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WEIGHTED U°° MIXED-SENSITIVITY MINIMIZATION 
FOR STABLE DISTRIBUTED PARAMETER PLANTS 
UNDER SAMPLED-DATA CONTROL1 2 

DELANO R. CARTER AND ARMANDO A. RODRIGUEZ 

This paper considers the problem of designing near-optimal finite-dimensional con
trollers for stable mul t ip le- inpu t mul t ip le-ou tpu t (MIMO) d i s t r ibuted parameter plants un
der samp led-da ta control. A we igh ted 7i°°-style mixed-sensitivity measure which penalizes 
the control is used to define the not ion of opt imali ty. Controllers are generated by solving 
a "natural" finite-dimensional samp led -da ta opt imizat ion. A priori compu tab le condit ions 
are given on the approx iman ts such tha t the resulting finite-dimensional controllers stabilize 
the samp led-da ta controlled d is t r ibuted parameter plant and are near-optimal. The proof 
relies on the fact tha t the control input is appropr ia te ly penalized in the op t imiza t ion . Th is 
technique also assumes and exp loits the fact tha t the plant can be approx ima ted uniformly 
by finite-dimensional sys tems. Moreover, it is shown how the opt imal performance may be 
estimated to any desired degree of accuracy by solving a single finite-dimensional problem 
using a suitable finite-dimensional approx iman t . The const ruct ions given are simple. Fi
nally, it should be noted tha t no infinite-dimensional spectral factorizations are required. 
In short, the paper provides a straight forward control design approach for a large class of 
MIMO d is t r ibuted parameter sys tems under samp led-da ta control. 

1. INTRODUCTION 

The problem of designing finite-dimensional controllers for infinite-dimensional sys
tems, i. e. systems described by partial differential equations or with continuous-time 
delays, has received considerable attention. Some researchers have addressed the 
problem in a purely continuous time framework [10,12, 14, 23, 25, 26, 30, 44], and ref
erences therein, others in a purely discrete-time framework [15, 32]. With the recent 
advances in sampled-data controller synthesis [1, 4, 6, 22, 24, 34, 36, 38, 40, 41, 43], 
and references therein, the problem has also been posed in the hybrid time framework 
which is encountered when performing sampled-data control of infinite-dimensional 
systems [5, 27, 33]. 

1This research has been supported in part by the National Science Foundation through the 
Coalition to Increase Minority Degrees and Honeywell Satellite Systems. 

2 A version of this paper was presented at the 5th Mediterranean Conference on Control and 
Systems held in Paphos (Cyprus) on June 21-23, 1997. 
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This research is motivated by the following practical design problem: 

Controller Synthesis Problem: Synthesize a finite-dimensional discrete-time controller 
for a stable MIMO distributed parameter plant such that the resultant sampled-
data system closed-loop performance metric is near optimal with intersample 
behavior included. 

Suppose a distributed parameter process is given, with some performance criterion 
(say in Ti°°). If a finite-dimensional sampled-data controller is desired, then one can 
follow either one of the following two approaches: 

1. A Design/Approximate (Direct) approach in which a controller is designed 
using infinite-dimensional sampled-data techniques. If the resulting discrete-
time controller is infinite-dimensional, a finite-dimensional approximation is 
obtained. This approach is addressed in [33] and [5]. This approach will not 
be considered in this paper. 

2. An Approximate/Design (Indirect) approach in which the plant is first approx
imated by a finite-dimensional model and then a finite-dimensional sampled-
data controller is designed based on this model. This is the typical engineering 
approach. However, this approach generally comes with no performance guar
antees. The key difficulty derives from discontinuity with respect to plant 
perturbations in the performance measure, even when the uniform topology is 
imposed. 

The above problem naturally leads to studying the problem of designing finite-
dimensional sampled-data controllers, for distributed parameter plants, that deliver 
near-optimal performance measured in Ti°° when the controllers are based on some 
continuous-time finite-dimensional plant approximation. The main objective then 
becomes to provide: 

— A priori computable conditions on the approximants. 

— A design method, based on the approximants, that delivers near-optimal per
formance. 

In this paper, these objectives are achieved for stable MIMO distributed plants 
subject to an 7i°° mixed-sensitivity performance measure. 

A rigorous treatment of the Approximate/Design approach is presented for a 
weighted 7i°° mixed-sensitivity performance criterion in which the control is penal
ized. The theory allows a large class of MIMO distributed parameter plants to be 
considered, including, for example a MIMO version of the Callier-Desoer class [3]. 
The problem solution shows that: (1) Given an "appropriate" finite-dimensional 
approximant for a MIMO distributed parameter plant, one can solve a "natural" 
finite-dimensional sampled-data problem in order to obtain a near-optimal finite-
dimensional discrete-time controller. (2) The optimal performance can be estimated 
to a given tolerance by solving a single finite-dimensional sampled-data optimization 
based on an a priori determined finite-dimensional plant approximant. 

By directly addressing performance based approximation, this study will hope
fully shed light on the limitations of certain performance measures when only partial 
information is known about the plant. 
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The remainder of this paper is organized ELS follows. Section 2 contains notation 
and mathematical preliminaries. Section 3 contains a precise statement of two fun
damental problems to be addressed in this paper. Section 4 presents the solution 
to the 7i°° mixed-sensitivity problems defined in Section 3. Section 5 presents a 
numerical application of the methodology outlined in Section 4. Finally, Section 6 
summarizes the paper and presents directions for future research. 

2. NOTATION AND MATHEMATICAL PRELIMINARIES 

This section will establish notation and results required throughout the paper. Our 
primary references are [6], [39] and [9]. 

C, R and Z Complex, real, and integer numbers, respectively. 
C+,C+ and jR Open, closed right half complex plane, imaginary axis. 
JD and S) Open and closed unit disc in complex plane. 
R+ and Z+ Non-negative real and integer numbers. 
0max(A-O Maximum singular value of the matrix M. 

Cm = £2(JR+,Cm) Lebesgue space of square integrable m-dimensional 
functions with support on R+. 

£m zz (?(Z+,Cm) Lebesgue space of square summable m-dimensional 
sequences with support on Z+. 

7i°°(C+) Hardy space of matrix-valued functions which are 
analytic and essentially bounded in R+. 

7i°°(E)) Hardy space of matrix-valued functions which are 
analytic and essentially bounded in JD. 

