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EXPONENTIAL RATES FOR THE ERROR 
PROBABILITIES IN SELECTION PROCEDURES 

F R I E D R I C H L I E S E AND K L A U S J . M I E S C K E 

For a sequence of statistical experiments with a finite parameter set the asymptotic 
behavior of the maximum risk is studied foi the problem of classification into disjoint 
subsets. The exponential rates of the optimal decision rule is determined and expressed in 
terms of the normalized limit of moment generating functions of likelihood ratios. Necessary 
and sufficient conditions for the existence of adaptive classification rules in the sense of 
Rukhin [11] are given. The results are applied to the problem of the selection of the best 
population. Exponential families are studied as a special case, and an example for the 
normal case is included. 

1. INTRODUCTION 

The Bayes and maximum error probabilities in the problem of testing a simple 
null hypothesis versus a simple alternative, or more generally in a multiple decision 
problem, tend to zero with an exponential rate of convergence for increasing sample 
size. Pioneering work has been done in the paper by Chernoff [3]. Here and in 
papers by Krafft and Plachky [6], Krafft and Puri [7] and several other authors the 
i. i. d. case is treated. A more general version of the so called Chernoff theorem can 
be found in Vajda [15]. 

The classification problem is a multiple decision problem with given distributions 
-Pi,.. .,-Pjb of the k populations. In the first part of this paper we deal with a 
more general question. Suppose we are given a family of distributions Q#, i ) G 0 , 
and 0 = 0 i U . . . U 6* is a partition of the set 0 . After taking an observation 
we want to decide to which of the families (Qo)#eet the distribution of the data 
belongs to. We are interested in asymptotic results. Therefore it is assumed that 
a sequence Qnj is given. The special case of i.i.d. observations corresponds to 
Qn 0 = Qd x . . . x Q# = Q£. In general the asymptotic behavior of the Q^ will be 
described through the requirement that the normalized logarithms of the moment 
generating functions converge to some function which is automatically convex. In 
generalization of the results of Krafft and Puri [7] we calculate the exponential rate 
of the error probabilities of the minimax decision rule for the classification into 
subsets. For this problem the distributions Qnj are not completely known in many 
situations. In general they depend also on some nuisance parameter. The question 
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which naturally arises is whether there exists a decision rule not depending on a, 
which achieves the same exponential rate of the error probabilities as given by the 
optimum decision rule for known a. This problem of the existence of such adaptive 
decisions for the problem of classification is studied in the second part of the paper. 
The results there are generalizations of Rukhin [11]. 

Suppose PVl,..., Prjk are distributions depending on some real valued parameter 
77, for populations 7Ti,... ,7Tj., respectively. The population with the largest 77-value 
is called the best population. First we assume that the set {771,..., 77*.} is known but 
we do not know which population belongs to which 77-value. Taking observations 
from each population we want to select the population with the largest 77-value. If 
0 is the set of all permutations of (1 , . . . , k) and 0 , C 0 the set of permutations 
such that the population which is at position i has the largest 77-value, then we can 
see that the problem of selecting the best population can be reduced to the problem 
of classification into subsets. In this way we apply the results from Sections 2 and 3 
to the selection problem. Especially we investigate the case where independent 
observations of size n, are taken from population 7rt-. Explicit expressions are given 
for the exponential rate of the probabilitiy of selecting a false population. If the 
distributions Prjt belong to some exponential family we compare the exponential 
rate of the best selection procedure for known 77; with the rate of the so called 
natural selection rule based on sample means of the statistic which generates the 
exponential family. It turns out that the natural selection rule is asymptotically 
optimal w. .r. t. the exponential rates iff the two smallest sample sizes rii1 and nt-2, 
say, are asymptotically the same, i.e. it holds riil/ni2 —+ 1. Furthermore, for 
populations from an exponential family this condition is necessary and sufficient for 
the existence of an adaptive selection rule which in this case is the natural rule based 
on the sample means. 

2. CLASSIFICATION INTO SUBSETS 

Let 0 be a finite nonempty set with N elements, and let O i , . . . , Ojt be a decom
position into disjoint subsets. We write ??i = d2 if d\ and d2 belong to the same 
subset 0 , . For any d G 0 we set (tf> = i if d G 0,-- Hence i?i = d2 iff (i?i> = (d2). 

Suppose we are given a family of distributions Q$$ G 0 , defined on the sample 
space (X,A). We will study the following problem. Taking an observation x £ X 
we have to decide to which family (QtOtfe©. t n e distribution of the corresponding 
distribution belongs to. ID = { 1 , . . . , k} is our decision space and a randomized 
decision q = (g i , . . . , qk) is a vector of measurable functions qi : X —• [0,1] such that 
.Ct=i Qi(x) = 1 f° r e v e r y x £ X. qi(x) is the probability to decide for the subset 0 , 
if x is observed. We use the 0-1 loss function L : 0 x JD —» [0,00) defined by 

The risk of decision q is then given by 

R(d,q) = l- Jq{#)dQ<,. 
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We examine the asymptotic behavior of the risk for increasing sample size. To 
this end, we assume that a sequence of experiments En = (Xn,An) Qn,t?, $ £ ©), 
n = 1, 2 , . . . is given. Furthermore let 7r(i/), i) G 0 , be positive prior weights. Given 
a sequence qn = (tfn,i. • • •, tfn.Jfc) of decisions we introduce the maximum risk Rm(qn) 
by Rm(qn) = maxtfe© R(fl,qn) and the Bayes risk by IJ-r(gn) = Z ^ G 0 7r(t?)/J(i?,-?„). 
Set It™ = min?n I£m(<1n), #£ = ming-i -^ir(tfn)- The question now is how fast both 
/tm and R* tend to zero if n —» oo. 

This problem was studied in the i.i. d. case (Xn,An, Q£) by Krafft and Puri [7] 
if the subsets 0,- are singletons. If furthermore k = 2, i.e. 0 = {d\} U {d2} then we 
have a simple hypotheses testing problem. 

In the i.i.d. case the exponential rate of convergence to zero of I£m, R* was 
obtained by Chernoff [3, 4], by Krafft and Plachky [6] and other authors. A Chernoff 
type theorem for an increasing sequence of sub-cr-algebras, i.e. En = (A',„4n, Qn^) ^ 
G 0) where Qn^ is* the restriction of Q$ to An, was obtained in Vajda [15]. 

Similar as in the above mentioned papers we use the concept of Hellinger integral 
to characterize relations between different distributions. Let P, Q be distributions 
defined on (X,A) and suppose P and Q are equivalent (P ~ Q), i.e. P < Q and 

Q <P. Then HS(P, Q) = f ( j g Y dQ is called Hellinger integral of order s. 

We summarize some well-known properties of Hellinger integrals important in the 
sequel. For proofs we refer to Liese and Vajda [9], It holds 0 < HSl(P, Q) < 1 < 
II,2(P,Q) < 00 if si G [0,1], s2 £ [0,1]. Furthermore II0(P,Q) = H\(P,Q) = 1. 
G(s) = \nHs(P,Q) is a convex function taking values in (—oo,+oo]. 

