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ROBUST PREVENTION OF LIMIT CYCLES FOR 
ROBUSTLY DECOUPLED CAR STEERING DYNAMICS 

JURGEN ACKERMANN AND TlLMAN BUNTE 

Considerable safety benefits are achieved by robustly decoupling the lateral and yaw 
motions of a car with active steering. Robust unilateral decoupling requires an actuator 
to generate an additional front wheel steering angle. However, introducing actuators to 
closed loop systems may cause limit cycles due to actuator saturation and rate limits. Such 
limit cycles are intolerable w.r.t. safety and comfort. By introducing a simple nonlinear 
modification of the control law, this paper proposes a remedy to significantly reduce the 
susceptibility to limit cycles for robustly decoupled car steering dynamics. The robustness 
of the resulting system w.r.L the avoidance of limit cycles is investigated for varying oper
ating conditions by combining the parameter space approach and the theory of describing 
functions. 

1. INTRODUCTION 

Practical driving tests have shown essential safety advantages for a robust steer
ing control law which is based on feedback of the yaw rate into active front wheel 
steering [3]. By the control law, robust unilateral decoupling of the lateral and yaw 
motions of the car is achieved. The task of driving a car then simplifies to keeping a 
point mass on the track by commanding its lateral acceleration. Yaw disturbances 
e. g. from crosswind, flat tire, or asymmetric braking forces are attenuated by the 
robust decoupling control law for low frequencies. It requires an actuator to gen
erate an additional front wheel steering angle. The actuator needs to be equipped 
with a rate limiter for overload protection. However, the introduction of nonlinear 
elements makes the closed loop susceptible to limit cycles. One means to investi
gate limit cycles is the approximation of the nonlinear part by a sinusoidal-input 
describing function (DF) [5]. On the other hand, for linear robust controller design 
and robust stability analysis of controlled plants, the parameter space approach [1] 
is a suitable method. This paper is concerned with proving the robust prevention of 
limit cycles for robustly decoupled steering dynamics by combining the DF theory 
with the parameter space approach. Particularly, the benefit from introducing a 
saturation into the controller is studied. 

Section 2 and Appendix A introduce a simple linear car model which is sufficient 
for the subsequent analysis. Various aspects of the robustly decoupling control law 
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and of one of its modifications [2] are recapitulated in Section 3. A generic feedback 
system is defined to allow an investigation of different controller versions by simply 
setting respective parameters. Section 4 offers a brief summary of the DF theory, 
because it will be used in the sequel. The insertion of a saturation into the controller 
is proposed in Section 5 and it is illustrated how thereby the susceptibility to limit 
cycles can be reduced. Section 6 is dedicated to the robustness analysis w.r.t. the 
prevention of limit cycles. For various controller versions, an actuator bandwidth is 
specified. The application of the parameter space method then allows to verify the 
robust prevention of limit cycles for an entire operating domain. 

2. CAR MODEL 

The employed linear second order car model is described in Appendix A. Input to 
the model is the front wheel steering angle 6f and the outputs are yaw rate r and 
lateral acceleration at the front axle af. Introducing a gain parameter K and a gain 
scheduling by the car velocity v, let h be an auxiliary output variable defined by 

K 
h = r+—af. (1) 

v 

Equations (11)-(14) and (1) yield the vehicle transfer function from 6f to h: 

n , N h(s) e0 + eis + e2s2 

°f(S) fo+flS + f2SZ 

e0 = ficr0(£f + £r)(l + K)v 

ei = fxcroK(£f + £r)
2 + £fmv2 

e2 = K£f(£f +£r)mv 

/o = n2Cf0cr0(£f + £r)
2 + fi(cr0£r - Cf0£f) mv2 

/ i = fi(cf0£f + cr0£r)(£f + £r) mv 

f2 = £f£rm
2v2. 

3. CLOSED LOOP STRUCTURE 

Figure 1 shows the structure of the closed loop system upon which the analysis in 
the following sections is based. It includes some previously published characteristics 
[1, 2]: Basically it consists of unity feedback of the yaw rate r via an integrator into 
front wheel steering (Ar — 0, Gf — 0, Ga = 1, rs —• oo, R —• co). This yields robust 
unilateral decoupling such that the yaw rate r is no longer observable from lateral 
dynamics at the front axle, in particular from af [1]. A faster closed loop dynamics 
can optionally be achieved by additional feedback of the lateral acceleration at the 
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front axle aj with A' > 0 [1]. 

SL 

controller 

57* 
vehicle 

Eqa. (11)-(14) 

°/ 

Ga(s) actuator 

Fig. 1. Closed loop system structure. 