AJR Subspace of 7i°°(C+) consisting of functions continuous 
on C U {oo} with real coefficients. 

RH°°(C+) Subspace of 7ico(C+) consisting of real-rational functions. 
RM°°(E)) Subspace oi7i°°(E>) consisting of real-rational functions. 
C(7i) Space of bounded linear operators on the Hilbert space 7i. 
Z~l[H°°(JD)] Set of causal, linear, shift-invariant operators on £m. 

Km = £2([0,/ i) ,Cm) Lebesgue space of square integrable m-dimensional 
functions with support on [0,/i). 

i^n = £2(Z+,Km) Lebesgue space of/C^-valued square summable sequences 
with support on Z+. 

7i2 = 7i2(C+) Hardy space of functions which are Laplace transforms 
of functions. 

7i°° =f nco(Dy C (Km)) Hardy space of C (/C2)-valued functions which are 
analytic and essentially bounded in E>. 

A Subspace of 7 i ° ° consisting of the functions continuous 
on the boundary of the unit disk. 

RA Subspace of A consisting of lifted RH°° functions. 

7i? = 7i2(E),Km) Hardy space of functions which are Z-transforms 
of functions in £2(Z+, K2). 
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n°°(lD) Image of n°°(E>) in 7i°° under the mapping Q. 
Rn°°(D) Image of Rn°°(E>) in n°°(E>) under the mapping Q. 
<7,G Signals and operators represented by lowercase 

and uppercase variables, respectively. 
(•) Lifting of signal or system. 

(•) 
-Y[o,n] 

W 

Laplace or Z-transform of (•). 
Characteristic function of the interval [0, £7] where 
ft G-R+; i.e. 

*"C*") = {J w , € [ r ] ; 

^ 0 elsewhere. 
Floor of x E iR+; i.e. def 
[xj = &, A: Є Z+ and fc < x < k + 1. 

The standard function spaces listed above are endowed with their "natural" 

norms. The Hilbert space Km inner product is (V,,^)/-c^ = f0 (Vs^hdJ, where 

(•,)2 is the Euclidean inner product on Cm. The Hilbert space -£m inner prod

uct is (u>y)p2 = YlT=o(uk>vk)Km- ^ e Banach algebra 7i°° norm is ||G||oo = 
suP|z |<i l |G(^) |k^/c2. 

It is a fact that n°° and 7i°° functions can be unitarily extended to have 
support almost everywhere on the imaginary axis [9]. When dealing with such 
functions, no distinction need be made between the function and its extension. 
Given this, the norms of such functions can be computed from their values on 
the imaginary axis. For F_ G 7^°°, for example, the norm becomes ||£j|oo = 
ess sup0e[--r.Tr] H^6^)!!^2—K2 > where ess sup denotes the essential supremum with 
respect to Lebesgue's measure [35]. The dependence on the dimension m of the 
above spaces will be suppressed in what follows unless the space dimension is of 
particular interest. 
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Fig. 1. Infinite-dimensional sampled-data feedback loop. 

The sampled-data setting studied in this paper is depicted in Figure 1 where the 
solid lines represent continuous-time signals and the dashed lines represent discrete-
time signals. The symbols used in this figure have the following interpretations: 
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F strictly causal anti-aliasing filter in lR?{0O(C+) 
P MIMO stable infinite-dimensional plant 

We sensitivity weighting filter 
Wu control sensitivity weighting filter 
Kd MIMO discrete-time controller, possibly infinite-dimensional 

Other definitions follow. 

Definition 2 .1 . (Sample and Hold Operators.) Throughout the sequel, the sample 
period will be some positive real number and denoted by h. The sample S and hold 

def def 

/ / operators are defined respectively as (Su)[fc] = u(kh), k G Z+ and (Hed)(t) = 
ed[k], t G [kh,(k + l)h) for each function u : [0,oo) —• Cm and every sequence 
ed : Z+ —• Cm. 

Comment 2 .1 . (Periodicity of Sampled-Data Systems.) The interconnection of 
continuous-time LTI operators and discrete-time LTI operators via h -synchronous 
sample and hold operators S and H results in an /i-periodic operator. 

Comment 2.2. (Anti-Aliasing Filter.) Throughout this paper F will denote an 
anti-aliasing filter. Moreover, it will be assumed that F is finite-dimensional, linear 
time-invariant, stable, and strictly causal. This assumption is made in order to 
ensure that SF G C(C2,t?) [6]. 

Definition 2.2. (Continuous-Time Lift Operator.) The continuous-time lift oper
ator acts between the following spaces 

L : £ 2 - > £ 2 . (1) 

For every u G £2> the lift operator produces 

def 

u = 

u0 

Ui 

U>2 
= Lu G t2 (2) 

where 

(uк)(т)d= u(т + кh) foттЄ[0,h),кeZ+. (3) 

Note that each «jt £ K2. The lift operator has an inverse L l : f? —• C? defined as 

u(t) = Uk(t-kh), for * € - & + , * = £ . (4) 
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Propos i t ion 2 .1 . (Lift Operator Isomorphism.) The continuous-time lift operator 
is an isomorphism between the spaces C? and £2. It follows that if M is a bounded 
linear operator on £ 2 , then 

Md=LML'x. (5) 

V1 

W. 

ғ Ь Ш - Щ ^ 
ҜI \ í u * \ l-l L ^ . , ҜI 1 1 l-l 1 

Fig. 2. Sampled-data infinite-dimensional plant lifting. 

Propos i t ion 2.2. (h-Periodic Operator Lifting to Time-Invariant Operator.) If 
M is an h-periodic operator on £ 2 , the lifted operator M is a linear time-invariant 
operator on £2. 

Proposition 2.2 follows from the fact that L intertwines the unilateral shift U_ on 
£2 and the delay operator Dh on C? (i.e. U_L = LDh). The lifted sampled-data 
system is depicted in Figure 2. 

Propos i t ion 2.3. (Rational Approximation.) The stable, proper, real rational 
transfer functions, M'H00(C+), are dense in A JR. The subspace AJR is precisely the 
set of 7i°°(C+) functions which are uniformly approximable by iR'ft00(C+) func
tions. 

Definiton 2.3. (The Gelfand or z-Transform.) The z-transform Z : £2 -> 7i2 

is defined by (Zu)(z) = Ylk*=o u[k]zk, where z € ID. The inverse mapping Z~l : 
K2 -*£2 is well-defined. 