We characterize the asymptotic behavior of the Qn,t? from the experiments Er 

with the help of Hellinger integrals. The next assumptions are fundamental for all 
further investigations. 

Assumption 1. All distributions in the sequence of experiments 

En = (xniAn)Qni#)dee) 

are equivalent (Qn.th ~ <2n,tf2, for every 1/1,^2 € 0 ) and there exists a sequence 
cn —* oo so that for every i?i, fl2 G 0 , —00 < s < oo 

lim —\nH8(Qnt*l,Qnj2) = G(tiliti2,s) (1) 
n-+oo Cn 

exists, takes values in (—00,+00], and for 1)\ =£ d2) G(d\)'d2,s) is not identical zero 
in the interval 0 < s < 1. 

Note that by the convexity of G(d\, d2, s) the set {s : G(fl\)'d2)s) < 00} is an 
interval with the interior, say, (01,02). Furthermore, by 0 < Hs(Qn^l)Qn^2) < 1 
for 0 < 5 < 1 it holds G(d\)'d2, s) < oo for 0 < s < 1 if Assumption 1 is fulfilled. 

Assumption 2. For every i?i,i?2 E 0 , G(d\,'d2,s) is continuous in [0,1] and 
continuously differentiable in (0,1). 
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Assumpt ion 3. For every i?i,i?2 G 0 it holds [0,1] C (a i ,a 2 ) and G(t?i, i?2, s) 
is continuously differentiate in (01,02). Furthermore l im 5 j a i G;(t?i, *?2, s) = —00, 
lim5 t a 2G /(i?i,i?2,5) = 00. 

T h e o r e m 1. Suppose that Assumptions 1 and 2 are fulfilled for the experiments 
En = (Xn,An, Qnf,j, ^ G 0 ) . Then for any sequence qn of randomized decisions 

liminf — lniifm(^n) = liminf—ln/J-rfan) 
n—>oo C n n—>oo c n 

> max inf G(i?i, $2, «)• 
~ t ? , ^ t ? 2 o < 5 < i v y 

P r o o f . Fix i?i ^ $2 and put !̂>n = 1 — gn^j) . i/Vi is a test for Ho : Qn.tfi versus 
HA : 0n,tf2 with 

fl(*l,«n) = Jil-qn^dQn,^ (2) 

= / ipndQn^l 

and 

R(-*2,ín) = J(l-<ln,{*i))dQn,*2 (3) 

= J(l-1>a)dQn,ůa. 

Let v?n denote the Bayes test with prior TJ,^. Then 

^(/2(t>l, Qn) + -R(t>2, «n)) > J / Vn dQn,^ + \ j(l ~ Vn) dQn,t 

Consequently by Lemma 3 in the Appendix with a = 0 

liminf — In [max(H(*?i, gn), R(d2) 9n))] 
n—>oo C n 

> lim inf — ln 
n—>oo c n 

^ д а i , ç n ) + Ä(i?2,gn)) 

Hence 

> inf G(i7i,i/2,s). 
- 0<5<1 

liminf — ln i ž m (g n )> max inf G(t/*i,t?2>s)-
n —oo C n "" t̂ iҘÉlӮз 0 < 5 < 1 

Put IT' = min{7r(i?), i? G 0 } and IT" = max{7r(i?), i? G G}. Then 

Ä-(ïn) < kҡ"Rm(qn) (4) 

RmЫ < -7Я1-Ы, (5) 
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which completes the proof. ---

Now we will construct decision rules which asymptotically attain the optimal 
rate in Theorem 1. To this end, we eliminate nuisance parameters by taking the 
maximum of likelihood, i.e. by using 

Ln i = m a x / n 0, 

where /n>t? is the density of Qn^ w.r . t . some (7-finite measure \xn on (Xn,An). Let 
An(x) C { 1 , . . . , k} with An(x) = {i : Ln}i(x) = maxi<j<jb Lnj(x)}) and denote by 
qn(x) = (qn x(x),..., qn k(x)) the uniform distribution on An(x). 

Theorem 2. Under the assumptions of Theorem 1 it holds that 

lim — \nRm(q°)= lim —\nRJq°n)= max inf G(i?i, tf2,«). 
n->oo cn n-400Cn tii2#20<s<l 

P r o o f . In view of inequalities (4), (5), we have to consider only Rm(<ln)> For 
fixed d G 0 we have 

R(*,qn) < T, QnA^nJ > LntW) 

< 2-/ QnA^nj > fn,ti) 
i*W 

^ E J2 QnAfn,*' > fn,*) 
j*(d) fee, 

< kN max(Qn,t? 1 ( /n , t9 1 < /n,t>2) + Qn,t?2(/n,tf2 < / n , t h ) ) 

where IV is the cardinality of 0 . The rest follows from Lemma 3 in the Appendix 
With 7Ti|n = 7T2>n = \ . ° 

Now we investigate the asymptotic behavior of the risks if the weights are allowed 
to depend on n. To be more precise we suppose that 7rn(i?), i ) £ 0 , are non-negative 
numbers so that a(d) = limn—oo j-\^^n(^) exists for every i>6 0 . Set 

R*M=Y*IW>*n)*n{*) 
tfeo 

and 

R£(«») = ™«M*W.«»)]-
In order to construct a weighted maximum likelihood rule we set 

L„n,i = max[7r„(i?)/nil,] 

and introduce q° analogously to qn where LVn,i is used in An instead of £„_,-. Set 
T(du^2,s) = 8a(dl) + (l-8)a(d2) + G(dud2,s). 
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Theorem 3. If Assumptions 1 and 3 are fulfilled then for every sequence qn 

liminf — In7?!? (qn) = liminf — \nRirn(qn) > max inf r(i?i, i?2i «)-

P r o o f . The proof of Theorem 3 is completely analogous to the proofs of Theo
rems 1 and 2 if we apply Lemma 4 instead of Lemma 3 and the inequalities 

«r . ( .»)< IViC(«n) 

and 
IC„(<7n) < R-.fan) 

instead of (4) and (5) respectively. • 

3. ADAPTIVE CLASSIFICATION RULES 

Suppose that we are given experiments En = (Xn,AniQd € 0 ) and that we want 
to classify the distribution of the data into the sets 0 1 , . . . , 0*. In many situations 
the distributions Qnj depend on some unknown nuisance parameter a G A. We 
introduce the experiments 

& = (Ar„,.4n.QM,(a,tf)eAxe). 

