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NOTES ON // AND lx ROBUSTNESS TESTS 

GÁBOR Z. KOVÁCS AND K A T A L I N M. HANGOS 

An upper bound for the complex structured singular value related to a linear time-
invariant system over all frequencies is given. It is in the form of the spectral radius of the 
Woo-norm matrix of SISO input-output channels of the system when uncertainty blocks are 
SISO. In the case of MIMO uncertainty blocks the upper bound is the co-norm of a special 
non-negative matrix derived from Hoo-norms of SISO channels of the system. The upper 
bound is fit into the inequality relation between the results of \i and l\ robustness tests. 

1. INTRODUCTION 

The objective of robust control is to achieve stability and good performance require
ments in the presence of uncertainty. Robustness analysis tools and robust control 
design methods have been developed recently dealing with structured uncertainty 
for the cases when the signals are measured in the 

— £2 or -?2-norm (energy of the signal): // -analysis [2,3,8,9], 

— £oo or -?oo-norm (maximum amplitude): ^-analysis [1,2,5,6,7]. 

This paper derives a global upper bound for the complex structured singular value 
related to a linear time-invariant system over all frequencies. We consider both 
cases when the uncertainty blocks are SISO and MIMO. In SISO case the upper 
bound can be computed directly as the spectral radius of the Woo-norm matrix of 
input-output channels of the system. However, in MIMO case one has to perform a 
certain optimization procedure on Woo-norms of SISO channels and build a special 
non-negative matrix. Its oo-norm gives the upper bound of the /i-test result. The 
result of the mentioned optimization procedure can be expressed in an explicit form. 
Thus one will have an insight on how the greatest amplifications of the SISO system 
components, related to £2 or £2 signal norms, affect the result of robustness analysis 
based on the structured singular value. Remember, that the ^-analysis results are 
directly computed from amplifications, i. e. from l\- norms of the channels related to 
the uncertainty structure. This allows us to guess how they influence the robustness 
test results. This paper shows the counterpart of these relations in the case of the 
^-analysis. Further we show how our result fits into the inequality relation between 
the /i and £\-tests. 
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Section 2 gives a brief overview of the mentioned robustness analysis methods. 
Then some notation used in the paper is introduced. In the first part of Section 3 
we derive an upper bound for the result of the structured singular value analysis in 
the case when the uncertainty blocks are SISO. While the SISO relations are very 
simple and follow directly from the properties of the complex structured singular 
value, the MIMO ones need a certain optimization procedure as one can see in the 
rest of Section 3. Finally Section 4 summarizes the relation between the \i and l\ 
robustness test results. 
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Fig. 1. The robust stability and performance problem formulation. 

2. ROBUSTNESS ANALYSIS METHODS 

2.1. R o b u s t stabil ity and per formance 

The general problem formulation of robust stability and performance is shown in 
Figure 1. The signal w denotes the control inputs or disturbances and z denotes 
the regulated outputs. The map taking w to z is referred as T2W and A models the 
uncertain part of the system. It is assumed that A is structured, i.e. it belongs to 
the following class: 

A(n) := {A = diag(Ai,..., A„) : ||A,|| < 1} (1) 

where A,- are pi x pi systems. Let p = ^ p t - . While A models the uncertain part 
t = i 

of the system, the linear time-invariant G is the known part including the nominal 
plant, the controller, any input and output weighting functions and any weighting 
functions on the perturbations. The system G can be partitioned as follows 

Z = G11UV + G12WA 

VA = G21W + G22UA 

uA = AyA-

With this partitioning T2W is in the form 

-1 T2W = G ц + G12A (I — G22A) G21. 

(2) 

(3) 

Definition 1. Robust Stability. The system achieves robust stability iff the sys
tem is internally stable for all admissible perturbations (for all A £ -A(n)). 
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Definition 2. Robust Peгfoгmance. The system achieves robust peгfoгmance iff 

1. the system achieves robust stability, and 
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Fig. 2. Stability vs performance robustness. 
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The robust performance problem can be transformed into a robust stability prob
lem, which has been shown for both 2-norm and co-norm cases [5,8]. Consider the 
two systems in Figure 2, where System I corresponds to a performance robustness 
problem, while System II is formed from System I by connecting z and w through a 
fictious perturbation, A p, satisfying | |AP | | < 1. 

Theorem 1. Consider System I having A(n) as the class of admissible pertur
bations and System II having A(n + 1) as the class of admissible perturbations. 
System I achieves robust performance iff System II is robustly stable. 

