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ON THE CONCEPT 
OF THE ASYMPTOTIC RENYI DISTANCES 
FOR RANDOM FIELDS1 

MARTIN JANZURA 

The asymptotic Renyi distances are explicitly defined and rigorously studied for a con
venient class of Gibbs random fields, which are introduced as a natural infinite-dimensional 
generalization of exponential distributions. 

L INTRODUCTION 

The Renyi distance of a general order a > 0 was introduced in [5] as a "continu
ous extension" of the well-known /-divergence (Kullback-Leibler information) with 
which it coincides for a — 1. Any order distance exhibits properties of a reasonable 
measure of divergence, namely it assumes zero for a pair of identical probability 
measures and infinity for a pair of singular ones. 

The notion has been thoroughly studied by many authors (cf., e.g., [1, 4, 6]), 
mostly in the frame of general /-divergences of probability measures (cf. [3]). Many 
applications for statistical procedures and decision making were proved (see [7] for a 
survey). Since the distributions of stochastic processes and fields are often mutually 
singular, in order to obtain meaningful results it seems necessary to replace the dis
tances by the asymptotic rates. The particular rate indicates the speed of divergence 
between the finite-dimensional projections of the infinite-dimensional distributions. 
The rates will be called the asymptotic Renyi distances and their properties imitate 
in many aspects the properties of the "non-asymptotical" distances. 

Unfortunately, the transition from the distances to the asymptotic rates is not 
only mechanical, there are arising many new problems that concern the properties 
of measures on infinite-dimensional product spaces. Moreover, the problem of eval
uating the asymptotic distances is in general extremely difficult (for some particular 
cases cf. [3]). 

Therefore, when dealing with the asymptotic Renyi distances for random process, 
we have first to choose a reasonable class of distributions for which the distances 
can be explicitly expressed, and their properties can be rigorously studied. In order 
to seek for a class of "easily treatable" distributions, let us recall that in the case 
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of exponential distributions the formulas for the (non-asymptotical) Renyi distances 
assume a rather simple form, namely they can be expressed with the aid of the 
moment generating function. Following this basic observation, we shall consider the 
Gibbs random fields which can be understood as an infinite-dimensional counterpart 
of the exponential distributions. In order to emphasize the "exponential-like" form 
of Gibbs random fields, a new definition of the notion is introduced in Section 4, 
and an original technique is developed in Sections 5 and 6 to prove the equivalence 
with the standard definition (cf. [2]) as well as to show the existence and some basic 
properties of Gibbs random fields in Section 7. Finally, the main results concerning 
the asymptotic Renyi distances for Gibbs random fields are obtained in Section 8. 

2. ASYMPTOTIC RENYI DISTANCES 

For a pair of probability measures P, Q on a measurable space (fi,,/4), the Renyi 
distance of order a > 0 is defined by 

Ra(P\Q) = (a - I ) " 1 log j ( ^ ) dQ f o r a ^ l 

аnd 

я U E I Q ^ / b g ^ d P , 

whenever the expression makes sense. Otherwise we set Ra(P\Q) = oo. 
Denoting by IV the set of positive integers we suppose there exists a system of 

sub-cr-algebras {An}n£N satisfying An /* A for n —• oo, and a system of constants 
{A'n}n£Iv with Kn —> oo for n —• oo. 

If the limit 
Tla(P\Q)= lim (Kn)~

l Ra(Pn\Qn) 
n — • o o 

exists, where Pn = P/An and Qn = Q/An are the projections to the rr-algebra 
An C A for every n £ IV, we call it the asymptotic Renyi distance of order a > 0. 

For some basic properties of the Renyi distances and the asymptotic Renyi dis
tances cf. [3]. Let us note that we could also consider a generalized sequence (directed 
set, lattice) instead of IV. 

Let us note that sometimes the normalizing term (a(a — l ) ) " 1 is used in the 
definition of Ra (cf. [3]). Such modification yields slightly different properties with 
more symmetric role of P and Q. Nevertheless, for our purposes we shall keep the 
above definition. 