Let fin be a or-finite dominating measure and denote by / " ^ the density of Qn# 
w.r. t . fin. We suppose that for every a,/? G A Assumption 1 is fulfilled for 
Qnj^Qnji instead of Qnjt9l,Qn>1?2. Set 

G(a l /? lrf i , t f 2 l*)= lim - In # . ( $ « , ^ Q ^ , , ) , 
n — > o o C n » i -? 

and 
G(a,/?)= max inf Gfa- jMi,^ ,*)-

V ' 1?l£t?30<5<l V 

By Theorem 1 we get for every sequence of decision rules qn and every a G A 

liminf — In ( max.ft(a,i/,gn) ) > G ( a , a ) . (6) 
n—oo cn \tf€© / 

If we fix a G A and apply the maximum likelihood rule then this rule attains equality 
in (6). But, unfortunately, the maximum likelihood rule depends on the unknown 
nuisance parameter a. Similar as in Rukhin ([11, 12, 13]) we ask for the existence 
of such rules which do not depend on a G A but attain the lower bound in (6) for 
every fixed a G A. 
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Definition 1. A sequence of classification rules qn is called adaptive if 

lim — In [ max R(a. i/, qn) ) = G(a, a) 
n—oo Cn \#ee J 

for every a G A. 

Similarly as in Rukhin and Vajda [14], where the case of subsets 0,- each consisting 
of one element have been treated, we now derive necessary and sufficient conditions 
for the existence of adaptive classification rules. Put 

r a > / ? (a,6, i/ i , i/ 2 )= inf [G(aiP,tiuti2,s) + sa + (l-s)b]. 
o < S < 1 

Lemma 1. Assume that Assumption 1 is fulfilled for every a,/? G A and qn is any 
sequence of selection rules. If Assumption 2 is fulfilled then 

liminf —ln[max(I2(a,i?i,(/n),I2(/?,i?2,gn))]> inf G(a,/?, i?i, i?2, s). 
n—>co Cn 0 < 5 < 1 

If even the stronger Assumption 3 is fulfilled and 

lim — In TTI n = a, lim — In n2 n = 6, 
n—>oo Cn ' n—>oo C n ' 

then 

liminf — ln [max(7Ti>nIř(a, i?i, g n ) , 7r2)nIŽ(/?, i?2, qn))] > r a > / 3 (a, 6, i?i, i?2). 
n - * o o C n 

Remark . If a = 6 then ra > /3(a, 6, i?i, d2) = a + infn<5<i G(a, /?, i?i, i?2,5). There
fore the first and the second statement coincides in this case. 

P r o o f . Denote by qnti, 1 < i < k, the components of the vector qn and fix 
i?i ^ t?2. Put xpn = 1 - ?n,(ih)- Then ^n is a test for H0 : Qn > t ? 1 versus H^: Q^>t?2 

with 

R(<*,0i,qn) = Jil-qn^^dQZ,*^ j ipndQZ^, 

R(P,#2,qn) = /[l-?n,{^)]dQ^ a= / £ «n,.-dQ!U 

> / ^ , ( ^ d < . 2 = / [ l - ^ ] d Q ^ 2 . 

Let y?n denote the Bayes test for Ho • Q n ^x versus H4 : Q„ # with prior weights 
n X n , 7 ^ . Then 

2 max(7Ti>nIJ(a, i?lf qn), 7T2|nI?(/?, i?2, gn)) 

> ^ i , n / ^ d Q ^ l + 7 r 2 > n / ( l - ^ n ) d Q ^ 3 . (7) 
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The first statement now follows from Lemma 3 in the Appendix by putting 7r1|n = 
7r2)n = 1/2, where the second statement is a direct consequence of Lemma 4 in the 
Appendix. 

Assume now that A is finite with L elements and eliminate the nuisance parameter 
a G A by taking the maximum over a G A. Set 

Mn}i(x) = max [ / ^ ( x ) e x p { - c n G ( a , a)}] , 

An(x) = \ i : Mnti(x) = max Mnj(x) \ , 
L -<1<* J 

and denote by qn(x) = (qn x ( x ) , . . . , </n *.(-£)) the uniform distribution on An. 

Lemma 2. If the Assumptions 1 and 3 are fulfilled and A is finite then 

1 
limsup \nR(a,ti,ql

n)-G(a,a) 

< max max r a p (-G(a, a), -G(p,P), d, t?'). 
- /36A <?,t)':t)'^tJ '^ V ' v y ' 

P r o o f . By the definition of q\ we get 

R(a,d,ql
n) 

< E E £ Qa
n>,(^p{-cnG(a,a)}f^<exP{-cnG(P,/?)}/„%,) 

/ jeAj^j t f 'ee , 

< fcAtLmaxmaxQ^,, (exp{-cnG(a,a)}/ .?,a < exp{-cnG(/?,/?)}/£,.,) . 

Set iri>n = exp{—cnG(a,a)}, iii,n — exp{—cnG(/?,/?)} and denote by ipn the Bayes 
test for Ho '• Q„ ^ versus /ji : Qn $, with relative weights ir\>n, ^2,n, respectively. 
Then 

e x p { - c „ G ( a , a ) } g ^ „ (exp{-cnG(a,<*)}/*„ < exp{-c„G(/?,/?)}/f | t r) 

< TTl.r. / Vn dQ^,, + n2,n (I - <pn) AQ^ ,,,. 

To complete the proof we have only to apply Lemma 4 in the Appendix. D 

Now we are ready to formulate a nessesary and sufficient condition for the exis
tence of adaptive classification rules. This condition corresponds to Theorem 2.1 in 
Rukhin [13]. 
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Theorem 4. Suppose that Assumptions 1 and 3 are fulfilled for every a,/? G A. 
If an adaptive classification rule exists then 

ninf [G(a,(3,dx,{)2,s) - sG(a,a) - (1 - s)G((3,/?)] < 0 (8) 
0 < 5 < 1 

for all a, /? G A, i?i, d2 G 0 with dx ^ d2. Conversely, if (8) is fulfilled and A is 
finite then the weighted maximum likelihood classification rule qn is adaptive. 

P r o o f . Suppose an adaptive rule q* exists. Put qn = qn)7T\in = exp{—cnG(a, a)} 
and 7r2)n — exp{—cnG(/3, (3)}. Then by the second statement in Lemma 1 

inf \G(a, /?,*?! ,tf2l s) - sG(a, a) - (1 - s) G(/?, /?)] 

= TaiP(-G(a,a),-G(P,^),dl,-d2) 

< liminf — In [max(w1>nR(a, duqn), n2<nR((S, t?2, <?„))] 
n—>oo Cn 

m ą x l n / г í a ^ ь ^ - G ^ a . ^ ^ m a x l n а д ^ . O - G ^ , / ? ) 
t/ifcfc) V2Є 

< liminf — max 
n-»oo C n 

< o, 

by the adaptivity of qn. Conversely, let (8) be fulfilled. Then by Lemma 2, 

limsup — l n m a x Я ( a , t ? , ^ ) 
C n t»Є 

<G(a,a), 

which completes the proof. CD 

Remark. Condition (8) has an intuitive interpretation. As the Hellinger integral 
HS(P,Q) of order 0 < s < 1 of the distributions P and Q is between 0 and 1 the 
expression —\nHs(P)Q) is non-negative, and it can be shown that — \nHs(P) Q) is 
small iff the variational distance between P and Q is small. For details we refer 
to Liese and Vajda [9]. Hence —G(a,f3,di)d2)s) is an asymptotic measure for the 
distance between Qn # and Qn d . Note that condition (8) is equivalent to 

inf [-sG(a, a) - (1 - s) G(/5, /?) - ( -G(a, /?, t?i, d2) s))] < 0 
o«o<i 

for every a, /? G A,i?i, d2 G 0, ^i ^ 1/2. which says that if an adaptive rule exists 

then asymptotically the distance between Qn^1 and Q n t ? 2 is not smaller than the 

minimum distances within the models Qn^j tf G O and Qnjt9, t? G 0 . 