By (as well optional) controller-internal feedback of the integrator's output to its 
input by 

Gf(s) 
2DІUІS + uf 

(3) 

with uji = 1/sec, Di = 1.5, the integral action is faded out after « 0.5 sec This 
modification has been introduced in [2] as fading integrator in order to provide 
disturbance rejection only for about half a second. It helps the driver within his 
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reaction time but returns to the steady-state behavior of the conventional car af
terwards. Neglecting the saturation (rs —> co), the transfer function of the fading 
integrator between Ah and u in Figure 1 is 

r , x _ 1/S __ S 
i[S) " 1 + Gf(s)/s " s2 + 2DiUiS + OJ2' U 

For short time (s —> co), the dynamics is equal to an integrator, however the steady 
state output (s —• 0) is zero and the controlled car has the same steady-state response 
as the conventional car. 

The internal feedback structure allows the limitation of the integrator's input by 
the saturation element. This further modification will be used in Section 5. 

Feedback to the front wheel steering angle is accomplished by an additional steer
ing angle actuator with a linear dynamic part which is modelled as 

G a ( s ) = , - + 2 D ^ a , + W---
 ( 5 ) 

The input to the actuator is filtered by a rate limiter (see Section 4.2) with maximum 
slope R in order to prevent damage due to overload. 

The feedforward path in Figure 1 is marked with thin lines. There is a direct 
throughput from the steering wheel angle 6L, to the front steering angle 6j which 
results in the same initial response to steering wheel inputs as for the conventional 
(6j = 6L) car. The set point generation by the dynamic nonlinear filter Fh is of no 
interest for the investigation in this paper. 

4. SINUSOIDAL-INPUT DESCRIBING FUNCTIONS (DFs) 

4.1. DF theory 

The DF theory [5] is a means to investigate the existence and properties of limit 
cycles in closed loop systems including linear dynamics G(s) and a static nonlinearity 
n, which are here assumed in a single loop series connection with negative feedback. 
One further assumption are distinct low pass properties of the linear dynamics G(s). 
The DF N(jicj, tin) of the nonlinear element n may be considered as the quasi-linear 
frequency response w.r.t. to the first harmonic of the output for sinusoidal inputs 
with amplitude u0. 

According to this approximation method a limit cycle with frequency u is possible 
for the loop-closing condition (harmonic balance) 

N(ju,u0) G(JLO) = - 1 or G(jco) = ~ * v (6) 

The latter equation reveals a graphical method to check for limit cycles: Limit cycles 
are possible, if there are intersection points of the linear part Nyquist plot G(ju>) and 
the nonlinear element negative inverse describing function (NIDF) — l/iV(jw, u0) in 
a complex 2r-plane. 
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Note that in this paper we are neither concerned with the stability of limit cycles 
in the sense of their sustentation nor with the state conditions for their appearance 
nor with their properties (amplitude, frequency). We are only considering the robust 
avoidance of their possibility in principle. 

For the investigations in Sections 5 and 6 the system of Figure 1, including a 
saturation and a rate limiter, will be used. Therefore, the DFs of these two nonlinear 
elements are introduced. 

4.2. DF of a rate limiter 

A rate limiter can be represented by the feedback connection of an integrator and a 
two-point switching element according to Figure 1 between u and y. The absolute 
value of the slope of the output y is limited to R. 

uO 

// 
0 0 

x / 
X / 
\ / 

-uO 
(o*u0!R=1.2 

uO 

0 '-** _ . „ . т - V - . ~ . _ 

-uO 
co*u0!R=1.862 co*uQ!R=20 

F i g . 2 . Rate limiter outputs at vaгious гatios wuo/R for sinusoidal inputs. 

Figuгe 2 shows some steady-state time domain reponses of a rate limiter to sinusoidal 
inputs. The shape of the output depends on the ratio UJUO/R where UJ and un aгe the 
fгequency and amplitude of the input signal respectively. Note that when the rate 
limiteг is activated, the output is reduced in amplitude (down to zero) and delayed 
in phase (up to -7г/2). The DF of a rate limiter Nа was derived in [4]. Only the 
result is given here in form of the gгaphical гepгesentation of the NIDF. It is plotted 
in the complex plane in Figure 3 using gridding along ÜJUO/R and dash-dotted line 
style. 

It staгts at z = — 1 for шuo/R < 1 and changes over into a straight line (Re(z) = 
-тг2/8, Im(z) < -тг/4) foг uu0/R > x/(ҡ/2)2 + 1=1.862. 