Proposi t ion 2.4. (Half-Plane Algebra Isometric Isomorphism.) For every P E 

AJR, there exists a unique _P~ A such that Z~lQ^Z = P , where 0 p is the multi

plication operator on 7i2 induced by FN. Moreover, ||-P||^oo(C+) = ||P||^/CX). 

Comment 2.3. (Stability.) Throughout the paper, the term stability or internal 
stability will be used to mean C2 finite-gain stability as defined in [6, pp. 247-257]. 

Propos i t ion 2.5. (Stabilization.) Given P E ?i00(C+)} a strictly causal F E 
~XK00(C+) and assuming nonpathological sampling [34], the set of proper discrete-
time controllers which internally stabilize P in the sampled-data setting is [11, 
pp. 83-86] 

S(P) d= {Kd(P, Qd) = -Qd(I - SFPHQd)'1 \ Qd E Z-l[H°°(E>)) }. (6) 
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Let 
Kd= LHKdSFL~\ (7) 

The set of lifted discrete-time controllers which internally stabilize P_ G 7i°° (cf. 
(5)) is 

S(P) = {K(P, Q) = -Q(I - PQ)-1 | Q(Qd) G n°°(E>) } (8) 

where Q : n°°(E>) -+ n°°(E>) d= LHn°°(E>)SFL-1 C U°° and 

Q(Qd) = LHQdSFL-1 = Q(Qd). (9) 

The pair (P, HKd(Pn,Q
d)SF) is stable if and only if the pair (EEX^Qn)) is 

stable. 

The utility of the above parameterization with respect to control law optimiza
tion is twofold. First, it provides a simple characterization of S(P) - rather than 
optimizing over K_ G S(P_), one can optimize over Q G n_°°(lD). Second, it permits 
one to transform optimization problems which depend in a linear fractional manner 
on K_, into convex optimization problems which depend affinely on Q_ [13], [42]. 

3. STATEMENT OF FUNDAMENTAL PROBLEMS 

In this section two fundamental problems associated with the proposed Approx
imate/Design approach are precisely defined. Basic assumptions and definitions 
which will be used throughout the paper are now stated. 

Throughout the paper, focus is placed exclusively on MIMO C2 finite-gain sta
ble plants. Unstable MIMO plants will be treated in future work. Let P(s) G 
n°°(C+) denote a stable MIMO transfer function matrix for a distributed param
eter plant. Also, let {Pn(s)}n=1 C Mn°°(C+) denote a sequence of stable MIMO 
finite-dimensional approximants for P\ the sense of which is a key issue and is to be 
made precise in subsequent sections. To do this, a performance measure is needed. 

The weighted mixed-sensitivity performance measure is utilized which frequency 
weights the loop sensitivity and the control sensitivity. The closed loop mixed sensi
tivity performance measure associated with the periodically time-varying sampled-
data system is defined as 

Definition 3.2. (Mixed-Sensitivity.) Suppose We, WU) F,G,M G C (C2) and V G 
C (£2) are causal and LTI such that HKd(G, V)SF internally stabilizes M. The 
mixed-sensitivity of the pair (M,HKd(G,V)SF), denoted Jmix, is defined as the 
map Jmix(., •) : C (C2) x C (C2) x C (t2) -+ R+ where 

Jmix(M,Kd(GyV)) (10) 

" 1 ( W.HKHf}. V)SF ) (' " MHK'<C' W l_„ ' 
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Given this, the optimal performance for the distributed parameter plant P with 
respect to the measure Jmix is defined as (see Figure 3). 
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Fig. 3. Infinite-dimensional sampled-data feedback loop. 
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Fig. 4 . Purely finite-dimensional sampled-data feedback loop. 
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Fig. 5. Actual near-optimal sampled-data feedback loop. 

Defin ition 3.2. (Optimal Performance.) 

(i0pt
dá inf Jmix(PJ<đ(P,Qd)) 

g-€2-ҶИ~(íî)] 
(11) 

This optimization problem is the central problem being considered. Direct ap
proaches for solving this problem have been proposed by various researchers, e.g. 
[5, 33]. The approach taken in this paper requires that P be approximated by a 
finite-dimensional system Pn. This motivates the following finite-dimensional opti
mization problem. 
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Definition 3.3. (Expected Performance.) 

/ l n = f inf /mix(Pn,/^(Fn,Qd)) . (12) 
Qdez-1[nn°°(E>)] 

In the context of this work, p,n will be referred to as the expected performance. 
This terminology for \in is motivated by the fact that the numbers /in are typically 
used to guide engineers during the design process. 

Let Q* denote any optimal or near-optimal solution to the problem in Defi
nition 3.3. By the parameterization given in Proposition 2.5, it follows that Qn 

generates an internally stabilizing compensator A'̂  for Pn (see Figure 4). This 
compensator is given by: 

Kd Hf Kd{Pn, Qd
n) = -Qd

n{I - SFPnHQi)~K (13) 

Because in general, K* may not be near-optimal with respect to //0pt as defined in 
Definition 3.2, and in fact not even stabilizing for P , care must be taken. These 
issues motivate the following question: Under what conditions on the performance 
measure Jmix and the approximants {-PnC^)}^!, can one ensure that K^ generates 
a stabilizing sampled-data controller which delivers near-optimal performance for 
the MIMO distributed parameter plant P n? This question leads one to naturally 
consider the feedback system obtained by substituting the finite-dimensional con
troller K* into a closed loop sampled-data system with the distributed plant P (see 
Figure 5). Assuming that internal stability can be shown [6], this then motivates 
the following "natural" definition for the actual performance. 

Definition 3.4. (Actual Performance.) 

/ in= fImix(PKn
d) . (14) 

Given the above discussion, the Approximate/Design Weighted H°° Mixed-Sensi
tivity Problem is defined as follows. 

Problem 3 .1. (Approximate/Design.) Find conditions on the performance mea

sure Jmix and the approximants {P^jj0-! such that limn_*oo/in = /̂ opt-

In practice, one would like to be able to compute fiopt using finite-dimensional 

algorithms. With an ultimate intention of providing such algorithms, the following 

"purely" finite-dimensional problem is considered. 

Prob lem 3.2. (Purely Finite-Dimensional.) Find conditions on the performance 
measure Jmix and the approximants { P n } ^ ! such that limn_oo /in = /iopt-
In the context of this work, this problem will be referred to as the Purely Finite-
Dimensional Weighted 7i°° Mixed-Sensitivity Problem. 