3. RANDOM FIELDS 

Let the measurable space (CltA) be given by the infinite-dimensional product 

(X,B)T 

where (X, B) is a fixed standard Borel space (i. e. equivalent to a complete separable 
metric space with the rr-algebra of Borel sets) and T = Zd is the d-dimensional 
integer lattice. 
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For every S C T let us denote by Ts = P r J 1 ^ 5 ) the sub-cr-algebra generated 
by the projection function Pr5 : XT —» Xs, and by Cs the set of all bounded 
JFs-measurable functions. 

Let 
£ = ( J £ 5 , S = {ScT; | 5 | < c o } , 

ses 

be the set of all local (cylinder) bounded measurable functions. 
Let V denote the set of all probability measures on (X,B)T, which will be called 

the random fields, and VQ C V the subset of all shift-invariant (stationary) random 
fields, 

PeVe iff P= Po 0~l for every t G T, 

where 0t is the shift defined by [0t(x)]s = xt+s for every t, s G T, x G -XT. The set 
V will be equipped with the topology of "local convergence" which is the smallest 
topology on V making all maps 

/ 
fdP, f£C, 

continuous. By | | / | | we denote the usual supremum norm. 
For the sake of simplicity we consider the system of cubes 

{Vn}n£N, 

where 
Vn = {t G T; \t{\ < n for every i = 1 , . . . , d} for every n G N. 

Thus, An = ?vn
 ar-d Pn = Pvn 1s the restriction of P G V to the cr-algebra Tvn-

We set KVn = \Vn\ = (2^ + l ) d for every n. 
Further, let us denote by a; a fixed reference probability measure on (X, B). 
Let us emphasize that the quantities below strongly depend on the choice ofw. 

E.g., we have TZ\(P\UJ)T = +00 if Pyn is not absolutely continuous with respect 
to *JT for some n G IV. In what follows, we shall consider u as a fixed hidden 
parameter which will be mostly suppressed in the notation. 

Proposi t ion 3.1. For every P G 'P© 

TZ^P^) = ^ m \Vn\-1 R^PvJuZj > 0 

exists and equals 
s u p l V ^ R i O V j u ^ J . 
n£N 

Moreover, 
Ri(>r) 

is affine and lower semicontinuous on VQ , and its level sets 

{ R i O T ) < c } , c > 0 , 
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are compact and sequentially compact. 

P r o o f . Cf. Propositions 15.12, 15.16, 15.14 and 4.15 in [2], D 

We could also understand the measure Pyn on the <r-algebra BVn. Then we could 
write uVn instead of cjT

n. Sometimes we shall not distinguish between these two 
cases. But, in principle, we prefer to deal with measures Pvn defined on sub-cr-
algebras Tvn C BT, and functions / (potentially measurable with respect to some 
Tvn) defined on the whole space XT. 

4. GIBBS RANDOM FIELDS 

Let / G C and P G Ve- Suppose there exists a constant cp(f) and a sequence 
6(Vn, P, / ) —> 0 for n —+ oo such that 

IK.I-1 ьв^-I>'. 
dw? tev„ 

+ -*(/) <6(Vn,P,f) a.s.[uт]. 

We write P G G(f) and call P to be the (stationary) Gibbs random field with 
respect to the potential / G C. We can easily observe the following assertion. 

Propos i t ion 4.1. If there exists some P G G(f) then it holds 

Rl(P\uT) = JfdP-cp(f), 

and cp(f) does not depend on P since 

cy(f) = c(f)= lim \Vn\~lc(Vn,f) 

where 

c(Vn, f) = log / exp < ^^ f ° Of f d-^T for every n G N. 

Moreover, for a general Q G Ve we have 

IWI"T)>yVdQ-c(/). 

P r o o f . Since P G G(/) and Pyn is a probability measure, we have 

l-e\Vn\[-cpU)±6n]+c(yn,/)^ 

and therefore 
cP(f) = \Vn\-1c(Vn,f)±6n. 