2.2. /i—analysis 

Measuring the signals in the 2-norm and assuming structured linear time-invariant 
stable uncertainty the //-tests can be used to analyze robust stability and perfor
mance. The structured singular value is a matrix function denoted by HA() which 
depends on the underlying structure A (a prescribed set of block diagonal matrices) 
[8]. 

Definition 3 . For M e CnXn, / . A ( M ) is defined by 

HA(M) : = [min{a(A) : A € A det(7 - MA) = 0}]"1 
(4) 

unless no A 6 A makes I — M A singular, in which case ii&(M) := 0 (the symbol 
<x(-) denotes the maximum singular value). 

The following lower and upper bounds can be given for the structured singular value 

M M ) [3,8] 
max p(UM)<fiA (M) < inf a(DMD~l) (5) 
ueU DeD 
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where 

and 

U={U = diag(C!! ,...,Un)EA: UHU = / } 

D={D = diag(<fiL ...,dnI): d{ € R+] . 

(6) 

(7) 

The lower bound is equality in all cases, but p(UM) can have multiple local maxima 
which are not global. Unfortunately, the upper bound is not always equal to [i& (M). 
The following robust stability /i-test is used in frequency domain [8,9]: 

Theorem 2. Suppose that G n is stable, then the uncertain system is stable for 
all A G A(n) iff 

sup / i A (G 2 2 ( ju ; ) )< l (8) 

where G22 is the system mapping internal input signals u& to internal output signals 

2/A. 

2.3. l\-analysis 

Measuring the signals in the oo-norm and assuming structured uncertainty which can 
be non-linear and time-varying the -fi-test can be used to analyze robust stability and 
performance. The system G22 is partitioned corresponding to the A block structure 

G22 = 

[G 2 2 ] n . . . [G2 2] l n 

[G22]ni [GlÄnn 

(9) 

where [G22]t- • is pi xpj system. Let the set J be an index set for all possible collections 

of rows from the row blocks. For each .; =- ( j i , . . . , jn) G J define the matrix f A22J 

as follows 

( *») . = 

ÜGЧиL. 

([G22]nl)jn 

([G22] lnL, 

([G22]nn) j f ] 
1 J 

where ([G2 2] i j k) ;. is the j p t h row of the system [G 2 2] f j b and ([G22]{A.) ;. 

-fi-norm. Then the following robust stability *?i-test on G 2 2 can be used [2]: 

(10) 

is its 

Theorem 3. Given an interconnection of a linear time-invariant stable system G 2 2 

and n norm bounded perturbation blocks, the system is robustly stable iff 

(н)s 
1 ( Ц ) 

holds for all j G J . 
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3. UPPER BOUND FOR THE /i-TEST RESULT 

In this section upper bound for the //-analysis results is derived for two cases when 
uncertainty blocks are SISO or MIMO linear time-invariant systems. This upper 
bound can be computed directly as the spectral radius of the non-negative matrix 
composed of Woo-norms of entries of the matrix G22C/W) in the case when the uncer
tainty blocks are SISO. When these blocks are MIMO we have to perform some more 
computations on the entries of the matrix containing the Woo-norms of the entries 
of G22(jw) and build another non-negative matrix. Then the upper bound of the 
/x-test will be the oo-norm (maximum of row-sums) of this new matrix. Further we 
will compare the fi and -?i-test results. The upper bound derived for the /i -analysis 
result gives us a good opportunity to obtain these relations in a simple way. 

First of all we introduce the matrix G22 which plays key role in the whole paper. 
Let [G220-^)]tj be the ijth entry of the matrix G22C7W), which has Woo-norm in the 
form of 

[£22]^- = sup 
00 u) 

[O22Ü")].,. (12) 

With these the matrix G22 is defined as 

G22 = 

"1 |[O22]пl lco ••• [G22\ip 
0 0 

[G22]pi 
OO 

[G22Ìpp 
00 -

(13) 

First we focus on SISO relations which can be derived easily. Then we turn to MIMO 
relations which are direct generalizations of the SISO ones. 

3.1. Uncertainty with SISO blocks 

Dahleh and Diaz-Bobillo [2] summarizes important and general results on the re
lation between /i and ^-analysis results when the uncertainties are SISO. Their 
Theorem 7.6.1 [2, p. 172] claims that 

вир /1д (С22(^)) < Р (Л22) (14) 

This proposition is extended here by another inequality which makes the relation 
physically more transparent and simplifies its proof. The extension is the spectral 
radius of the matrix £722-

Proposition 1. Given an interconnection of a linear time-invariant stable system 
G22 and n norm bounded SISO perturbation blocks. Then the following relation 
exists between the /i and -?i-analysis results 

SUp /íд (G22(jw)) < p [G22J < P (^22) (15) 
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where G22 is introduced in (13) being the frequency domain analog of the matrix 
h22 defined in (10). 