4. APPLICATION TO SELECTING THE BEST POPULATION 

Suppose we have independent samples from populations 7rr,..., 7Tjb, where the distri
butions depend on a parameter. Let 7Tj have the parameter rji G (a, b). We assume 
that the set {771,..., rjk} is known, but not which population belongs to which 77-
value. The task now is to select that population with the largest 77-value. For every 



318 F. LIESE AND K.J. MIESCKE 

1 < i < k, n = 1, 2 , . . . let (Riin)7litn) be the sample space of a sample from popu
lation 7Tt with distribution Pitntr)t. The samples from 7Ti,..., 7rjt are assumed to be 
independent, but we do not assume that the observations from 7r, are independent. 
Moreover the sample sizes are allowed to be different for different populations. Let 
0 denote the set of all permutations of ( 1 , . . . , k) where for d G O, $ : ( 1 , . . . , k) »—• 
(*'i,. ••,«"*), we set fl(r)j) = •qij and Qn^ = P i .n , , ^ ) x . . . x Pjb,n,t9(r;fc)-

 W e m a y 
assume w.l.g. that 771 < . . . < 77̂ . In addition we assume that 77̂ _ 1 < 77*. Put 
Qj = {fl : tf(j) = k}. For ^ G 0 ; the population TTJ has the largest 77-value. 
Introduce the experiment En by 

En= (f[Ri>n> t f i ^ , n , Q n , r ? , ^ e 0 j . (9) 

The problem of selecting the best population, i.e. with the largest 77-value, is 
thus reduced to the decision for one of the subsets 0 i , . . . , ©*• We assume that for 
every rji.rjj the distributions Pi.n.j;,, ^j.n,^ satisfy the Assumptions 1 and 2 if we 
substitute Qnjt?1 and Qn^2 by PiiniT)i and P , ^ , ^ , respectively. Put 

lim — In H4(PX>)7?, Pi)Tly) - Gi(rj} 77', s), 
M-+00 Cn 

where 77,77' G {771,..., 7;^}. In the sequel we will apply repeatedly the following well 
known property of Hellinger integrals: 

m 

Hs(Pi x . . . x P m , Q i x ...xQm) = Y[Hs(Pi)Qi). (10) 
t = i 

Let i?i, ^ 2 ^ 0 with $i(l) = ii and i?2(0 = ji- Then this property implies that the 
family Qn^ = Pi.n,0(771) x • • • x ^k.n^^k) satisfies Assumptions 1 and 2 and it holds 

1 * 
G(ti1,tf2)s)=limQ — \nHs(Qntdl,Qnt<>2) = J2Gi(r)il,rijns)- (H) 

r w o ° Cfl /=i 

In order to apply the earlier results we have to find m a x ^ ^ 2 info<3<i G(i?i, i?2, $)> 
Since Gi(r]yrfys) < 0 for 0 < s < 1 we have to take the maximum only over such 
permutations which coincide at a maximum number of k — 2 arguments. For any 
d\ =fc $2 the indices of populations with parameter 77̂  are different. Hence we have 
to take into consideration only permutations ( i ' i , . . . , i*), ( j i , . . . ,jk) for which there 
are /, m G { 1 , . . . , k}, I ^ m with it = j m = ky im = j h ir = j r > r ± /, r ̂  m. Put 
t = im = j t . Then by the above arguments 

max inf G(#i, tf2, s) = max inf [G/fa*, 77*, s) + Gm(r)t) r)k, s)]. (12) 
i?i^20<Kl lim:\^m\t:t<k 0 < J < 1 

Let us study the rate of convergence to zero of the risks of decisions for the sequence 
of experiments En from (9). By construction, d~l(k) is the index of the population 
with the largest 77-value. We set L(d, i) = 0 if i = d~l(k), and L(d, i) = 1, else. Let 
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qifU : Yl*-i(Ritn,Tlitn) »-* [0,1] be measurable with £ i = 1 qiyn = 1, where g»> is the 
probability to decide in favor of population 7r,-. The risk is given by 

R(ti, 9n) = 1 - / ^-i(Jfc),n dQn,t? = 1 - QnACS> Qn), 

where CS stands for correct selection and qn = (<Zi,n, • • • > Qk,n)- Denote by <7i,n,r/ the 
density of Pi}n}r) w. r. t. to some rr-finite measure viyTl) and put \in = .vi,n X ... x i/k}n. 
Then 

r dQn,t? TT 
/n,tf = - ll0i,M(--.)-

aI*n ^ j 

Consider again the maximum likelihood selection rule qn introduced in Theorem 2. 
The following Theorem is a direct consequence of Theorems 1 and 2. 

Theorem 5. Suppose that for every 77,77' E {rji,..., 77*} the distributions Pi.n.rj, 
-Pt.n,*!',-7 7̂  77', satisfy Assumptions 1 and 2. Then for every sequence qn of selection 
rules 

liminf — ln ( max(l — Qn #(CS} qn)) 
n—00 cn \ t f - 0 

> max inf [Gi(rjk) r]U s) + Gm(77t, 77*, s)], (13) 
~~ .\m:/^m;t:t<A: 0 O < l 

where the lower bound is attained by the maximum likelihood selection rule qn. 

We now assume that the samples from the populations consist of independent ob
servations distributed according to P n i , . . . , PT]k. Let the sample sizes be 711,..., n*. 

Put n = 711 + . . . -f nk and suppose "f —• 7,-, where 0 < ji < 1. We have 

Pinrit = P£m Set G(r),r)',s) = In HS(P„, P,y). If cn = n is chosen, then by (10) 

G.-fa, ?', *) - 7.' ln(/I ,(P-, /V)) = 7iC(77,77', a), (14) 

G(tfi>i?2,*) = 5~7/G(»7i,.'7i,,*) (15) 

and by (12) 

, m i ? n i n H , G ( 1 , 1 ' ' , - ' a ) = iJ [n%L ni
nf.,[T/G('?ifc.'?t,s) + 7mO('7., %,«) ] . (16) 

t / i 5 - t ? 2 0 < 5 < l ljLm;t<k 0<5<1 

Consider the case of asymptotically equal sample sizes, i.e. 71 = . . . = yk = i 
Because of H,(P, Q) = IIi_5(Q, P) we have 0(77,77', s) = 0(77', 77,1 - 5). The convex 
function G(T7, 77', s) + G(n\ 77, s) is symmetric w, r. t, s = 1/2. Hence 

E&, o^f<i G ^ > ' * s ) = f ™<a*xG (*• *• 5 ) • (1?) 

