Assumption 1: for such 
systems, a (possibly dynamic) compensator K such that the discrete-time model 
of the hybrid control system in Figure 1 or in Figure 3 is input-output decoupled, 
without achieving the continuous-time input-output decoupling, cannot exist. 

Theorem 2. Under Assumption 1, if for plant P p = q and a discrete-time com
pensator K (either static or dynamic) exists, such that the hybrid control system 
S in Figure 1 (and, hence, the hybrid control system £ in Figure 3) is continuous-
time input-output decoupled, then any discrete-time compensator K (either static 
or dynamic) that decouples the discrete-time model PD of P , also achieves the 
continuous-time input-output decoupling for S (and for £) . 

P r o o f . First, a useful relationship between any two discrete-time compensators, 
K\ and K2y both achieving the discrete-time input-output decoupling for system PD 

is proven. If K\(z) and K2(z) are the transfer matrices of such compensators, define 

D\(z)~PD(z)K\(z\ (16a) 

D2(z):=PD(z)K2(z), (16b) 

D\(z) and D2(z) being diagonal and nonsingular strictly proper rational matrices. 
Therefore 

PD(z) (K\(z) D2(z) - K2(z) D\(z)) = 0; 
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Fig. 4. Factorisation of compensator A". 

hence, since PD(Z) is nonsingular, 

Kl(z)D2(z) = K2(z)D1(z). 

By the nonsingularity of D\(z), this implies: 

K2(z) = Kl(z)D2(z)D^1(z). (iб) 

This holds, in particular, for K\(z) = M, M being a constant matrix, whose 
existence is guaranteed by Theorem 1, and K2(z) as the transfer matrix of any 
compensator K mentioned in the statement of the theorem. 

Then, denoting K2(z) by K(z), (16) can be rewritten as 

K(z) = MD2(z)D^(z)y 

thus implying the special property, for this special choice of K\, that the rational 
matrix D2(z) D±l(z) is proper. Hence, the compensator K is equivalent to the 
series connection of a (possibly dynamic) discrete-time system L, having L(z) \— 
D2(z) D^i(z) as transfer matrix, and of a static precompensator having M as trans
fer matrix (see Figure 4). Since matrix L(z) is diagonal and nonsingular, and the 
hybrid control system S appearing in Figure 4 is, by hypothesis, continuous-time 
input-output decoupled, then it can be easily seen that the whole compensator K 
achieves continuous-time input-output decoupling. • 

R e m a r k 5. It is stressed that, by Theorem 2, either the problem of obtaining 
continuous-time input-output decoupling for a square plant satisfying Assumption 1 
is not solvable (the solvability of the problem can be checked easily, for square 
plants, by means of the condition reported in the subsequent Proposition 3), or any 
precompensator which decouples the discrete-time model P& of the given plant P 
solves the problem of continuous-time input-output decoupling too. However, the 
use of a merely static precompensator, in order to achieve continuous-time input-
output decoupling, can be more convenient, since it obviously preserves the two 
key structural properties of stabilisability and detect ability of system P , if system 
P has such properties, and, therefore, it allows to satisfy also the requirement of 
asymptotic stability, which appears unrenunciable for the overall control system. 

The latter part of Remark 5 yields the following theorem. 
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Theorem 3. (Continuous-time input-output decoupling with stability) Under 
Assumption 1, if for plant P p = </, then there exists a discrete-time compensator K 
that achieves both continuous-time input-output decoupling and asymptotic stability 
for the unit feedback hybrid control system E in Figure 3, if and only if plant P is 
stabilisable and detectable and it satisfies the condition stated in Theorem 1. 