4.3. DF of a saturation 

The DF of a saturation Ns [5] does not depend on the frequency uy but only on the 
input amplitude us0. If the saturation value is reached, there is no phase delay in 
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the output, only a reduction of the amplitude. The NIDF —l/Ns is —1 if the input 
amplitude uso is less or equal to the saturation value rs and tends to - c o along the 
real axis for increasing input amplitudes (uso/rs > 1), see Figure 3 (dashed line). 

Fig. 3. NIDFs and Nyquist plot for v = 70 m/sec, /i = 1 (dry road), K = 0, ul = 0 and 

ua = 2TT- 10 HZ. 

5. LIMIT CYCLES DUE TO ACTUATOR RATE LIMITER 
FOR ROBUSTLY DECOUPLED CAR STEERING DYNAMICS 

This section shows, why and under which conditions limit cycles in the closed loop 
system of Section 3 can occur and introduces a means to significantly reduce the 
system's susceptibility to limit cycles. 

Consider the system of Figure 1 without saturation (rs —• oo) and cut the loop 
at A. Then, regarding (2), (4) and (5), the linear part of the open loop transfer 
function is 

G^s) = Ga(s) Gv(s) GІ(S). (7) 

According to Section 4.1, limit cycles can occur, if there are intersection points of the 
linear part Nyquist plot G\(ju)) and the NIDF of the rate limiter —\/Na. The low 
pass property assumption holds for the considered system G\ with relative degree 
three (one from G2 and two from Ga) or four (if A'=0, then the relative degree of 
Gv is one, else zero, see (2)). Generally, the following data are used in this paper: 

m=1830kg 

c / 0=50000N/rad ^ = 1 . 5 ^ A = 1 5 

c r 0=100000N/rad .€r=L32m Da=y/T/2 
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The controller parameters K, uj{ and the actuator bandwidth toa are not yet deter
mined to allow the analysis of their influence. The uncertain plant parameters u,/i 
may vary within the bounds of an operating domain (see Section 6). 

Figure 3 shows a reasonable configuration of controller, actuator, and operating 
point for which there are intersection points of the Nyquist curve G\(s) with the 
NIDF of the actuator rate limiter — l/IVa, i.e. limit cycles may occur. 

Figure 3 also shows, that the NIDF of a saturation —\/Ns is much less critical 
for the present case than the rate limiter, because it does not introduce phase delay 
into the loop. 

This leads to the idea suggested in this paper for prevention of limit cycles: It is 
the introduction of a saturation in front of the integrator as indicated in Figure 1. 
It can be reliably avoided that the actuator rate limiter reaches its threshold if the 
derivative of the input to the rate limiter is bounded to a corresponding value. This 
is achieved by the saturation in front of the integrator (Figure 1) with rs < R. 

Hence, the actuator rate limiter can be neglected, but the saturation introduced 
in the controller must be considered. Therefore, cut the loop in Figure 1 at B. The 
respective open loop transfer function of the linear part is 

G2(s)=-s[Ga(s)Gv(s) + Gf(s)}. (8) 

For u)i — 0, G2(s) = G\(s) holds. Thus the Nyquist curve in Figure 3 can be directly 
compared for both cases. As already mentioned, the saturation is less dangerous 
w.r.t. limit cycles since its NIDF is farer away from the Nyquist curve of the linear 
system. 

It is remarkable, that the existence of limit cycles does not depend on the location 
of the respective nonlinear element in the (single) loop structure. Thus, for the 
perfectly integrating control law (ui = 0), it does not make any difference, whether 
the saturation occurs in front of the integrator or behind the actuator. For that 
reason, also a saturation behind the actuator (not modeled in Figure 1) is covered 
by the analysis. The analysis becomes more sophisticated, however, for the fading 
integrator. In this case there are two nonlinear elements to be considered in two 
loops (not covered by this paper). 

6. VERIFICATION OF ROBUST LIMIT CYCLE AVOIDANCE IN 
PARAMETER SPACE 

Now, since the NIDF of the rate limiter —\/Na in Figure 3 is no more relevant, the 
respective system belonging to the plotted Nyquist curve is not able to perform limit 
cycles. There are no intersection points with the NIDF of the saturation — \/Ns. 
But how about changed parameters v, /i, K, u;,-, ual Of course, the avoidance of limit 
cycles must be robust w.r.t. the uncertain or varying parameters of the plant. 