If Prj ^ Pni for every 77/77', then the family Pt.n.fj = P^ satisfies the assumptions 
of Theorem 5. 
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Corollary. Suppose Pr]t ^ Pr)j for i ^ j , ^ »-• 7,-, and the observations are taken 
independently from the populations. Then for every sequence of selection rules qn 

l i m i n f - l n (max(l - Qn t?(C5,gn)) ) 
n->oo n \#ee "J 

- .J™^*. iulMG^k,r)t,s) + 7mG(r)tlr)k,s)]1 (18) 
l^m,t<k 0<«<1 

where the maximum likelihood rule gj} attains the lower bound. If 71 = . . . = 7*. = £, 
then the right hand term in (18) is simplified to | maxt<jk G(rjky r]tl ^). 

5. SELECTIONS UNDER UNEQUAL SAMPLE SIZES IN EXPONENTIAL 
FAMILIES 

We now restrict our considerations to exponential families. Let (/?, It) be a measur
able space, T : R .—• M\ a measurable function and v a cr-finite measure on (R11V). 
The set 

Iт = < 77 : / exp{т7T} dv < 00 > 

is an interval. We assume that the interior of IT is nonempty and denote it by 
(aua2). Put 7̂ (77) = I n / e ^ d i / a n d 

P„(A) = [ exp{r,T-K(r))}dv. (19) 
J A 

Suppose the family (P^)^^ is nontrivial in the sense that voT~x is not concentrated 
at one point. Then P^ 7-= P^ for 77 ^ 77' and K is strictly convex. The definition of 
Hs yields for 771,772 E IT 

J W m > ^ 2 ) - exp{-D(771,772, s)} (20) 

where Z)(T7I, 772, 5) = sK(r)i) + (1 — s) K(r)2)- K(srji + ( 1 -5)772). Suppose now that 
the populations 7rr,..., 7Tj. have distributions Pr}11..., P-^, ai < 771 < . . . < 77̂ —1 < 
r)k < a2 and nt- independent observations are taken from 7T,- where ^- »—• 7,-. Denote 
by 7' < 7" the two smallest 7,-values which will be very crucial in the following. 
Since K is convex the function 77 »—> D(r)^r)\s) is nonincreasing for 77 < 77' and 
nondecreasing for 77 > 77'. Hence G(T7, 77', 5) = In Hs(Pr}1PTJ') and 

max inf [j\G(r)kir)t) s) + jmG(r)tl r)k)s)\ 
i^m,t<k 0<5<1 

= - min sup [7/ £(77*, 77*, 5) + ym D(rjt, 77*, s)\ 
l?m,t<k 0<5<1 

= -min sup [y\D(r,k, r)k-1,8) + lmV(i)k-\, *?*,*)] 

l?™ 0<3<1 

= - SUp [7/F)(77Jb,77A;_i,5) + 7//L)(77ib_l,77Jk,5)] 
0<5<1 

=: -M(7,,7",%-i,r7*). (21) 
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Proposi t ion 1. For independent observations from populations, whose distribu
tions belong to the exponential family (19) and have parameters 771 < . . . < r]k-i < 
r/jt, it holds 

liminf — ln ( r 
n-*oo n \ 

max(l -Qn,4CS,qn))) > -M(7', 7". i)k-i, m) 

for any sequence of selection rules qni and the maximum likelihood rule gn attains 
the lower bound. 

The statement of Proposition 1 is a direct consequence of the Corollary of Theo
rem 5. 

Suppose the r. v. Xitj,j = l , . . . , n i , i = l , . . . , fc with values in (11,11) are in
dependent and Xitj ~ IV Put fi>n = £ J2]LX T(Xitj) and set An = {i : fi)U = 
maxi</<jt Ti)Tl}. Then the natural selection rule, which selects in terms of the largest 
of the values Ti)Tli is given by the uniform distribution qn = (</nA, • • •. <in,k) on An. 
If Qn.tf is the true distribution then ir#-i(k) has the largest 77-value rjk and ^o-l(i) 
has parameter .7/. Hence 

majcQn>t? (Tj-i(k)tn < Ttf-i(/)|n) 

< Qn,tf f --V-(*),n < m a x f ^ i ^ J 

< l~QnACS}qn) 

< QnJ lfti-i(k)tn < IP3X^- 1(0." ) 

< (Ar- l ) m a x Q n j t ? C*V-(jb),n < ^ ( 0 , n ) - ( 2 2 ) 

Lemma 5 yields 

lim - ln£J n ) t > (f#-wk)n < T^ -^o .n ) 
n—00 n v ' 

= lim - l n Q n | t ? (T^-ijibj.n < fd-in)n) 
n-*oo n u ' ; 

= (7t?-i(*) + 7*--(i)) D ( ^ ' %» d-TZ7 ) • 
K J K) \ Tt?-i(0+Tt?-i(Jb)/ 

Consequently, 

lim - I n max (1 -Qn*(CS, qn)) 
n—>oo n t? ' 

= max lim - ln ( l - Qn*(CS,?[„)) 

t? n—>oo n 

= - ^ ^ ^ ( 7 ^ - 1 ( ^ + 7 ^ - 1 ( 0 ) ^ (77/, 7]k, ^ - ^ ) . 
* -** x ^ ' V Tt?-i(ib) + Tt?-HO/ 
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To evaluate the term on the right hand side we note that 

D(r)hr)k)s) > -0(77*-1, rjk,s) 

for every 0 < s < 1. Hence 

min^n(7^- i ( f c ) + 7t9-i(0)L)(77/,7/fc,-; ^ - ^ - J 
* ' * * \ 7t?-i(Jk) + 7t?- i (0/ 

> minmin(7^i( fc) + 7t?-i(/)) D ( r)k__u »/*, *—^ ) 
* V* \ 7t?-i(Jb) + 7t?-i(/)/ 

= min(7, +7j)D[ rjk-Ur)k) —J— ) 
**7 \ 7t + 7j / 

= m i n f o - i ^ ) + 7t?-i(Jb-i))D ( nk_ur]ky Z-^ J 
* \ 7t9-i(Jb) + 7t?-i(Jk-i)/ 

> minmin(7tf-i(A:) + 7*-*(Z)) D ( 'ft-ii %> ^ T ^ ) 
* ' \ 7t9-i(Jb) + 7t?-i(/)/ 

and 

lim — lnmax(l — Qn o(CSi qn)) 
n—>oo n 0 

= - min(7i + 7i) D ( %-i , 17*. — 5 — ) 
•^ V 7.' + 7i / 

=: -minL( j i , 7,-, r)k„ur)k). 