Since (5,, = (5(V,., P, f) —• 0 for n —* oo, the limit exists and does not depend on P. 
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Similarly, for Q G PQ we have 

JfdQ-c(f)±6n = \Vn\~lJ'log 
ІPv-лn 
ÏЖІQ 

= iVnl"1 Ri(QvMj - \Vn\~1 Ri(Qvn\Pvn) < \Vn\~lRi(QvMj 

and the remaining statements follow. D 

The opposite statement is more complicated. Before proving it we need some 
deeper results. 

5. PRESSURE 

The function 
c:£-> I2 

will be quoted as the pressure. First, we have to prove its existence for every / G C. 

Lemma 5.1. 

i) Wl"1 \c(V,h) - c(V,f2)\ < \\h - h\\ holds for every 
VeS; h,heC; 

ii) Wl"1 |c(V,/) - c(W,/)| < (1 - Wl"1 |W |) ll/H holds for every 

wcves, fee. 

The proofs follow directly from definitions with the aid of elementary bounds. 

D 

For every n, £, k _ N with n > £ we denote 

V(n,£,k)= U [Vn'-t] 

where V^_t = Vn-t + (2n + 1) s for every s e V*. 
Note that V(n,£,0) = Vn.t, V(n,0,k) = V2Jfen+n+Jfc, and \V(n,£,k)\ = |Vn_^| • 

\vk\. 
For S e S we denote £(S) = 2max||s|| + 1. Let us also recall that diam(S) = 

max ||s_-S2||<^(-5). 3i,s2es 

Proposition 5.2. For every / G C there exists 

c(f)= lim Wnl-MK.,/). 
n—>c» 

In particular, if / G £5 with -?(S) = -? < ex) then 

KO - Wnl"1 0(Vn,f)\ < 2II/H (1 - \Vn\~1 \Vn.t\) 
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holds for every n > L Moreover, it holds \c(f)\ < | |/ | | and Tli(P\uт) < 2||/|| for 
every P Є G(f). 

Proof. Under the assumptions it holds 

c(V(n,Z,k),f) = \Vk\c(Vn-t,f), 

and theгefore we obtain 

\\v(n, o, к)\~l c(v(n, o,k), f) - \vя\-1

 c(vn, f)\ 

< \V(n, 0, к)\~' \c(V(n, 0, к), f) - c(V(n,£,к),f)\ + \Vn\~l \c(Vn, f) - c(Vn.t,f)\ 

< 2 | | / | | . ( l - W „ | - 1 W „ _ г | ) 

by Lemma 5.1 ii). 

For general m > 2n there exists some к(m) > 1 with 

V(n, 0, к(m)) CVmC V(n, 0, к(m) + 1) 

and again by Lemma 5.2 ii) with the aid of i) we obtain 

IWmГ1 c(Vm, f) - \V(n, 0, ifcím))!-1 c(V(n,0, к(m)), f)\ 

< 2||/|| • (1 - ІV^Г1 Wn| \VҢm)\) < 2||/|| (1 - Wк-o-нГ1 \VҢm)\). 

By combining the estimates we prove the existence of the limit. The гest of the 
proof is obvious. • 

6. EQUIVALENCE 

Let us fix 5 G 5, f Є Cs- For V Є S and arbitrary _4, B C T let us denote 

a(V-A\B) - fЄxV&гzvf<> t}<i"A 

q{V>ЛlB)-fexP{Zt€Vf° t}^-

For A C B we have a (conditional) density, and the corresponding meгisure will be 
denoted as Q(V\A\B). In the particulaг case A = 0, B — T we have 

logq(V;ЩT) = Ş2f° t-c(V,f). 
t€V 

The following auxiliaгy гesults will be useful. We denote A — B = {a — 6 ; a _ 
A, b Є B) foг A, B CT. 

Lemma 6.1. Foг W C V Є s it holds 

| log<Z(l/ ;A |ß)-logg(W ;Л|£?)|<2| | / | | . |V\W | . 