The approach which is used in this paper to verify robust prevention of limit 
cycles combines the theory of DFs with the parameter space approach. The idea is 
the following: 

The parameters K, a;,- and ua are considered as fixed parameters. We assume 
there is an operating point P = (vp)/ip) where there is no intersection between 
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G2(JUJ) and — 1/-Va, i.e. P is limit-cycle-free. Then we determine the neighborhood 
of P in the (v, /-O-parameter plane which is also limit-cycle-free. If this region includes 
the operating domain of the plant, then we call the controlled system robustly limit-
cvcle-free. 

stability boundaries w.r.t. limit cycles Nyquist Plot 
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Fig . 4. u>a = 2TT • 2 Hz, K = 19, ut = 0, 
(Nyquist plot: v = 38.75 m/sec, /i = 0.685 (wet road)). 

The limit-cycle-free region is separated from the neighboring limit-cycle-tainted 
regions by borders. These borders are generated by mapping respective conditions 
formulated in terms of the Nyquist plot into the (v,/i)-parameter plane. 

The Nyquist plot in Figure 4 illustrates two different conditions at the same time, 
under which the closed loop system may evolve from "limit-cycle-free" to "limit-
cycle-tainted". The NIDF of the saturation —l/Ns (plotted with dashed line style) 
starts at the critical point —1. Thus the Hurwitz stability border (G2(ju) = — 1) at 
the same time is a border for the system to turn from "limit-cycle-free" into 'limit-
cycle-tainted", hence denoted as Hurwitz condition. Mathematically this may be 
expressed by 

Re G2(JUJ) = - 1 and Im G2(ju) = 0. (9) 

Theoretically, there is also a real root condition for G2(0). In the case of the present 
system, however, this condition is not active because Im G2(0) =r - c o . 

For the second possible condition, the tangent condition, the Nyquist curve 
touches —\/Ns horizontally, i.e. 

Im G2{ju) = 0 
ÖlmG2(ju) 

and = U 
du 

observing Re G2(ju) < — 1. 
(Ю) 

The resultant of (9) can be used, to map the Hurwitz-stability boundaries into 
the (i>,/i)-parameter plane [1]. The symbolic and numeric computations may be 
accomplished by the Matlab-based toolbox PARADISE [8]. In the parameter plane, a 
finite number of regions is generated which are separated by the mapped boundaries. 
One or more of these regions may turn out to be Hurwitz-stable, 

The same kind of mapping may be applied to the tangent condition. The bound
aries in parameter space are generated by solving the resultant of the two equations 
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in (10). The inequality must be taken into account when determining limit-cycle-free 
solutions. Again, a finite number of regions are generated in the parameter plane 
(see Figure 4, left plot). The scope of the analysis in parameter space is, to find 
out, whether the system is limit-cycle-free in the entire operating domain or not. If 
there are no boundaries (coming from any of the two conditions) intersecting the 
operating domain and an arbitrary operating point in the operating domain turns 
out to be limit-cycle-free, then the system is robustly limit-cycle-free. Otherwise, 
the test for robust limit cycle avoidance fails. 

Consider Figure 4 as example. The left plot shows the boundaries between limit-
cycle-free and limit-cycle-tainted regions in the (it,/i)-parameter plane for a low 
bandwidth actuator (uJ{ = 2ir • 2 Hz) and high controller gain (K = 19) with genuine 
integral action (u{ -= 0). The Hurwitz condition boundaries are plotted with dashed 
line style, solid line style is used for tangent condition boundaries. The operating 
domain of the car is plotted as a polygon. The right plot shows the Nyquist curve 
for the operating condition which corresponds to the intersection point of the two 
different type boundaries in the middle of the operating domain. Here both con
ditions for passing over a border can be simultaneously seen. Only the lower left 
part of the operating domain turns out to be limit-cycle-free, all other regions are 
limit-cycle-tainted. Since the operating domain is not completely included in the 
limit-cycle-free region, this system is not robustly limit-cycle-free. 

Figures 5 and 6 show two more interesting cases which anticipate the actuator 
bandwidth specification in the next section. 

stability boundaries w.r.t. limit cycles 
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Fig. 5. Lja = 27r • 3.3 Hz, K = 4, WÍ = 0, (Nyquist plot: v = 70 m/sec, // = 1 (dry road)). 

In Figure 5 the genuine decoupling controller with a/-feedback (a;,- = 0, K = A) and 
an actuator bandwidth ua = 2-K • 3.3 Hz is investigated. Two boundaries are very 
close to the operating domain at high speed on dry road. This example exhibits 
an almost-simultaneous fulfillment of both the Hurwitz and the tangent condition 
at one operating point (i>=70m/sec, £-=!)• As can be seen from the right plot in 
Figure 5, the Nyquist curve almost touches the real axis very close to —1. The 
boundaries which correspond to the two different conditions are very close to each 
other, so that they can hardly be distinguished in the parameter plane. 