P r o o f . From the theory of the complex structured singular value (5) it follows 
that 

(16) /*A (G22(ju)) = msxp(UG22(ju)) 
ueU 

where 
U = {U = diag(Ui,..., Un) € A : UHU = / } . 

In our case U% is a scalar on the unit circle. Since 

[£tG 2 2( iw)ly |< | [G 2 2]y 

(17) 

(18) 

and it is known from the theory of non-negative matrices that if \A\ < B entry wise 
then p(A) < p(B) [4], one immediately gets that for each frequency 

p(UG22(ju))<p(G22). 

It means that the following inequality holds 

sup/iA (G22(ju)) = sup maxp(UG22(ju)) < p (G22) 
u> w ueU v ' 

In SISO case the relation between the H^ and -.Vnorm is 

[G22U < [Gí-ly 

(19) 

(20) 

(21) 

(22) 

Again from the theory of the non-negative matrices we obtain 

P (622) < P (^22) • 

So we have verified that 

sup / iA (G 2 2 tM) < P (G22) < P (^22) • 

From this proof it is apparent that the spectral radius of the matrix G22 gives a global 
upper bound for the structured singular value fi&(G22(Ju)) over all frequencies and 
it is a less strong sufficient condition for the robust stability than the one given by 
the -?i-test. 

3.2. Uncertainty with MIMO blocks 

Now we generalize the results of the previous section to the case when the uncertainty 
blocks are linear time-invariant MIMO systems. An upper bound for /Lx-test can be 
computed as oo-norm of a non-negative matrix derived from matrix G22 by an 
optimization procedure. 

The following lemma states that an upper bound for /i-analysis result can be found 
by maximizing the spectral radius of a non-negative matrix which is a product of G22 
and an appropriate non-negative matrix V depending on the perturbation structure. 
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Lemma 1. Given an interconnection of a linear time-invariant stable system G22 
and n norm bounded MIMO perturbation blocks. Then the following upper bound 
holds for the result of the /i-analysis 

sup //A (G22C/W)) < maxp (VG22) (23) 
U) V \ / 

where V is non-negative and has the same structure as the perturbation A, i.e. 

^ > 0 , 7 = diag(F 1 , . . . ,K l ) 

where Vi is a pi x pi matrix and the jth row vJ of the matrix V satisfies the following 
condition 

P 
|2 

KK = Ľ^. = i-
* = 1 

P r o o f . From the theory of the complex structured singular value (5) it follows 
that 

^ (G22(jw)) = max p (tf G2 2(jw)) (24) 
ueU 

where 

Denote 

and 

U={U = diag(tf l f.. .,Un) e A : UHU = 1} . (25) 

Q = arg sup pA (G22(ju)) (26) 

0 = arg max p (UG2 2(jw)) . (27) 
uzU 

For the product of two matrices \AB\ < \A\\B\ holds entry wise. From the theory 
of non-negative matrices [4] it follows that if |.rl| < B entrywise then p(A) < p(B). 
Using these relations we obtain 

/iA (G22UO)) = p (OG22U*)) < P (\0G22(ju>)\) < P (\0\ |G 2 2(jw)|) • (28) 

Since |G22(iw)| < G22, we get the inequality 

p(\U\\G22(m)<p(\U\G22) (29) 

where 0 is a unitary matrix, so the equality 0H 0 = 00H = I holds. This property 
means that the ith and j t h rows of the matrix CJ, i.e. u% and v?, satisfy the condition 

-'(«'),r = t W s : « « <3°) 
k=i 

where 6ij is the Kronecker symbol and 0H
k is the complex conjugate of the matrix 

entry Ojk- The above derivation leads to definition of the following optimization 
problem 

7 = argmax/>(KG22) (31) 
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where V > 0 and V = diag(Vi,. . . , Vn). In addition the j th row v-7 of the matrices 
V has to fulfil the condition 

И^И^EГҪ--5-- (32) 
JЬ = 1 

Considering the fact that the matrix |U| is only a suboptimal solution of this opti
mization problem we find that 

sup//A (G22(ju)) < p (^622) = maxp \VG22) D 

So the optimization problem to be solved is finding the non-negative matrix V with 
the same structure as the uncertainty which maximizes the spectral radius of the 
product VG22- First we solve the problem without the restriction on the structure 
of the matrix V. 