Proof. The assertion is a straightforward extension of Lemma 5.1 ii). • 
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Lemma 6.2. i) It holds 

q(V;A\B) = q(VП(AUB- S);A\B). 

Theгefoгe 

q(V]A\B)eCм with M = [VП(AUB-S)] + S 

and 
\ìogq(V;A\B)\<2\\f\\\VП(AöB-S)\. 

ii) It holds 
| l o g g ( V ; Л | B ) | < 2 | | / | | . | V П [ ( A П S ) e - 5 ] | . 

P г o o f . Obviously, in oгdeг to pгove i) we may wгite 

Jexplj2f° ҷdu}A 

= /expi ]Г / o t \ dшA • exp ì Y fo t 

[ťЄVП[(AuB)-5] J [ťЄV\[(AUB)-5] 
and similarly foг B. On the other hand, for ii) we may observe 

íexp £ fo tdшA= I expì J2 fo t\dшT 

tЄVП[(AПBУ-S]° *! [ťЄVП[(AnB)<=-5]<= J 

and the same holds for B. П 

Lemma 6.3. If (Vc - 5) П (A U B - S) = 0 then M C V. 

P r o o f. Under the assumption we have M = [V П (Vc - S)c П (A U B - S)] + S. 
For t> e V П (Ve — 5 ) c we have v + S C V for every 5 Є 5 which proves the claim. 

D 

Lemma 6.4. For V, W Є <5, V П W = 0, and an arbitrary probability measure 
A^ on Tw it holds 

llog I q(V U W; 0|V) dA^ - log</(V; ЩT) 

< 4 | | / | | | V П ( V e - 5 ) | + 2 | | / | | - | W | . 

P r o o f . Since [V П (Vc - 5) e ] + 5 C V, and W C Vc, we observe 

I q(VП(Vc-S)cҖV)d\w 

= q(V П (Vc - 5 ) e ; 0|V) = q(V П (Vc - 5 ) e ; 0|T). 



360 M. JANŽURA 

By using twice Lemma 6.1 we obtain the uppeг bound 

2Ц/Ц |(V U W) \ [V n (vc - sy) + 2Ц/ЦI |V \ [V n (vc - sy}\ 
= 4 | | / | | | V П ( V C - S ) | + 2 | | / | | ІW | . D 

L e m m a 6.5. If (Л - S) П (B - S) = 0 then 

q(V;A\D) 
q(V;AuB\D) 

q(V;ЩB) 

P r o o f . Under the assumption we can find a decomposition 

V = ViUV2, VinV 2 = 0 with (Vi-S)n5 = 0 and (V2-S)n,4 = 0 

to prove q(V; AUB\A) = [q(V; 0|_?)]--. Since obviously q(V; AUB\D) = q(V; A\D)-
q(V; A U B\A) we have the claim. • 

Now, we can prove the main result of this section. 

Theorem 6.6. If / G C and P 6 V® with Ri(E|u>T) = ffdP- c(f) then 

P € G(/). 

P r o o f . Let us suppose / G £ 5 , £ = t(S), and n > 2£. 
Due to the assumption, Proposition 3.1, and Proposition 5.2 we have 

0 = lim IV(n, 0,k)\- lKx (PV(n,o,k)\Q(V(n,0, k); 0|T)) . 
K-+OO 

Since 

|V(n, 0, k) n (V(n, 0, k)c - S)\ < \V(n)\ (\V(k)\ -\V(k- 1)|), 

the same holds by Lemma 6.2i) also for O.(V(n, 0, k); V(n, 0, k)c\T). 