Thus we obtained 

T h e o r e m 6. If Xij ~ PT]i) and all Pni belong to the exponential family (19), then 

lim - l n m a x ( l - Qn,d{CSyqn)) = - min£(7; ,7, , 77*. 1, 77*). 
n—>oo n tfe© ifr 

Consider again 7', 7", the two smallest 7-values. From the first statement in 
Lemma 7 in the Appendix we get 

Mfr ' , 7", rjjb-i, 77,%) > minL(ji, ys, 77*-!, 77*), (23) 
»5*.7 

which says that for known 77,- the maximum likelihood selection rule is at least as good 
as the natural rule. Furthermore, by the second statement in Lemma 7, equality 
holds in (23) iff 7' = 7". Thus we have proved the following statement. 
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Proposi t ion 2. Suppose the conditions of Proposition 1 are fulfilled and denote 
by qn the natural selection rule. Then 

lim - lnmax(l — Qn o(CSt qn)) > lim — lnmax(l — Qn #(CSt g°)) 
n — oo n tf£0 ' n - o o n t?G0 

where equality holds iff 7' = 7". 

Now we examine whether for populations from an exponential family and non-
equal sample sizes adaptive selection procedures do exist. Suppose a = (a\t..., a*), 
/3 — (/?i,.. .,/?*) and assume t?i,t?2 are permutations with tfi(/) = i\ and td2(J) = j \ . 
Set Q^ = P£x x . . . x P»* and Q* d a = P ^ x . . . x P£* , where each P , is from 
the family (19). Then by (20), analogously to (15), 

k 

G(at pt dlt d2t s) = - £ 7 > ^ K 1 Ph, *)• (24) 
/= i 

Next, the parameters will be specialized. Put for a\ < tt xt 770 < o,2 and sufficiently 
small h > 0, a = (770,..., r]ottt t+h) and /J = (r/o,. . . , 770, -̂ , x+/i). Denote by 7' < 7" 
the two smallest 7,-values. Then by formula (24), with the same arguments which 
led to (12) and (21), we get 

G(ata) = - sup [j'D(ttt + hts)+ y"D(t + httts)] 
0<5<1 

G(ptP) = - sup [j'D(xtx + hts) + j"D(x + htxts)]. 
0<a< l 

Let /, m be two indices such that 7; = 7',7m = 7" and choose two permutations 
1?? and $1 such that aix =t + ht aim = t and /?,-, = xt f3jrn = x + h. Then by (24) 

max inf G(at Bt d\t d2t s) 

> inf G(atptdu$l>8) 
~ 0<5<1 V X ^ ' 

= - sup [7,D(t + /i,x,5) + 7,,
JD(^,x + / i , 5 ) ] . 

0<5<1 

Suppose now an adaptive selection rule q* exists. Then by the definition of the 
adaptivity 

limsup — In J?(o:,tf?,<£)< Hm — In (maxR(attitq%)) = G(ata) 
n _ o o Cn n—oo Cn \ 0 G0 / 

and analogously 

limsup — InR(p,t i*X) < G(/?,P). 
n—*oo C n 

Hence 

limsup — In [max(R(a, i??, q°), R{p, *°v qn))] < max(G(a, a) , G(0,/?)) 
n—>oo Cn 
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and by the first statement in Lemma 1 

max(G(a, a), G(f3, /?)) > inf G(a, /?, d\, d«, s). 
U< 5 < 1 

Hence 

min inf sup [7'D(M + M i ) + 7"£(* + M , s i ) ] , 
V 0 < 5 1 < 1 

sup [VD(x, x + h, s2) + 7 " D ( r + /i, x, s2)]) 
o<5 2 < i ' 

< sup [j'D(t + h)x)s) + jnD(t)x + h,s)]. 
0 < 5 < 1 

Consequently, by D(x, y, ±) = D(y, x, ^) we get with K = y^y7, 

min(D(^,^ + / i ,^) ,D(x,x + /i, ±)) 

< sup [/cD(< + /i,a:,s) + ( l - /c)D(<,a : + /i ,s)]. 
0 < 5 < 1 

Put t = x + (1 — 2/c) ft. Then the last inequality for sufficiently small h > 0 implies 
together with Lemma 6 that K = | , i.e. 7' = 7". Conversely, if 7' = 7", then 
by Proposition 2 the natural selection rule attains for all parameter configurations 
the optimal exponential rate and is adaptive. To summarize, we have proved the 
following theorem. 

Theo rem 7. Under the assumptions of Proposition 1 an adaptive selection rule 
exists for the family (Pn)a1<rj<a2 iff the smallest two sample sizes are asymptotically 
equal, i.e. 7' = 7". In this case the natural selection rule is adaptive. 

Example . We now study the special case of normal populations and suppose that 
the r. v. Xij ~ N(pi,af) 1 < i < m\ i = 1 , . . . , fc, are independent. The variances 
a\,..., a\ are supposed to be known and without loss of generality we assume p\ < 

_ _ _ _ 2 

. . . < pk-i < Pk- (X\).. .,-Kjb) is a sufficient statistic with X» ~ N(pi,pi),pi = ^-. 
To study the problem of selection of the best population it is therefore enough to 
consider the experiment 

E = (Rk,Bk,Q#,tiee) 
u 

where Q# = Yii=i N(/it?(i),;Pi) and 0 is the set of all permutations of {1,... ,A:}. 
The set {//i,..., pk} is known and fixed. The asymptotic pi —> 0 includes both the 
asymptotic for large sample sizes and the small variance asymptotic. To be more 
precise we assume that pitn > 0 i = 1 , . . . , fc, are sequences such that limn._oo - ^ = 
Pi > 0 exist, where pn = X-i=iPi,n. Denote by // > p" the two largest /^-values. 
We set Qntd = Yli=\ -V(/itf(i),.Pi,n) and study the asymptotic behavior of the error 
probability of selection procedures in the experiments 

En = (lRk,Bk,Qn,#,tiee). (25) 
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To apply the results from Chapter 4 we need the Hellinger integral for two normal 
distributions. A simple calculation shows 

H.{N(pu*>),N0>2to*)) = exp { - 1 , ( 1 - ,) ( / / l J2)2 | . 

If !?!(/) = t,, v2{l) = j , then by (10) 

(26) 

hLH.(Qn,tltQn,ůa) = - 1 , ( 1 -s)J2 ( / i i ' ~ H , f • (27) 
/=! 