P r o o f . The necessity is yielded by Theorem 1. The sufficiency is derived from 
the proof of Theorem 2 by putting in the control scheme in Figure 3 the same com
pensator A' appearing in Figure 4 (where M is a static, square and nonsingular linear 
map such that system S in Figure 4 is continuous-time input-output decoupled), and 
by choosing the entries of the diagonal rational matrix L(z) := D^(z)D^l(z) so that 
(by virtue of Assumption 1) the discrete-time model Sr; of the hybrid system E in 
Figure 3 is asymptotically stable, and, hence, E too is (see Theorem 4 in [7]). • 

Remark 6. The proof of Theorem 3 suggests that, in order to obtain a hybrid 
system E which is both asymptotically stable and continuous-time input-output 
decoupled, the scheme in Figure 3 can be used, under the hypotheses and conditions 
of the theorem, with the compensator K constituted by the cascade connection 
of a discrete-time dynamic stabilising compensator Ks having the diagonal matrix 
L(z) defined in the proof of the same theorem as transfer matrix, and of a static 
compensator K& having the matrix M appearing in the statement of Theorem 1 
as constant transfer matrix. The latter can be easily obtained by means of the 
subsequent Proposition 3. 

Theorems 1 and 3 and the proof of the latter motivate the interest in the solu
tion of the problem of input-output decoupling for wholly continuous-time systems 
by means of static precompensators. Such a problem seems not to have received 
enough attention, since, at the best authors' knowledge, the only available results 
are concerned with square systems: an explicit condition for the existence of a static 
precompensator achieving input-output decoupling for the continuous-time plant P 
together with a formula for the computation of the solution can be found in [1], 
expressed in terms of P(s) , or (if the state space description-(1) of P is given) can 
be easily derived from [6]. Therefore it seems worth to explicitly state the follow
ing proposition, which expresses a condition for the solvability of the problem that 
seems to be simpler than the above mentioned ones, since it can be checked by direct 
inspection of the transfer matrix P(s) of P ; it gives also a parametrisation of all the 
constant precompensators constituting a solution of the problem. 

Proposition 3. If for plant P p = q, then there exists a square constant matrix M 
such that P(s) M is diagonal and nonsingular if and only if there exist a square, ra
tional, diagonal, nonsingular matrix D(s) and a square constant nonsingular matrix 
S such that 

P(s) = D(s)E. (17) 

If (17) holds, all such matrices M can be expressed by 

M = H"1A, (18) 
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where A is any square, constant, diagonal, and nonsingular matrix. 

P r o o f . The necessity follows by defining D(s) := P(s) M and S := M" 1 , and 
the sufficiency by defining M := E _ 1 A , where A is any square, constant diagonal 
and nonsingular matrix. 

In order to show that if there exist a constant square matrix M such that P(s) M 
is diagonal and nonsingular, then (18) holds for some square, constant, diagonal and 
nonsingular A, define DM(S) := P(s) M for such a M, which, together with (17), 
implies D(s) S = DM(S) M~l, so that D~X(S)DM(S) = SM is diagonal, nonsingular 
and constant. Hence, M = E~1D~1(S)DM(S), that is (18) with A = D~x(s) DM(S). 

D 

R e m a r k 7. Notice that, by Theorem 1 and Proposition 3, the existence of a square 
rational diagonal and nonsingular matrix D(s) and of a square constant nonsingular 
S such that (17) holds is, under Assumption 1, the solvability condition for the 
problem of obtaining continuous-time input-output decoupling for the given plant 
P , if it is square (i. e., if p = q). Such a condition can be easily checked, since it is 
equivalent to the fact that, for each i = 1, 2, . . . , (j, all the entries of the ith row of 
the transfer matrix P(s) are multiple, through the constant coefficients f a , &2, . . . , 
£tp, respectively, of the same rational function di(s). 

5. CONCLUDING REMARKS 

The results here reported imply that the problem of the continuous-time input-
output decoupling for sampled-data systems may need the use of a continuous-time 
dynamic subcompensator, in addition to the discrete-time one. In particular, by 
Theorem 1 and Proposition 3, this can be avoided for square plants (i. e., for p = q) 
only if (17) holds for some square constant and nonsingular matrix S and some 
square rational diagonal and nonsingular D(s) - and for nonsquare plants only if 
the condition of Theorem 1 holds - , that is (in any case) a very severe condition. 
It is stressed that, if it is not satisfied, the use of the control schemes in Figures 1 
and 3, involving a purely discrete-time compensator K, can yield a merely discrete-
time input-output decoupling, that is, for some i = 1, . . . , q) a nonzero ripple will 
unavoidably appear in the scalar continuous-time output responses yj(t), for some 
j ^ i, when rD , j() = 0 for all j ^ i and rD,t(*) is some nonzero scalar reference 
signal, and the amplitudes of such a ripple can be unacceptable for small sampling 
frequencies and/or unbounded signals ro f ,-(&). 