Further, since the system V(n,0, k)c — S, {V^.^ — S}t^v(k) is given by pairwise 
disjoint sets, with the aid of Lemma 6.5 we obtain 

q(V(n,0,k);V(n,0,ky\T) = qnAk • Ц Г/ 
*єvk 

ąn,t,k = q ( y ( П ) 0 > k). y ( П ) 0 ) ky u y ( П ) £> k)ìт) 

s€Vk 

where 

and 

€'1 = 9 (Yn; QK-t) for every s G V(k). 
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By Lemma 6.3 we have qn,t £ Cv. for every s G V(k) and obviously <_"•*'* £ 
Cv(n,o,k)\v(n,i,k)- Therefore, we may write 

\V(n, 0, k)\~l R_ (PV(nAk)\Q(V(n, 0, k); V(n, 0, k)c\T)) 

= \V(n, 0, k)\~' R_ (Pv(n,o,k)\(PQre'k) 

+ |K.r 1 | f t i (Pvn-t\(vn\vn-t)\Qo'1) dP 

where 
(PQ)n*>k = ®teVt Pv. uv^v. , ® Q 

n — c ' v «• ' n — t 7 

n.г.ib 

Note that the basic regularity conditions are satisfied, and all the (translation in
variant) conditional probabilities are well defined. 

Thus, since both the above terms are nonnegative and tending to zero as k —> co, 
we must have directly 

dpvn^\(vn\vn_t) = q1/ a.s. [uv-1 ® Pv n\v n-J 

and consequently 

diV._. = Jfi'tdP(vn\vm-t) a.s. [_•"-'] . 

Finally, by Lemma 6.4 and Proposition 5.2 we obtain a.s. 

\Vn-, 1-1 l o g d / V . . . - _>_. / oö« 

*evn 

+</) 

< IK,..!"1 |logyg.''d/V.\v„_. -log.(Y„-.;0/T) 

+ |W„_,|-1c(Kl__,/)-c(/)| 

< 4II/Hw»-<\YMI+2ii/n 11%TV+2ii/nf1 - T H 

= ^ . . ( V . P , / ) . 

Thus, we have the fundamental characterization property. 

Corollary 6.7. For every / G C it holds 

G(/) = JP e 7V,fti(P|"T) = JfdP" <f)} • 

P r o o f . Directly from Theorem 6.6 and Proposition 4.1. 

D 
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7. EXISTENCE 

In the preceding section we have proved among others that our definition of Gibbs 
random fields is equivalent to the standard one (cf. e.g. Chapter 15 in [2]). More
over, our techniques provide also a direct proof of the basic existence properties. 

T h e o r e m 7.1. For every / G C the set G(f) of (stationary) Gibbs random fields 
is a non-void compact face in VQ. 

P r o o f . Let us denote 
Qn = ®serQy 

as the product measure on BT', where again iff'1 = q(Vn
s; 9\Vn__t) G Cv>-

In order to make the field stationary we set 

Qn = \Vn\-lY,Q"0()t-

tevn 

Obviously we have 

Kl@n\vT) = \Vn\-1Rl(QZl\u>V*) 

= \Vnfl f [kgfi^dCft* < 2||/|| 

by Lemma 6.2, and therefore there exists a cluster point 

P*= UmQn(k)eVe. 
A:—>oo v ' 

By Proposition 3.1 with the aid of Proposition 5.2 and Lemma 6.2 ii) we finally have 

/ fdp*-c(f) < n1(P'\u,T) 

< lim n1(Qn(k)\u
T) 

h—*oo v ' 

£<evn(k)'<><>', Vn(k)_A ,An(*),* . i а д _ 1 / | £ /°ö«-ьg/« 
l < є v n ( t ) 

= lim l а д - 1 I { > ^ fo t-ìog e w t v - w du"»<*>-<> dQт

0 
k —•oo 

= lim {!fdQn(k)-\Vn{k)\-\(Vn{k),f) 
*—>oo \J 

+\Vn(k)\-1 J \ogq(Vn{k); Vn{k).t\T) dQn

0<) 

= JfdP*-c(f), 

which proves P* G G(f). By similar arguments we can show G(f) to be a closed 
subset of a compact set. Since Hi(-\wT) is affine by Proposition 3.1 we obtain that 
G(f) is a face. • 
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Proposition 7.2. Suppose /n, / G C with | |/n — /| | —* 0 as n —• oo. Then there 
exist a subsequence {Pn(*)}°°=1, P n ( f c ) G G(/„(*)), and P G G(/) such that 

P= lim P n ( f c ) and fti(P|u;T) = lim ^i(P n ( A : ) | a ; T ) . 
A:—>oo A:—*oo 

IfG(/) = {P0} then 

P ° = l i m E n and R^P0^) = lim R1(En|u;T) 
n—>oo n—>oo 

for every sequence { P 7 1 } ^ , P n G G(/n). 