Solutions to Problems 3.1-3.2 will be presented in Section 4. 
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4. SOLUTION TO DISTRIBUTED PARAMETER SAMPLED-DATA 
CONTROL PROBLEMS 

In this section, solutions are provided to the H°° Approximate/Design Problem 
and the 7i°° Purely Finite-Dimensional Problem. To address these problems, the 
following assumption on the weighting functions We and Wu will be made. 

Assumpt ion 4 .1 . (Mixed-Sensitivity Weightings.) 

WetWutW^1 e KH°°(C+). 

The above implies that We and Wu are real-rational transfer function matrices 
with no poles in the extended closed right half plane. In addition, the filter Wu has 
no zeros in the extended closed right half plane. In what follows, the invertibility of 
Wu in n°°(C+) will be critical. 

Throughout this section, it will be assumed that the approximants {Pn}n°=i have 
been constructed as follows. 

Cons t ruc t ion 4 .1 , (Finite-Dimensional Approximants: {Fn}n°=1) 
Let {Pn}n°=i denote a sequence of 1R'H00(C+) matrix-valued functions such that 

lim \\Pn - P\\n<~(c+) = 0. (15) 
n—>oo 

More specifically, suppose that one chooses a desired performance tolerance ed > 0, 
however small. Let e G [0,1) satisfy the inequality 

e<-^z - . (16) 
" WWeWn-ic^ + a + e* 

Define the (a priori known) quantity 

B=fB(e,We,Wu)
 d = | | V y - 1 | | « - ( c + ) ( | | W e | | « ~ ( c + ) + £ ) . (17) 

Given this, choose N G Z+ such that 

\Pn-P\\n~(c+)<6=i6(e,WetWu)=*mm\:^r:r^ - . - L i (18) 
||We||*~(C+)B 

for all n > N d= N(є, We,Wu). 

C o m m e n t 4 .1 . (Approximants and Desired Performance Tolerance.) 
In what follows, it will be shown that given Ed > 0, however small, 

A*oPt - 2^ < fin < /iopt + 2e (19) 
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AWt < K < /̂ opt +ed) (20) 
def — —-

for all n > IV = N(e, We) Wu). These facts will be made clear in Theorems 4.1 -4.2. 
Hence, it is ed which is the actual performance tolerance and not e. Throughout the 
paper, however, it is convenient to work with the intermediate performance tolerance 
e. From (19), it follows that e determines how well /in approximates /iopt-

It should be pointed out that the above approximation may be carried out on the 
basis of frequency response data. This makes the condition given in the construction 
practically appealing. Conditions on the plant P under which such an approximating 
sequence { P ^ } ^ ! exists can be inferred from Proposition 2.3. It should be noted, 
however, that not all distributed systems can be uniformly approximated by real-
rational systems. 

Comment 4.2. (Qualitative Trade-ofTs.) An interesting qualitative interpretation 
of Equation (18) is now given. For purposes of discussion, and without loss of 

def """-* — 

generality, it can be assumed that N is a decreasing function of 6 = <$(£, VVe, Wu). 
Consequently, the smaller 6 = 6(£,WeiWu) is, the larger N will be. From this, it 
then follows that: 

(1) The smaller e or ed, the larger IV will be. This is natural to expect. Optimality, 
or near-optimality, comes at a price, namely model complexity. 

(2) The larger ||KVe||^c»(C+), the larger N will be. One typically selects a large 

| |^e| |^o o(c+) -n order to obtain a high level of performance. This suggests that a 
trade-off must be made between performance and model simplicity. 

(3) The smaller ||KVti||^cx>(c+)) the larger |H/Vj"l||'r-00(c+) a-id hence the larger N will 
be. This follows from the inequality: 

1 = WWuW-'Wn^^) < HWulU-^HW-1!!*-^) (21) 

and Equation (18). A small value of ||KVti||^oo(C;+) is typically selected in order to 
achieve larger stability margins; e.g. gain and phase margins. This suggests that 
a trade-off must be made between stability robustness and model simplicity. The 
above qualitative observations are consistent with practical heuristics. 

The solution to Problems 3.1-3.2 are facilitated through continuous-time lifting 
of the sampled-data systems depicted in Figures 3,4, and 5. The lifted sampled-
data systems are time-invariant (Proposition 2.2) due to the periodic nature of the 
original system (Comment 2.1). However, the input and output spaces of the lifted 
systems are infinite-dimensional. The lifted systems are illustrated in Figures 6,7, 
and 8. The following operators result from lifting the sampled-data systems depicted 
in Figures 3,4, and 5: 

We_ = LWeL'1 (22) 

W^ = LWUL'1 (23) 

P = LPL-1 (24) 
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K = LKL-1, K = HKdSF 

Pn = LPnL-1 

Kn = LKnL-1, Kn

d= HKdSF. 

(25) 

(26) 

(27) 

The lifted sampled-data systems are causal, linear, and shift-invariant and hence 
they have a frequency domain representation via the z-transform given in Defini
tion 2.3. Invoking the isomorphism which exists for the z-transform and the lift 
operator (Proposition 2.1) permits the equivalent frequency domain descriptions of 
the performance metrics given in Definitions 3.2,3.3, and 3.4 to be established. The 
frequency domain performance metrics are respectively (see also Figures 6, 7, and 8) 
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Fig. 6. Lifted infinite-dimensional sampled-data feedback loop. 
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Fig. 7. Lifted purely finite-dimensional sampled-data feedback loop. 
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Fig. 8. Lifted purely finite-dimensional sampled-data feedback loop. 
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/iopt = л Іnf 
QЄH°°(Ю) 

fln = _ inf 
QeMn°°(E» 

( . ? . . )(I-ŁK(ŁQ))~] 

V WuK(Ł,Q) ) K ~J 

(l-Һк(Pn,Q))' 

n oo 

њ 
җJL(PnЉ n oo 

њ 
wuK(Pn>Qn) 

where the symbols are as defined in Proposition 2.5. 

- 1 

(28) 

(29) 

(30) 
П oo 

Lemma 4.1. (Lifted System Parameter Properties.) The lifted weighting filters 

^ ^ W u ' 1 eA. (31) 

The lifted approximants Pn and the lifted plant P_ satisfy 

\\Pn-P\\noo<b (32) 

for all n > N = N(e, We, Wu). 