For the example in Figure 6 the gain for a/-feedback is increased (a;,- -= 0, K = 9) 
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and a high bandwidth actuator is used (u)a — In • 10 Hz). 

stability boundaries w.r.t. limit cycles 
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Fig. 6. ua = 2-K • 10 Hz, K = 9, Wi = 0, (Nyquist plot: v = 5m/sec, \i = 1 (dry road)). 

Now, low speed on dry road appears to be the most critical operating condition. If 
a slower actuator is used, the system violates Hurwitz stability and is limit-cycle-
tainted at least at this operating point. 

6.1. Application example: Actuator bandwid th specification 

Now, the described approach is used to validate robust prevention of limit cycles 
for various controller versions. For each controller, a respective actuator bandwidth 
had been found in a preliminary iteration, such that the system is robustly limit-
cycle-free, but at least one boundary is very close to the operating domain (as in 
the examples of Figures 5 and 6). Thus a minimum required actuator bandwidth 
is specified. The specification and the validation of robustness is repeated for each 
controller. 

Table 1. Minimum required actuator bandwidth 

t^a.min [2T • H z ] 

K = 0 K = 4 K = 9 
ШІ = 0 3.15 3.3 (Figuгe 5) 10 (Figuгe 6) 
ШІ = 1/sec 1.3 1.66 8.5 

The first controllers do not make use of fading out the integral action (o;t- = 0), 
but the feedback gain for lateral acceleration aj at the front axle is varied in three 
steps. The same variation is repeated for a controller with the fading integrator 
(wi = 1/sec). Table 1 shows the results. 

Generally, it can be stated, that the employment of the fading integrator reduces 
the susceptibility to limit cycles, if compared to the perfect integrator. Or, in other 
words, only a slower actuator is necessary to robustly avoid limit cycles. This is 
quite evident, since the fading activity reduces the low frequency demand on the 
actuator. 

Increasing the closed loop gain by augmentation of K, on the other hand, requires 
a higher minimum actuator bandwidth, if limit cycles shall be robustly avoided. 
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7. CONCLUSIONS 

In this paper a combination of the parameter space method and the theory of de
scribing functions has been used to investigate the robust prevention of limit cycles 
of a single loop system containing a nonlinear element. The described method has 
been succesfully applied to the example of an actively steered car. The susceptibil
ity of the controlled car to limit cycles has been reduced by adapted replacement 
of nonlinearity characteristics. For the resulting plant and different controller ver
sions, the approach has been used to specify the minimum required bandwidth of 
the steering actuator. It turns out, that the assignment of fading activity to the de
coupling integrator in the controller reduces the actuator bandwidth requirements. 
On the other hand, increasing the closed loop gain makes the expenditure of a faster 
actuator necessary to robustly avoid the risk of limit cycles. Note, however, that 
the actuator specification here only examines the question of limit cycle avoidance. 
No other closed loop requirements (e.g. damping of system eigenvalues etc.) are 
considered. 

Append ix A: Linear car model 

The car model which is used for the investigations in this paper is the classical 
linearized single track model [6] as illustrated in Figure 7. 

Fig. 7. Single-track model. 

Its major quantities are 

ЫFr) 
V 

ß 
V 

V 

а} 

-7 

lateral wheel force at front (rear) wheel 
yaw rate (measured by a gyro) 
chassis side slip angle at center of gravity (CG) 
velocity vector at CG 
magnitude of v (v > 0, v = 0) 
lateral acceleration at the front axle 
distance from front (rear) axle to CG 
front wheel steering angle 

The mass of the vehicle is m and J is the moment of inertia w.r.t. a vertical 
axis through the CG. Here socalled idea] mass distribution [1, 3] is assumed, i.e. 
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J = m£f£ry which as an approximation holds for most passenger cars. For small 
steering angle 8f and small side slip angle /?, the equations of motion are [1, 7] 

mv(ß + r) 
m£f£rŕ 

ғf + ғr 

Fftf — ғrtr 
(11) 

The tire force characteristics are linearized as 

Ff(af) = fiCfoaf, Fr(ar) = ficr0ar (12) 

with the tire cornering stiffnesses c/o, c r 0 , the road adhesion factor /i, and the tire 
side slip angles 

af = 6f-(0+*-Lr), ar = -(j?-^r). (13) 
V V 

The lateral acceleration at the front axle is 

aj = v(/3 + r)+£fr. (14) 

(Received April 8, 1998.) 
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