Proof. Since 

^ i ( E n | ^ T ) < 2 | | / n | | < 2 ( | | / | | + | | / - / n | | ) 

for every Pn G G(fn)} n G -V, again by Proposition 3.1 we can choose a convergent 
subsequence {Pn(A:)}?L1 with a limit P G P© to obtain 

f fdP-c(f)<TZ1(P\uT) < lim ^i(P n W|a; T ) 
J fc->oo 

< ton [ | |/„(*)-/ | | + j/dPnW-c(/n(i))] =JfdP-c(f). 

Therefore P G G(/) and the proof is completed. 
In the ca.se of uniqueness the same result holds for every subsequence and conse

quently for the whole original sequence. • 

8. ASYMPTOTIC RENYI DISTANCES FOR GIBBS RANDOM FIELDS 

The definition of Gibbs random fields has been chosen in order to facilitate easy 
evaluation of the asymptotic Renyi distances. 

Let us fix /°, f1 G C. For every real a G IR we denote / a = a f1 + (1 - a) /°. 

Theorem 8.1. Let P° G G(/°), P 1 G G(fx). Then 
a)-c< 
1-a 

Ka^P0) = c(f) - c(ť) - C(fa] C ( / 1 ) f o r a ^ l , 

аnd 
R^P0) = c(/°) - cí/1) + J(Z1 - / V E 1 -

Proof. The formulas follow straightforward from the definitions and Proposi
tion 5.2. • 

From the above theorem we conclude that in this case the asymptotic Renyi 
distance can be directly defined for every real order a G IR, and we shall in general 
treat it as a real function. 

There are deep connections between the various distances with the crucial role 
of the basic /-divergence. Some of the relations are introduced in the following 
proposition. 
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Propos i t ion 8.2. Let P° G O(/°), P 1 G G(/1), P° € G(fa), Pb € G(fb), 
a^l, b^l. Then it holds 

( a - l ) ( ò - l ) 

ii) RaíP^P^-RбíP^ІP0)- ÍП-ҺҲl?Jì i,D<h -» /oi.oov ( a - f t ) ^ i ( - o a l - ° l ) - ( a - l ) Ä i ( - 3 a l - 3 t ) . 
( a - l ) ( 6 - l ) 

iii) R^IP0) - K,^1!?0) = ^- ( p l IP a ) . 
a — 1 

iv) Ra(P
1|P°)=ft1(P

a|P0) + - ? -R 1 (P o | P 1 ) . 
1 — a 

P r o o f . All the expressions can be verified by direct calculations. • 

The expression iii) can be understood as the "limiting version" of i) for 6 —• 1, or 
of ii) for a —> 1. The nature of the expression iv) is a bit different from the preceding 
three expressions, but it is also very useful, especially for a E (0,1). The proof of 
the following theorem is based on these relations. 

Theorem 8.3. The function 

F(a) = lla(P1\P0) 

is bounded and non-decreasing with F(0) = 0 and \F(a)\ < 2||/° - fl\\. For a ^ 1 
it is continuous and equal to y3-7£i_ a (P° |P 1 ) . 

At a = 1 it holds l im a_i_ F(a) < F(l) < lima_>i+ F(a) with both equalities if 

G(/1) = {E1}-

P r o o f . By Lemma 5.1 i) we have \c(f) — c(g)\ < \\f — g\\ for every / , g E £, and 
in particular 

| c ( / a ) - c ( / 4 ) | < | a - 6 | | | p - / ° | | . 