P r o o f . This follows from Assumption 4.1, Construction 4.1, and Proposition 2.4. 
D 

Given our notion of stability, Comment 2.3, the following extended result from 
the algebraic control literature will be heavily exploited [45]. 

Given that K_(P,Q) d= -Q(I - P Q ) " 1 (cf. Proposition 2.5, it follows from 
Equation (28) that the optimal performance //0pt is given by the following expression: 

A^opt — ^ inf 
QЄП^ІЮ) 

inf 
QЄ2Ĺ°°(Ю) 

\ WuK(P,Q) 

WeíI-ŽQ) 

WuQ 

(i-ŁK(Ł,Q)) 
-i 

n oo 

n oo 
(33) 

It should be emphasized that this expression defines an infinite-dimensional op
timization problem. In this section, it is shown that this infinite-dimensional prob
lem can be avoided entirely. Before proceeding, it should be noted that //opt < 
ll!^eJI?y°o = l|We||ft«>(c+)- Thus, although p0pt is not known a priori, an a priori 
upper bound is immediately available. 
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Similarly, from Equation (29), it follows that the expected performance fin is 
given by the following expression: 

Џn = _ Іnf 
QЄЩП°°(Ю) V ШEn&Ž ,)c- Pnãn(Pn,Q)) 

= - І Г l f 

QЄЛГH°°(Ю) 

Шt-ĎLU) 
Шя. n°° 

should be noted that 

Џn < \\Ш\П<X> = \\Ш-H°°(C+), V n Є - " + . 

n oo 

(34) 

(35) 

This shows that {/in}n°=i i s a uniformly bounded sequence of real numbers. 

In what follows, let Q(Qd

0) = Q0e K°°(JD) satisfy the following inequality: 

Ш1 - PQo) 

WUQ0 

< ("opt + Є. (36) 

n oo 

A fundamental premise of this paper is that Q0 G K°°(1D)> a n d hence Q^ G 7Y°°(JD), 

is unknown. Although Q0 is unknown, one can still obtain an a priori bound for 

its 7i°° norm. With this bound, an upper-semicontinuity result can be obtained as 

follows. 

Propos i t ion 4.1. (Upper-semicontinuity.) Given Assumption 4.1, it follows that 

\\Qo\\noc < B (37) 

and 
Џn < / W + 2«f 

def 
for all n > N = N(e, Wei Wu). Moreover, 

lim inf /ijt < lim sup/i* < /i o p t . 
n—•ooib>n n-+°° k>n 

(38) 

(39) 

F r o o f . Since W^ £ n°° and / io p t < IIWejI-xyOo, it follows that 

llgo|lwoo < WW^'w^ooWWuQol^oo <| |® i~
1 | |? ioo(A topt + £) 

< IIWi-
1|l^oo(|iaiwoo+£). (40) 

However, 

\\EnrlWHoo(&H°o + e) = l|W?tT1llT.--(c+)(||W
?e||w-.(c+) + e) = B. (41) 
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One should note t h a t to obtain this bound, the invertibility condition on Wu wets 

critical. Now, consider the following inequality: 

Џn < 
W « ( / - PnQ0) 

WUQ0 

< 
П oo 

ШІJPQO) 
WUQ0 

+ 
n oo 

ШĽn.-Ł)Qo 
n oo 

(42) 
Using the near-optimality of Q0 [see Equation (36)] and the bound for Q0 obtained 
in (37) yields 

lin < /ioPt + e + B\\^\noo\\Pn - E\\noo• (43) 

The proof then follows from the construction given for Pn [see Equation (18)] and 
Lemma 4.1. £--

C o m m e n t 4 . 3 . (Upper-semicontinuity at P_.) The above proposition shows tha t 

the function n(P) is upper-semicontinuous [35, pp. 48-50] at P_ in the uniform topol

ogy on 7 i ° ° (see [37]); i .e. 

lim sup/ i* = lim sup/i(Pjb) < / i o p t = [i(___\). 
n-+°°k>n n-+°°k>n 

(44) 

From the proof of the proposition, one sees that the upper-semicontinuity follows 

immediately since Q0 £ 7i°° is a fixed element of 7C°° and Pn_ uniformly ap

proximates P_. However, to provide the a priori est imate given in Proposition 4.1 

(i.e. determine IV = IV(£, We, Wu) a priori ), the upper bound for Q^ obtained in 

(37) Wets exploited . This upperbound for Qo was obtained by taking advantage of 

the invertibility of Wu in ft°°(C+). 

C o m m e n t 4 .4 . (Upper-semicontinuity at P.) Comment 4.3 is directly applicable 

to P by Proposition 2.4. T h a t is, 

lim suptifc = lim sup fi(Pk) < /^opt == l*(P)-
n-+°°k>n n^°°k>n 

(45) 

Proceeding as above, let Q(Qn) = Q_n G 7__°°(1D) satisfy the following inequality: 

Җ(I - PnQn) 

WuQn 

< Џn + e. (46) 
П oo 

The bisection search m e t h o d described in [6, pp. 336-345] and [2] can be used to com

pute Q„. It is now shown t h a t {Qn}£Li is a uniformly bounded sequence of operator-

valued functions in 7 i ° ° . The bound is then used to obtain a lower-semicontinuity 

result. 
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Propos i t ion 4.2. (Lower-semicontinuity.) Given Assumption 4.1, it follows that 

IIQ»llwoo < B (47) 

for all n £ Z+ and 
A*oPt < Џn + 2б: 

def 
for all n > N = N(e, We, Wu). Moreover, 

/i o p t < lim inf/ijb < lim sup/i*. 
n—>ooJb>n n—>oo j . > n 

(48) 

(49) 

P r o o f . Since Wu € « ° ° and n„ < HWeJI^oo for all n € Z+, it follows that 

IIQnll̂ OO < ll^'ll^OollS.QnH^OO < llgJ^^OO (/.n + e) 

< llSL^H^oodl^H^oo+e). (50) 

However, 

Ife^ll^oodiai^oo +e) = ||W?
tt-

1||w-(c+)(||M
?.||«-(c+) + £)• = B (51) 

To obtain this uniform bound for {Qn}™^* the invertibility of Wu in 7i°°(C+) was, 
once again, the key. To complete the proof, consider the following inequality: 

A*oPt < 
WJJ- PQn) 