Consequently, with cn = — 

lim - ln// , (Q n > t J l ,O , n , t , 2 ) = - l , ( l - , ) y ; ( / i ' ' ^ =G(ůltv2,s) 
n—>oo c« Z ---—' Ol 

and 

™ v ; n f rfjt A c\ - (.*-*-! — A*fc)a l ( / i t - / i t - i ) 2 

max mi Cr(i/i,v2i*) = - - ; : "• ^ 
t»»-£»3o<-<i v *' 2 ' ; 8 pf 8 p" 

= ----yrbk-i-i*)-

Analogously to Theorem 5 we get from Theorem 1 and Theorem 2 that for every 
sequence of selection rules qn for the experiments En in (25) 

liminf pn In ( max(l - QnACS, qn))) > ~ £ - ± £ - 01*-- " V*? (28) 
n-+oo \ t?6© / o / / / / ' 

where the lower bound is attained by the maximum likelihood selection rule q„. 
In order to study the asymptotic of the error probabilities of the natural selection 

rule we recall to the well known fact that 

lim P(Z > t) 
t—oo v ' 

if Z~N(0,1). This implies 

1 _ i î 
Є 2 

yДiгt 

- 1 

= 1 

lim 1 InP{Z > ay/x) = - l a 2 . (29) 
r-H•oo X 2 

Denote by Yi : Mk -+ Rx the projections to the coordinates. Then Yi ~ N(p,#(i),pi)n) 
in the experiments En. The natural selection rule qn selects the population 7r,- with 
Qn,^-probability one iff Yi > max,-*,- Yj. Hence 

i < K " i ^ n ^ ^ * ) <y<>(0) ^ l-QnACS><Ln) 

< (* - ! ) , m « , $ M (**(*) < **(/)) 
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and by (29) and similar considerations as before Theorem 6 

1 1 2 

lim pnlnmax(l - QnAcs>in)) = - - (pk^-pk) . (30) 
n—>oo 0 Z p + p 

To compare the exponential rates of error probabilities of the maximum likelihood 
rule and the natural rule we note that 

(P'P")1/2<\(P' + P") 

and consequently 

±-±-<l£±£ (31) 
2 p'+p" - 8 p'p" K } 

where the sign of equality holds iffp' = p". This means that in view of (28) and (30) 
the maximum likelihood selection rule is strictly better than the natural selection rule 
w.r. t . the exponential rates, except for p' = p" where the rates coincide. To relate 
this statement to Theorem 6 we consider the large sample asymptotic p,-|fl = ^- and 
note that for known a2 the family N(p, cr2),—oo < p < oo, is an exponential family 
with K(p) = i £ . Then D(pi ,p 2 ,*) = I s ( l - s) ^ - < 

Note that 

,. Pi,n ,. n (<r-^ n 
Pi = l i m —— = l im — > — 

n — oo p n n-+oo m \ r* - ' ^ i 

- i 

г 
,. = 1 - / * 

where T = X^i_i -7"- From this we can see that 

n,( ' " \ r
 P'P" (Vk-i ~Pk)2 

A f ( 7 l 7 , ^ - 1 ^ 0 = 8 7 + 7 ^ 

and 
. , , x r l (AU-I - / i t ) 2 

m m L ( 7 . , 7 i , ^ - i , / . 0 = 7; ^ 7 ^ "5 • 

Therefore inequality (31) implies (23) and from the relations (28) and (30) we 
get the statements of Theorem 6 and Proposition 2 for normal populations. 

Now we examine under which conditions there exist asymptotically optimal se
lection rules which do not use the knowledge of {pi, . . . , p*} in the experiments 
(25). To study the problem of the existence of adaptive selection rules we assume 
that i/i,*/2 are permutations with i?i(/) = */,*/2(0 = ji and set a = (c*i,. . ., ak)i 

« ! < - . . < ak-l < < * * , / ? = (/?!, • • • , ft), ft < • • • < ft-1 < A , 

Qn.th = % » , P l , n ) X • • X N(aikyPktn) 

Qn}*2 = N(Ph,Pl.n) X .-. X W i f c , « , » ) . 

<:» = £ . Then by (26) 

G(a,Mi,*2,»)= lim - l n f f ^ Q g ^ . Q ^ J = - £ ^ « ( 1 - » ) K " ^ 
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and 

G(a,a) = -\P-yf{ak-ttk-')2 

Put for h > 0 and x > ., a = (//0, • •., A-o, t,t + h),fi = (//o, • • •, /io, z, # + /*)• Let 
/, m be two indices such that p\ = p^Pm = p" and choose two permutations i?i,t?2 
such that a,-, = t + h, _*-•__ =- /, /?;-, = x) /3jm = x + h. 

Then 
G(a,a) = G(/?,/?) = - l ^ / . 2 

and 

. , _-., „ no „n x • n 1 /. xr(^ + / i - ^ ) 2 (t-x-hf inf G a , / ? , < ^ , 5 = i n f - - 5 l - 5 p L + * --—--
0<5<1 0<5<1 2 L A 9 A9 

(ť + Л - x) 2 (t - x - h)2 

p> p " 

- _i__t_V + (ť-*) 2)-V— ___!_) 8 p'p" K K } ' A \ p' p" ) 

Suppose an adaptive selection rule exists. Then by the first statement in Lemma 1 
and Definition 1 

inf G(a, /?, tf?, tf§, 5) < max (G(a) a) , <?(/?, /?)). 
u<. s < 1 

Hence 

_I__t__(1__)-<_iAf___£___£V 
Because of . > i we get 

_ _ + _ _ / ^ _ o i , _ _ _ _ _ 

As p" < // this inequality for every h > 0 and every _:,_ with x > t implies 
P' = P". 

As we know already that for // = p" the natural rule is asymptotically optimal, 
we conclude that an adaptive selection rule for the experiments (25) exist iff/?' = p". 
For the large sample asymptotic n,- —• 00 this statement is also a consequence of 
Theorem 7. 

APPENDIX 

In this Appendix, we collect and modify large deviation results for the log-likelihood. 
Although our statements below are presented for arbitrary sequences of distributions, 
some of the proofs are straightforward modifications of the proofs in the i. i. d. case, 
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since only some asymptotic behavior of the Hellinger integral is used. Therefore, 
complete proofs are omitted for brevity, but they can be found in Liese and Miescke 
[8]. 

Let P and Q be distributions on (X,A) with densities / and g, resp., w. r. t. some 
cr-finite /i. Suppose 7Ti, 7r2 > 0. Let <p be a Bayes test for Ho : P versus HA '• Q with 
weights 7Ti,7r2. Then <p = 1 on {7rr/ < 7r2g}} <p = 0 on {7Ti/ > 7r2#}, and 0 < <p < 1 
be any value on {7Ti/ = 7T2^}. If 0 < s < 1, then 

TГi f<pdP + *2 ({l-<p)dQ<*\Tr\-sHs{P,Q). (32) 

This inequality has been established in Krafft and Plachky [6]. Suppose now we 
are given sequences Pn and Qn of distributions, and 7r,fn, i=l,2, with 

lim — l n 7 T i n = a , lim — l n 7 r 2 n = 6. 
n-*oo Cn n->oo c n 

Let <pn be a sequence of Bayes tests for H0 : Pn versus HA '• Qn with weights 
7ri)fl and 7r2 |n. Then by (32), with, say G(s) = lim n ^oo(l/c n ) In Hs(Pn) Q n ) , 

l i m s u p L , [<pndPn + n2>n l(l-<pn)dQn\
n < e " + 0 - * ) M - G « (33) 

n—•oo L J J J 

Under some mild conditions equality holds in (33). This statement is known as 
Chernoff's theorem which was originally proved for the i. i. d. case and for 7ri>n = 7rr, 
fl"2,n = 7r2 which implies a = 6 = 0. The case where P n , Qn are restrictions to 
an increasing sequence of sub-cr-algebras has been considered in Vajda [15]. An 
inspection of the proofs of Chernoff's theorem in Krafft and Plachky [6] and Vajda 
[15] shows that their arguments up to small modifications also work in the general 
situation. This leads to the following statement. 