ACKNOWLEDGEMENTS 

This work was supported by MURST (40 and 60 funds). 

(Received December 11, 1998.) 



Continuous-time Input-output Decoupling for Sampled-data Systems 735 

REFERENCES 

1] M.B. Aгgoun and J. van de Vegte: Output feedback decoupling in the fгequency 
domain. Inteгnat. J. Contгol 31 (1980), 4, 665-675. 

2] C.T. Chen.: Linear System Theoгy and Design. Holt, Rinehart and Winston, New 
York 1984. 

3] J. Descusse, J . F . Lafay and M. Malabre: Solution to Morgan's problem. IEEE Tгans. 
Automomat. Control AC-33 (1988), 8, 732-739. 

4] C.A. Desoeг and A.N. Gündes: Decoupling linear multiinput multioutput plants by 
dynamic output feedback: an algebraic theory. IEEE Trans. Automat. Control AC-31 
(1986), 8, 744-750. 

5] A. Dickman and R. Sivan: On the robustness of multivariable linear feedback systems. 
IEEE Trans. Automat. Control AC-30 (1985), 4, 401-404. 

6] P. L. Falb and W. A. Wolovich: Decoupling in the design and synthesis of multivariable 
control systems. IEEE Trans. Automat. Control AC-12 (1967), 6, 651-659. 

7] B. A. Francis and T . T . Geoгgiou: Stability theory for linear time-invariant plants with 
periodic digital controlleгs. IEEE Trans. Automat. Contгol AC-33 (1988), 9, 820-832. 

8] G. F. Franklin and A. Emami-Naeini: Design of ripple-free multivariable robust seг-
vomechanism. IEEE Trans. Automat. Contгol AC-31 (1986), 7, 661-664. 

9] O.M. GгasseШ, S. Longhi, A. Tornambè and P. Valigi: Robust ripple-free regulation 
and tгacking for paгameteг dependent sampled-data systems. IEEE Tгans. Automat. 
Control AC-Ąl (1996), 7, 1031-1037. 

0] A. N. Gündes: Paгameteгization of decoupling controlleгs in the unity-feedback sys-
tem. IEEE Trans. Automat. Control AC-37(1992), 10, 1572-1575. 

1] M. L. J. Hautus and M. Heymann: Linear feedback decoupling - transfeг function 
analysis. IEEE Trans. Automat. Control AC-28 (1983), 8, 823-832. 

2] C. A. Lin: Necessaгy and suíЋcient conditions for existence of decoupling contгolleгs. 
IEEE Trans. Automat. Control AC-Ą2 (1997), 8, 1157-1161. 

3] L. Menini. Controllo dinamico di sistemi a segnali campionati con specifiche a tempo 
continuo. PҺD thesis, Univeгsità di Roma Tor Veгgata, 1997. In Italian. 

4] S. Uгikuгa and A. Nagata: Ripple-fгee deadbeat contгol for sampled-data systems. 
IEEE Trans. Automat. Control AC-32 (1987), 474-482. 

5] Q. G. Wang: Decoupling with internal stability foг unity output feedback systems. 
Automatica 2£ (1992), 411-415. 

6] W. M. Wonham and A.S. Morse: Decoupling and pole assignment in lineaг multivari-
able systems: a geometric appгoach. SIAM J. Control 8 (1970), 1-18. 

7] Y. Yamamoto: A function space approach to sampled data contгol systems and tгack-
ing pгoblems. IEEE Trans. Automat. Contгol AC-39 (1994), 4, 703-713. 

Prof. Dr. Osvoldo M. Grasselli and Dr. Laura Menini, Dipartimento di Informatica, 

Sistemi e Produzione, Universita di Róma Tor Vergata, Via di Tor Vergata 110, 00133 
Róma. Italy, 
e-mails: grasselli,menini@disp.uniroma2.it 