WuQn H oo 

We(I- PnQn) 
WuQn 

+ 
U oo 

WÁh.-P-)Qn 
n°° 

Using the near-optimality of Qn [see Equation (46)] and the uniform bound for Qn 

obtained in (47) yields 

Mopt < \ln + e + SHWe.H^OO \\Pn - EH^OO (53) 

The proof then follows from the construction of Pn [see Equation (18)] and Lemma 4.1. 
• 

Comment 4.5. (Lower-semicontinuity at P.) The above proposition shows that 
the function /i(P) is lower-semicontinuous [35, pp. 48-50] at P_ in the uniform topol
ogy on 7i°° (see [37]); i.e. 

def 
/ W = џ{E) < -im inf Џk = lim inf џ(Pk). 

n-юok>n n-юo k>n 
(54) 

From the proof of the proposition, one sees that the lower-semicontinuity does not 
follow immediately; i.e. not until the invertibility of Wu in lFfli00(C+) is exploited 
to show that the sequence { Q n } ^ ! - s -n feet uniformly bounded in 7 i ° ° . 
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Comment 4.6. (Lower-semicontinuity at P.) Comment 4.5 is directly applicable 
to P by Proposition 2.4. That is, 

/iopt = V>(P)< lim inf/ijb= lim inf fi(Pk). (55) 

From Propositions 4.1 and 4.2, one obtains the following theorem which shows 
that the expected performance p.n approaches the optimal performance / io p t as the 
fidelity of the approximants is improved. 

Theorem 4 .1 . (Solution to Purely Finite-Dimensional Problem.) Given the As
sumption 4.1, it follows that 

K - / i o p t | < 2 £ (56) 
def "**̂  —* 

for all n > IV - N(e, We, Wu). Moreover, 

lim fin = /i0pt- (57) 
n—>oo 

Comment 4.7. (Continuity at P and Estimating /iopt-) This theorem shows that 

when Wu is invertible in 7i°°(C+), then the function p,(P) = //opt is continuous [35, 

pp.48-50] at P in the uniform topology on W°°(C+) (see [37]); i.e. 

lim fi(Pn) = fi(P). (58) 
n—+oo 

Also, because N can be determined a priori, it follows that one can estimate 
the optimal performance t-opt, to any a priori tolerance. This can be done by 
determining IV a priori in accordance with Equation (18), and solving the finite-
dimensional sampled-data problem associated with fi^ ar1d -P/v for a near-optimal 
Qd

N £ M7i°°(lD). As stated earlier, this can be done by using the well known bisec
tion search method described in [6, pp. 336-345] and [2]. Consequently, the theorem 
provides a solution to the Purely Finite-Dimensional 7i°° Mixed-Sensitivity Prob
lem. 

The compensator generated by Qd G H°°(D) is finite-dimensional and is given 
by Kd = Kd(Pn,Qn)

 d= -Qd(I - SFPnHQd
n)-\ It is now shown that this com

pensator "internally" stabilizes the plant P in the sampled-data setting for all except 
possibly a finite number of n. Proposition 2.5 will be invoked to establish this fact. 

Proposi t ion 4.3. (Stability of Actual Closed Loop Operator: (P, Kn).) Given 
Assumption 4.1, it follows that 

for all n > IV = IV(e, We, Wu). Moreover, 

\\{£L-&Qn\\<HOO < 1 (59) 

). Moreover, 

JIJmll^-BSrJIwoo^O (60) 
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and the operator K^ = K_(Pn,Qn) = -Qn(I - Pn Qn)~
l internally stabilizes the 

MIMO distributed parameter operator P for all except possibly a finite number of n. 

P r o o f . Using the uniform bound obtained for Qn in (47), one obtains \\(Pn — 

E)Qn\\*yjQQ < -9|l(Pn — £ ) | | ^ c o . The proof of this proposition then follows from 

the construction of Pn [see Equation (18)], Lemma 4.1, and the small gain theorem 
[8]. D 

Given that / ^ =f KJ^_, Q„) d= -Qn(I- PnQn)'1 stabilizes P for all n > N d= 
N(e, We, Wu), it follows from Equation (30) that the actual performance, p.n is well 
defined and given by: 

| | l We \ / ~ ~ x - l 

We(I - PnQn) \ fr / ň fixA N - i 

WuQn 

) (i ~ (Ľn-Ł)Qn)' 
П°° 

(61) 

for all n > N = N(e, We, Wu). 
Given this, the following theorem provides a solution to the H°° Approximate/De

sign Mixed-Sensitivity Problem. 

T h e o r e m 4.2. (Solution to 7i°° Approximate/Design Mixed-Sensitivity Prob
lem.) Given Assumption 4.1, it follows that 

Mopt <fin< A-opt + £d (62) 

for all n > N =f N(e,We, Wu). Moreover, 

lim fln = //opt . (63) 
n—*oo 

P r o o f , From Equation (61), one obtains the following inequality: 

_ | __U*-££n) I i ,M* 
LLn < \\ ~ 5s-75 ( 6 4 ) 

" I WuQn IWOQ 1 - \\(Pn - P)Qn\\nOO 

Since K^ = -Qj^I - hQn)-1 stabilizes P for all n > N d= N(e,We,Wu), it 
follows that 

/iopt < fin (65) 

for all n > N d= N(ey We, Wu). Since Qn satisfies the inequality (46), it follows 
from Theorem 4.1 that 

|| We_(I ~ PnQn) \\ 
— ~ < l^n + e < /.0pt + 3e (66) 

|| W±Qn Wji00 
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for all n > N d= N(e, We, Wu). This, then yields 

/•opt < /in < ^ 1 + 5 (67) 
hP -^ - l - | | ( P n - £ ) Q n | l w O O 

def "—' """̂  "̂  

for all n > N = N(e, We, Wu). Using the uniform bound for Qn obtained in (47) 
yields 

/•opt < /in < !Vl+4f ( 6 8 ) 

def — 

for all n > N = N(e, We, Wu). The proof of the theorem then follows from the the 
construction of Pn [see Equation (18)], Lemma 4.1 and 

[ < Â opt + (/iopt + 3) — -

< AioPt + (||W^||w-o(c+) + 3 ) — -

< / iop t+^d . D 

Comment 4.8. (Solution to Mixed-Sensitivity Problems: Issues.) Given the pre
vious theorems, some comments are in order. First, it is important to note that no 
infinite-dimensional spectral factorization is required. Also, the optimal performance 
need not be known a priori in order to construct near-optimal finite-dimensional 
controllers. Moreover, in this paper, Construction 4.1 provides precise a priori con
ditions on the approximants so that the resulting finite-dimensional controllers de
liver near-optimal performance, in a weighted Ti°° mixed-sensitivity sense, for the 
sampled-data controlled MIMO distributed parameter plant. A consequence of this, 
is that the optimal performance can be determined to within an a priori specified 
tolerance. Finally, it should also be stated that robust controllers with respect to 
normalized coprime factor perturbations (see [29]) can be accommodated within the 
framework presented in this section. 