L e m m a 3. Assume Pn ~ Qn and limn_+oo £7 In Hs(Pn}Qn) = G(s) exists for every 
0 < s < 1, where G is continuously differentiate in (0,1), continuous in [0,1] and 
not identical zero. If a = 6 then 

^hrn 7Ti>n / y>n dP n + 7r2>n (l-<pn)dQn = exp j a + Qmf ^G(s) \ . 

The restriction to equivalent distributions (Pn ~ Qn) is not necessary. But for 
simplicity we consider only this situation everywhere throughout the paper. 

To deal with the case where 7rr>n and 7r2>n have different asymptotic behavior 
in the sense of exponential rates one needs additional assumptions on G(s). Then 
arguments of the paper by Krafft and Plachky [6] may be applied. 
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Lemma 4. Suppose l im^oo ^- In Hs(Pn) Qn) = G(s) exists for every - o o < s < 
oo, and assume that the interior I0 = (ai ,a2) of I = {s : G(s) < 00} contains 
[0,1]. If G is continuously differentiate in I0, and if lim5jai G'(5) — ""°° an(^ 
lim5|a2 G'(s) — 00, then 

1 

Yim^ iri<n / <pn dPn + 7r2>„ j (1 - <pn) dQn 

= exp | inf [ as+ ( l - s ) 6 +G(s)] l . 

Now we formulate a large deviation result for the arithmetic mean of r. v. from an 
exponential family. To be more precise let Pn)r) G I, be the nontrivial exponential 
family (19) with natural parameter set IT- Let ra,- —+ oo,i = 1,2 so that K = 
limm_oo m-L exists and satisfies 0 < K < 1, where m = m\ + m2. 

Suppose rji G Ij- = (a\, a2) and that Xi,yj = 1 , . . . , ra,-, i = 1,2 are independent 
r.v. with Xij ~ P„t. Set fi%m = £ E £ i T(*ij) a n d 

-0(»?i, m> s) = sK(m) + (l-s) K(r)2) - K(srn + (1 - s)r)2). 

The following large deviation result may be proved by the method of exponential 
centering which can be found in Bahadur [1] and Riischendorf [10]. 

Lemma 5. If the r.v. Xij are independent with Xij ~ P-^, .71 < T/2, rji G Ij», 

2^ —• K and 0 < /c < 1, then 

lim - l n F ( T i > m - T 2 , m > 0 ) 
m—»-oo m 

= ІІПI — ІП P ( T i , m - Ť2lm > 0 ) = - o ( 7 / i , 7/2, K). 
m—•oo m 

Next we formulate two technical lemmas on convex functions. Suppose Iv is a 
convex function defined on the interval I and K is twice continuously differentiate 
in the interior (a, 6) of I. An application of l'HospitaVs rule yields, for every fixed 
x G (a,6), and for every £i,£2, 

2 2 
lim — F)(x + tihf x + t2h, s) = lim — [sK(x + txh) + (1 - s) K(x + t2h) 

-K(s(x + ťiЛ) + (1 - s)(a: + t2h))] 

= K"(Ф(l-s)(ťi-ť2)
2

( (34) 

where the limit is uniform for 0 < s < 1. 
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Lemma 6. Suppose x G (a, 6), K"(x) > 0, hn > 0, and hn [ 0 for n —> oo. 

If 0 < K < \ and 

min (D(x, x + fcn, I ) , £>(x + (1 - 2/c) /inx, x + 2(1 - /c) An, I)) 

< sup [KD(X, x + 2(1 - /c) /in , s) + (1 - K) D(X + / in , x + (1 - 2/c) /in , s)] 
0 < 5 < 1 

for every n, then it follows that /c = ~. 

P r o o f . The relation (34) yields, uniformly in 0 < s < 1 

2 
[/c.D(x, x + 2(1 - K) /*„, s) + (1 - K) D{X + / in , x + (1 - 2/c) fcn,.)] 

Ä„ 

= 4 к ( l - к ) R " ( x ) s ( l - s ) + o(l), 

and 

т j [min (D(x, x + hn, ì ) ) , £>(x + (1 - 2/c) /i„x, x + 2(1 - к) /г„, §))] 
лa 

= ±tf"(*)+ -»(-)• 
Hence, by the assumed inequalities, as n —• oo, 

7 f f " ( * ) < S U P 4/c( l-rc)A' , , (x)5( l-5) = rc( l-K)A' , , (x), 
4 o<5<i 

which implies K = ^, since K"(x) > 0. • 

L e m m a 7. Let /_" : (a, 6) —> IR, be a convex function and assume that a < x < 
y < b are fixed. If 7 1 , . . . , 7* are positive numbers, and 7' < 7" are the two smallest 
7i-values, then 

mm(7,. + T j . ) D ( x , y , ^ ) 

< (V + V ) sup 
0<»<1 

^ Я ( x , y , s ) + - ^ — D ( x , y , l - s ) (35) 
IY + 7" - ' y + y 

If y -_- 7" then equality holds. Conversely, if for a strictly convex K equality 
holds in the above inequality, then 7' = 7" . 

S k e t c h of p r o o f : We have 

min(7i + jj)D I x, y, * J 
i*І 

< (У + y^шinfD^,!,,-^-;;),!)^,!,,-^)] 

s (У + T - ) [ ^ І ) ( - . - . ^ ) + - ^ - . Ð ( - . - . ; - Í ; S ) ] 

< (У + У ) sup 
0 < Í < 1 

^ ӯ 7 ^ . У. •) + ӯTӯ^(*> У> ! - *)] 
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Hence (35) is established. It is easy to see that D(x)y)a) > 2aD(x)y^) for 
x < 2/J a 5r j - Consequently, for j f = 7" and 7,- < 7, 

> 27,-D(.c,y>i) 

> 2 7

, D(x > y > ±) 

= (У + т") sup 
0 < í < l 

as D(x, y, s) + L)(x, y, 1 — 5) is symmetric w. r. t. so = \ . Hence for 7' = 7" we have 
equality in (35). 

Conversely, an analysis of the stability of the above inequalities shows that equal
ity occurs only for 7' = 7" . 

(Received May 28, 1997.) 
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