Therefore |P(a) | < 2H/1 — / ° | | and the boundedness is proved. 
From Proposition 8.2 we obtain 

F(a) > F(b) for a > b > 1 by i), 

for a > b = 1 by iii), 

for 1 > a > b by ii), 

and for 1 = a > b by iii). 

Further, with the aid of Proposition 8.2 i) we obtain 

\F(a)-F(b)\< 
\a-l\ 
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which proves the continuity for a 9-: 1, while the inequalities at a = 1 follow from 
the monotonicity. 

The equality na(Pl\P°) = yf-j ^ i _ a ( P ° | P 1 ) can be easily verified since 

^ . . ( P ^ P 1 ) = c(fi) - c(/°) - c V ? ^ ( / ° ) . 
Let G(f) = {P1} and an —* 1. Then, according to Proposition 7.2, for a sequence 

{Pn} with Pn e G(/°") we have P1 = lim P " and lim fti(Pn|P°) = K^P^P0). 
k—*oo k—•co 

Moreover, by Proposition 8.2 iii) it holds 

| F ( a „ ) - F ( l ) | < - ^ — ^ . ( P - I P " ) < _ _ ^ [ ^ . ( P » | p - ) + W l ( p - | P » ] 
| l - a n | | l - a n | 

\j(f1-f°)dP1-J(f1-f°)dPn 
0 for n —> oo. • 

An important characterization property is given in the following proposition. 

Proposi t ion 8.4. Let P 1 G G(f1)i P° G G(/°). Then the following statements 
are equivalent: 

a) OcnnOCi1)^, 

b) G(/°) = G ( A 

c) ^ ( P ' l P 0 ) = 0 for some a ^ 0, 

d) ^ ( P ^ P 0 ) = 0 for every a e IR. 

P r o o f . Let P* e G(/°) n G ( / 1 ) . Then by definition we conclude 

iK,r lE(I'0-I"1)o^+ c(I"1)-c(/0) 
<6Vn 

Therefore 

<6(Vn,P*,f°)+6(Vn,P\ľ) a . s . [ W
J ] , 

Jf°dQ-c(f°) = Jf1dQ-c(f1) 

for every Q G "P©. This proves a) => b), and also 

c(fa) = ac(f1) + (l-a)c(f°) 

for every a G IR, which proves a) => d). 
Let TZa(P1\P°) = 0 for some a > 0. By monotonicity we may assume a < 1 and 

by Proposition 8.2 iv) we obtain Pa G G(fa) with fti(Pa|P°) = Tli(Pa\Pl) = 0. 
Therefore P a G G(/°) H G ( / x ) , and c) => a) is proved. 

For a < 0 we may consider 7 J i _ a ( P ° | P 1 ) = 0 thanks to Theorem 8.3, and by 
symmetry and again the monotonicity we obtain the same result. 

Since b) => a) and d) => c) are straightforward, all desired implications are proved. 
D 
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If G(/°) = G( /1) we shall write f° « f1 and call the potentials equivalent. 
Following the proof of the preceding proposition, we may consider the condition 

^-^(r-zv^+cavctf0) <A(Vn,f°,ñ a.s. [^] 

where A( l7 n , / 0 , / 1 ) —• 0 for n —• oo, as a characterization of equivalent potentials. 
Thus, potentials / ° , f1 £ C are equivalent iff there is a constant c satisfying 

ess sup [ ыт] |Kl|-
1E(/°-/1)°^ + c 

t€Vn 

0 for n —• oo. 

From the above proposition it also follows that f° « f1 iff f(f° — f1) dP + c — 0 
for every P G VQ . 

Corollary 8.5. Let / ° 96 Z1. Then F(a) = ^ ( P 1 ^ 0 ) is a strictly increasing 
function. 

P r o o f . All the appropriate terms in Proposition 8.2 which are used to prove the 
monotonicity in Proposition 8.3 are now positive for a / b due to Proposition 8.4.D 

(Received December 15, 1997.) 
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