Summary of Design Methodology. The proposed "indirect" procedure for syn
thesizing a finite-dimensional sampled-data controller for a MIMO stable infinite-
dimensional plant is as follows: 

1. Start with the sampled-data system with infinite-dimensional plant, P , and 
performance measure, / i o p t , which takes into account intersample behavior 
(Figure 3 and Equation (11)). A specified performance criterion is that the 
actual performance be near-optimal (Equation (62)). The actual performance 
is defined as the performance achieved from the sampled-data system using the 
infinite-dimensional plant and a finite-dimensional discrete-time controller, K* 
(Figure 5). 

2. Approximate the infinite-dimensional plant with finite-dimensional RW°° (C+) 
approximants of a priori determinable order based on Cd and the weighting 
filters. Use this approximant in place of the infinite-dimensional plant in the 
sampled-data set-up (Figure 4). 
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3. Lift the resultant finite-dimensional sampled-data system (Figure 9). 

4. In Figure 9, 7i°°-discretize [6, pp. 317-320] the operator which maps 

w 
Vn 

Zтn 

Фn 

5. Synthesize a finite-dimensional discrete-time controller, K*, using "natural" 
discrete-time Ti°°(D) design algorithms based on the discretized finite-dimensional 
operator. 

6. The synthesized finite-dimensional discrete-time controller results in stable 
closed loop performance for the original infinite-dimensional sampled-data sys
tem with guaranteed performance measure satisfying Equation (62). 

-9 

W. L • — 

11P4Ӣ} 

г-ИИt 

Fig. 9. Sampled-data feedback loop input/output lifting. 

This completes the discussion of the two fundamental 7i°° Mixed-Sensitivity 
Problems considered in this paper. Section 5 presents a numerical example of the 
finite-dimensional sampled-data controller synthesis methodology. 

5. NUMERICAL EXAMPLE 

This section presents a numerical example of the results presented in Section 4. First, 
an application of Theorem 4.1 is performed where the infinite-dimensional sampled-
data performance measure /iopt is estimated using finite-dimensional sampled-data 
techniques. Then an application of Theorem 4.2 is performed where a finite-dimensional 
discrete-time controller is synthesized which guarantees near-optimal performance 
for the infinite-dimensional sampled-data system. The controller design methodol
ogy enumerated in Section 4 will be applied here. 

The SISO infinite-dimensional plant used for this example is 

P(s) = 
s+ì 

The sample rate T, = 0.3 seconds and the anti-aliasing filter is 

1 
F(«) = 

^s + l 

(69) 

(70) 

which has a pole at the Nyquist frequency. The weighting filters selected for this 
example are 

We(s) = 

Wu(s) = 

(&'+l) 
( ^ + ю-3) 

(*«+-) ' 

(71) 

(72) 
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The 7i°° norms for these filters are 

\\W*\\n-{c+) = 1 (73) 

| |V?u | | *~ ( c + ) = 19. (74) 

The infinite-dimensional portion of the plant P(s) in (69) is approximated by [31] 

where 
Dpn(s) 

L,^Sf-2^2n\k\(n-k)\S 

a n d ^Vpn(s) = Dp„(-«). 
This yields plant approximants of the form 

" ( ) Ďpn(s)[s + l) 

(75) 

(76) 

(77) 

(78) 

(79) 

These approximants uniformly approximate P [20]; i.e. 

lim | |P„ - P | | « - ( c + ) = 0. 
n—*co 

The approximation error \Pn-P\ as a function of frequency is displayed in Figure 10. 
Figure 11 shows the plant approximation W°°(C+) norm error as a function of ap-
proximant order. Also displayed in this figure are the upper and lower error bounds 
for the approximants [16, p. 385]. The approximations asymptotically approaches 
the optimal convergence rate of 0(n~x) [20, p. 241]. 

Plant Approximation Error Over Frequency 

10 10 
Frequency (Hz) 

10 

Fig. 10. Plant approximation error curves. 
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Plant Peak Approximation Error With Error Bounds 

4 6 8 
Approximation Order 

10 

0.825 

g 0.82 
co 
E 
o 

£0.815 

ш 0.81 -

0.805 

Fig. 11. H00 norm of plant approximation error. 

Finite Dimensional Problem Expected Performance 

J ^ ^ . . . T ľ ľ ^ ľ Г r ^ c>-_ i } 

-

3 4 
Plant Approximation Order, n 

Fig. 12. Convergence of expected performance, /xn. 
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Estimation of fiopt. To estimate £iopt,
 a sequence of finite-dimensional sampled-

data runs were performed starting with a plant approximant order of one and incre
mented an order at a time until fin convergence was evident. By Theorem 4.1, /in 

converges to fiopt as n increases. The computer results were generated using a script 
file written for MATLAB and the /i-Analysis and Synthesis Toolbox implementing 
algorithms from [6, pp. 309-345]. The /in-values were determined by calculating the 
closed-loop sampled-data system 7^°°-norm iteratively. The convergence results are 
displayed in Figure 12. 