Lemma 2. Let P be a m x m non-negative matrix. Define the optimization 
problem as 

0 = argmax/?(QP) (33) 

on the set of non-negative matrices Q satisfying the following restriction on their ith 
row denoted by q% 

ИI'= £<& = !• 
Ä; = l 

Let SІ be the гth row-sum of the matгix P 
m 

Si = Y^Pa 

(34) 

Bi = У Пk-

k=ì 

(35) 

Then each row of optimal solution Q is the same and they can be computed as 

1 
[ *i, • ••> sm } , i = ! , . . . , m. (36) 

vEib=i sl 

P r o o f . The spectral radius of an m x m matrix M is overbounded by its oo-norm, 
i.e. 

m 

p{M)< maxy^lM.fcMlMlL. (37) 
Jb = l 

Let M be a non-negative matrix with each of its row being the same. Let's perform 
a similarity transformation on M using the transformation matrix 

T = 

1 0 0 • •• 0 " 
- 1 1 0 • •• 0 
- 1 0 1 • •• 0 

- 1 0 0 • • • 1 

(38) 
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which has inverse in the form of 

г _ i = 

1 0 0 
1 1 0 
1 0 1 

1 0 0 

(39) 

Similarity transformations does not change the eigenvalues of a matrix. If we apply 
T to M the resulting matrix TMT~X has only one row different from 0. Therefore 
only one of its eigenvalues is different from 0 and it is equal to the row-sum of the 
matrix M. This row-sum (the oo-norm of the non-negative M) is the spectral radius. 
It means that we have to choose such a matrix Q which has equal rows, so QP will 
also have equal rows, and makes the row-sum maximal. In accordance with these 
ideas let us define the following cost function of the row-vector q 

rp 

J{q) = ?-P [ 1 , . . . , 1] = q\Si + q2s2 . . . + çm_n 

with the. following constraints 

,2 _ 
Яl+ 2 + •••Чm = 1. Ç . _ 0 , І = 1 , ,m 

(40) 

(41) 

and maximize «/(_). The above optimization problem can be solved using the La
grange multiplier method. Define the extended cost function in the form of 

i (g, A) = gi_i + q2s2 . . . + qmsm + \(qj + q\ + . . . q 

The optimality conditions are 

— = Si + 2\q{ = 0 
dqi 

-)• 

and 

Their solutions are 

-~-=«? + «І! + . . . ïm- -=0. 

-__ + __- + , 
4A2 ^ 4A2 ^ + 4A2 = 1 

(42) 

(43) 

(44) 

(45) 

and thus A = ± 5 \ A i + s\ + • • -sm. Considering the restrictions qi > 0, the optimal 
q has following entries 

N / H - I T n 
Я} 

The structure of the matrix V = diag(Vi,..., V )̂ follows from the structure of 
the matrix U = diag(Ui,..., Un) where C/i and Vi are pi x pt- matrices and the sum 
of their size is p = £_)"=iPt. From this restriction it follows that V should not have 
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equal rows in order to achieve better estimate of the result of /i-analysis. Let's 
partition the matrix G22 in accordance with the structure of V 

G22 = 

r 2 2 

L GЪ 

(46) 

It means that G\2 is a pi x p matrix. Define the jth row-sum of the ith partition 
G22 as follows 

> * ' = - л> І = - . • • . , P І - (47) 
P \ - 1 P 

k = l J k = l - ^ m _ l 

Let's denote sum of the second powers of ith block row sums by 

Pi Pi ( p \ 2 Pi f p 

*-EM)'-E(£ <H. = £ E t<H+ir>„, (48) 

where i = l , . . . , n . We will also need the partial row sums of the ith partition 
according to the uncertainty structure 

4* = £ Џ* 
1=1 

Pк 

= У2 I G a d '+Ľ^. ' - . '+:££. Pm 
(49) 

where i, A: = 1 , . . . , n, j = 1 , . . . ,p,\ 

Now we are ready for stating the proposition on the upper bound for the result 
of //-analysis in the case when the uncertainties are MIMO linear time-invariant 
systems. 

Proposition 2. Using the notations introduced above define the matrix G22 as 
follows 

G 22 
1 Pi 

ť~ = v ^ E * И , f c . ^ 1 - - ' " - (50) 

Then for the supremum of the structured singular value of the matrix G22UV) over 
all frequencies, i.e. for the result of/i-analysis, the next inequality holds 

sup/iA (G22C/W)) < maxp [VG22) < \\G22 

where V has the same properties as in Lemma 1. 