These results yield a strong indication that the infinite-dimensional sampled-data 
system optimal performance /iopt is around 0.82. To what degree of certainty do we 
have that the infinite-dimensional sampled-data system optimal performance is 0.82? 
This question is answered by applying the results of Theorem 4.1, Equation (56) 
which is now restated 

lMn-AioPt |<2£ (80) 

for all n > IV = IV(£, We, Wu). Given that the highest order approximant used to 
generate the results in Figure 12 is 6t/l order, IV(£, We, Wu) < 6 for Theorem 4.1 
results to apply. Set N(e, We, Wu) = 6. We determine the nearness of I*6 to fiopt 

using 

1/̂ 6 - / ioP t | <2e (81) 

and calculating e. As stated in Construction 4.1, the plant approximant order must 
satisfy 

| | p 6 - / 3 | | « » ( c + ) < ^ d = m i n { - ^ — - L \ Vn>N(e,We,Wu) = 6 
{\\We\\H-(c+)B B) 

(82) 
where 

B = \\W;X\\H-{C+) (\\W~e\\n~(c+)+e) (83) 

= (W'Kl + t) 

and 
IIP6 - P||w-(c+) = 0.1211 (84) 

by Figure 11. The minimum e value which satisfies these relations is 

e = 0.0064. (85) 

Given this, it follows that 

K - / i o P t | < 2 e = 0.0128. (86) 

If /iopt is near 0.82, then our error in approximating /.opt by //6 is on the order of 
1.6%. 
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Near-Optimal Controller Synthesis. Now a finite-dimensional discrete-time 
controller is synthesized which guarantees near-optimal performance for the infinite-
dimensional sampled-data system. 

In the first step of the design methodology enumerated in Section 4, the weighting 
filters and the desired performance tolerance are specified. The weighting filters have 
already been specified in Equations (71) and (72). Using our /iopt estimation results, 
we'll specify Sd = 0.08. This is to attain a small deviation between the actual p,n and 
optimal fiopt performances. From Equation (16), the desired performance tolerance 
of Sd = 0.08 results in 

E < 6d = °-°8 = JL (R7\ 
-\\We\\n-lc+) + Z + ed 1 + 3 + 0.08 " ' y } 

The second step requires knowledge or determination of the form of R7i°°(C+) 
plant approximants. These were defined in Equation (78). 

With the choice of design parameters stated (i. e. weighting filters, desired perfor
mance tolerance, and the form of JRTi°°(C+) plant approximants), the plant approx-
imant order is determinable. As stated in Construction 4.1, the plant approximant 
order must satisfy 

| | P „ - P | | w = c ( c + ) < ^ = f m i n { - ? = - — - L \ Vn>N(e,We)Wu) (88) 

where 

B = | |W- 1 |І7.- ( C +) ( | | W e | k ~ ( c + ) + Є ) 

= ( 1 9 - 1 ) ( l + - ! ï ) (89) 

This results in 

= 53.69 x 1ГГ3. 

«*•-*!*-<«•> - 5 i Z . - " J I 

To be within this system approximation error, Figure 11 indicates that the system 
approximant must be greater than first-order. A second order plant approximant is 
used in place of the infinite-dimensional plant to perform controller synthesis. 

Controller synthesis methodology steps 3-6 were implemented in a MATLAB 
script file written for the /i-Analysis and Synthesis Toolbox. A MATLAB simula
tion was used to model the plant dynamics and to synthesize the finite-dimensional 
discrete-time controller with near-optimal performance. The second order approxi
mant form is given by 

S / x 0 . 0 8 3 3 s 2 - 0 . 5 5 + 1 
2[S) " (0.0833s2 + 0.5s + l)(s + 1)' ( 9 0 ) 

Script file execution resulted in a discrete-time controller which yielded closed-
loop performance of/i2 = 0.8149. The resultant controller form is 
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- A (z + 0.8882)(z - 0.5987)(z - 0.7408)(z - 0.0432)(z - 0.0008)(z2 - 0.7058* + 0.1653) 
Ko = 0.0368 . 2 (z + 0.8814)(z - 0.7744)(* - 0.6103)(z2 - 0.6316* + 0.1322)(22 - 1.2375* + 0.4542) 

Theorem 4.1 guarantees this to be within ±2e = ± ^ - -= 0.039 of the optimal 
performance, /iopt- By Theorem 4.2, the actual performance guarantee is that 
0 < /Í2 - /iopt < 0.08. 

Controller Sequence Convergence. Given that Pn —• P) /i„ —• //opt and 
A-n n-^+ fJ-opt one might expect that the sequence of discrete-time finite-dimensional 
controllers K* converges to some, possibly infinite-dimensional, near-optimal com
pensator A'opt. While such a result is in general difficult to prove, if one assumes 
that K£pt is unique then advanced mathematical concepts such as the Arzela-Ascoli 
theorem [7, p. 175] maybe useful to arrive at such a result. The plot displayed in 
Figure 13 shows the frequency responses for Kf, K*, • • •, Kjj. This plot suggests that 
the controllers K*, K2> • • • > -^6 a r e m fac^ converging. 

Discrete-Time, Finite-Dimensional Compensator Convergence 

10 
Frequency (Hz) 

Fig. 13. Discrete-time, finite-dimensional controller convergence. 

6. SUMMARY AND FUTURE RESEARCH 

This paper presents a systematic methodology for synthesizing near-optimal finite-
dimensional sampled-data controllers for a large class of continuous-time MIMO sta
ble distributed parameter plants, based on finite-dimensional plant approximants. 
The criteria used to determine optimality is a weighted induced C2 mixed-sensitivity 
measure which penalizes both the sensitivity operator and a operator associated with 
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the control. More specifically, it has been shown that given an "appropriate" finite-
dimensional approximant for a distributed parameter plant, one can solve a single (a 
priori determinable) finite-dimensional sampled-data problem in order to obtain a 
near-optimal finite-dimensional discrete-time controller. The key technical require
ments are that uniform plant approximants are available and that the control is 
penalized in a nonsingular manner. A numerical example demonstrating the con
troller synthesis methodology on a delay system was also presented. This example 
displayed the expected performance measure convergence. In addition, it has been 
shown that the optimal performance can be approximated to any arbitrary accuracy 
by solving a single (a priori determinable) finite-dimensional optimal sampled-data 
problem rather than a possibly infinite-dimensional eigenvalue/eigenfunction prob
lem. 

Issues to be resolved in future work includes extending these results to MIMO 
unstable plants, loop convergence properties, and approximation methods for con
troller order minimization. One step towards the controller order reduction problem 
is to use system approximants which converge rapidly to the infinite-dimensional sys
tem. For the system approximants implemented in this paper, the convergence rate 
is displayed Figure 11. In future work, we'll research implementing better system 
approximant schemes [17], [18], [19], [20], [21], and [28]. 

In summary, the approach presented here allows one to forego solving a "complex" 
infinite-dimensional sampled-data H°° problem and provides rigorous justification 
for some of the approximations that control engineers typically make in practice. 

(Received April 8, 1998.) 
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