(51) 

Proof . Let the matrix V has block Vi its jth row v1** contains the scaled ith 
block row-sums as its entries 

» , J = - / = f [*\ 4 J > « = i>• • • >n> j = i>• • • >p<- (52) 
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Matrices have the property that their spectral radius is not greater than their co-

norm. It means that p (VG22) < VG22 . It follows from the previous lemma 

that the choice of the matrix V implies the optimality, i.e. co-norm of VG22 is the 
maximal. G22 and VG22 have the same row-sums and so their co-norms are the 
same. • 

It is important to note that 

P (622) = p (VG22) < max/7 (VG22) - (53) 

Equality holds for example in the case of SISO perturbation blocks when G22 = 
VG22 = 622- Now we demostrate it on a simple example. 

Example. Let the Woo-norm matrix be 

G22 = 
1 0 0 
2 3 0 
15 5 6 

Then the optimal V for a SISO and a 2 x 2 uncertainty block (pi = 1, P2 = 2) is 

v = 
1 0 0 
0 5 26 

V52+262 \j524-262 

0 5 26 
V52+262 \j52+262 . 

The spectral radius of G22 is then 11.3686. For the matrix V of the same structure 
defined as 

1 0 0 
0 5 26 

V52+262 >/52+262 

0 
v = 

0.26 y/l - 0.262 

the spectral radius is greater, and equals to 11.3856. 

Note: It is known from the theory of the complex structured singular value [8] 
that 

fiA (M) = max p (UM) = max p (MU). (54) 
ueU ueU 

It means that we can get another upper bound (maybe smaller) for the /i-test result 
by application of the presented optimization procedure to the columns of the matrix 

£22 • 

4. RELATION BETWEEN /i AND -fi-TEST RESULTS 

The relation between the /1 and ^-analysis results can be investigated based on the 
previous proposition. 
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Proposi t ion 3. Given an interconnection of a linear time-invariant stable system 
G22 and n norm bounded MIMO perturbation blocks. Then the followhig relation 
exists between the \i and ^-analysis results 

= max VŠ* < VPmax ЦG22II1 
00 K i < n 

(55) 

(56) 

supiiA(G22(ju)) < G22 

and for each j = ( j i , . . . ,jn) G J (See Eq. 10) 

/>((W).) < iiG»iii 

where pmax is the maximum of uncertainty block sizes, i.e. p m a x = max pi. 
Ki<n 

P r o o f . The second inequality has been written only for comparison with the 

first one. From the definition of the matrix (^22) and the ,?i-norm of the system 

G22 it follows that 

P ((*--),) < II^Hx = m^YiWrAiA • (57) 

Note that HG22II1 < 1 is the small gain condition for the robust stability in £00/^00-
sense. The following equation is obtained from the definition of the oo-norm of a 
matrix and from the defining equations (47) and (48) 

'22 

n 1 Pi \ 1 Pi ( n • 

- - k=l \ VЭ j-l 1 - - vo j = l \ k = 1 , 
(58) 

It can be rewritten using the identity sj = ^2"=! $)' ^° 

G22 
1 Pi 

= max —-= > (s)) = max vS*. 
!<*<* y/S* ţ? -<*<" 

(59) 

Then the following inequality holds 

Pi P 

\ĘИ)2<v^maxsj. = VFІ^E ^ 4 + E ; ; ^ . . 
) j = l / = 1 

(60) 

for each vS*, where 1 < i < n. Let us denote the maximum of uncertainty block 
sizes by p m a x , i.e. p m a x = max p,-. Then we obtain the inequality 

l < i < n 

P P 

V ^ < V & x " m a x ])T [G 2 2] i + y^-i P m - < ^/p^ max ^Hfel fc iHoo • 

(61) 
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Using the relation between the Woo and -?i-norm of a SISO system we get 

p P 

v ^ < V - W m a x £ | | [ G 2 2 W L < v ^ r n ^ m a x ^ I I ^ I H I I I • (62) 

The above inequality holds for an arbitrary index i. So we have verified that 

G22 < V . W IIG22II,. (63) 

and thus 
SUp/iA (G22(i^)) < HG22IL < \/Pmax||G22||i • 

5. CONCLUSION 

A global upper bound for the complex structured singular value related to a linear 
time-invariant MIMO system over all frequencies has been derived in the paper. We 
have shown that one can form a special non-negative matrix from the 'Woo-norms 
of input-output channels of the system which has the property that its spectral 
radius for SISO perturbation blocks and its co-norm for MIMO ones is equal to 
or greater than the complex structured singular value at any frequency. Thus it 
provides a sufficient condition for the robust stability or performance of the uncertain 
system in /..2/^2-sense. On the basis of this result one can estimate how the greatest 
amplifications of the SISO parts of the system affect the result of robustness analysis. 
Also we have shown how our result fits into the inequality relation between the \i 
and ^-analysis. 
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