ON BARTLETT'S TEST FOR CORRELATION BETWEEN TIME SERIES

Jirí Anděl and Jaromír Antoch

An explicit formula for the correlation coefficient in a two-dimensional AR(1) process is derived. Approximate critical values for the correlation coefficient between two onedimensional $\operatorname{AR}(1)$ processes are tabulated. They are based on Bartlett's approximation and on an asymptotic distribution derived by McGregor. The results are compared with critical values obtained from a simulation study.

1. INTRODUCTION

Let $\left(X_{1}, Y_{1}\right)^{\prime}, \ldots,\left(X_{n}, Y_{n}\right)^{\prime}$ be a sample from a bivariate regular normal distribution with independent components. If r^{\prime} is the sample correlation coefficient then it is known that

$$
\begin{equation*}
E r^{\prime}=0, \quad \operatorname{var} r^{\prime}=\frac{1}{n}+O\left(n^{-\frac{3}{2}}\right) \tag{1.1}
\end{equation*}
$$

(see Cramér [4], § 27.8 and $\S 29.7$). If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are independent time series then the variance of the sample correlation coefficient does not obey the formula (1.1). Let $\left\{\varepsilon_{t}\right\}$ and $\left\{\eta_{t}\right\}$ be two independent strict white noises such that $\varepsilon_{t} \sim N\left(0, \sigma_{1}^{2}\right)$ and $\eta_{t} \sim N\left(0, \sigma_{2}^{2}\right)$. Consider AR(1) processes

$$
X_{t}=\rho_{1} X_{t-1}+\varepsilon_{t}, \quad Y_{t}=\rho_{2} Y_{t-1}+\eta_{t}
$$

Their variances are

$$
v_{1}^{2}=\operatorname{var} X_{t}=\frac{\sigma_{1}^{2}}{1-\rho_{1}^{2}}, \quad v_{2}^{2}=\operatorname{var} Y_{t}=\frac{\sigma_{2}^{2}}{1-\rho_{2}^{2}}
$$

If we define

$$
r^{*}=\frac{\frac{1}{n} \sum_{t=1}^{n} X_{t} Y_{t}}{v_{1} v_{2}}
$$

then it is easy to prove that under our assumptions $E r^{*}=0$ and

$$
\begin{equation*}
\operatorname{var} r^{*}=\frac{1}{n} \frac{1+\rho_{1} \rho_{2}}{1-\rho_{1} \rho_{2}}-\frac{2 \rho_{1} \rho_{2}}{n^{2}} \frac{1-\left(\rho_{1} \rho_{2}\right)^{n}}{\left(1-\rho_{1} \rho_{2}\right)^{2}} \tag{1.2}
\end{equation*}
$$

(see Andě [1]). Usually, only the first term on the right-hand side of (1.2) serves as an approximation of the var r^{*}. This result is due to Bartlett [3]. Of course, in practical applications the variances v_{1}^{2} and v_{2}^{2} are not known. If it is known that $E X_{t}=0$ and $E Y_{t}=0$ then the statistic

$$
r=\frac{\sum_{t=1}^{n} X_{t} Y_{t}}{\sqrt{\sum_{t=1}^{n} X_{t}^{2} \sum_{t=1}^{n} Y_{t}^{2}}}
$$

is calculated. However, if $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are stationary $\operatorname{AR}(1)$ processes with nonvanishing means the usual correlation coefficient

$$
\begin{equation*}
r^{\prime}=\frac{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)\left(Y_{t}-\bar{Y}\right)}{\sqrt{\sum_{t=1}^{n}\left(X_{t}-\bar{X}\right)^{2} \sum_{t=1}^{n}\left(Y_{t}-\bar{Y}\right)^{2}}} \tag{1.3}
\end{equation*}
$$

is preferred. McGregor [9] showed that

$$
\begin{equation*}
\operatorname{var} r \sim V_{1}=\frac{1}{n} \frac{1+\rho_{1} \rho_{2}}{1-\rho_{1} \rho_{2}} \tag{1.4}
\end{equation*}
$$

i.e., that Bartlett's approximation derived for r^{*} is also valid for r. Let $\alpha=\rho_{1} \rho_{2}$ and $N=n+\frac{\alpha(4-3 \alpha)}{1-\alpha^{2}}$. McGregor [9] proved that the density of r is

$$
\begin{equation*}
p(r)=f(r)\left[1+O\left(n^{-1}\right)\right], \quad-1<r<1 \tag{1.5}
\end{equation*}
$$

where the function

$$
\begin{align*}
f(r)= & \frac{2^{N-2} \sqrt{1-\alpha}}{B\left(\frac{N-1}{2}, \frac{1}{2}\right)}\left(1-r^{2}\right)^{\frac{1}{2}(N-3)} \\
& \times \frac{\sqrt{\sqrt{(1+\alpha)^{2}-4 \alpha r^{2}}+1+\alpha}}{\left[\sqrt{(1+\alpha)^{2}-4 \alpha r^{2}}+1-\alpha\right]^{N-\frac{3}{2}} \sqrt{(1+\alpha)^{2}-4 \alpha r^{2}}} \tag{1.6}
\end{align*}
$$

is also a density.
As for the correlation coefficient \boldsymbol{r}^{\prime} defined in (1.3), McGregor and Bielenstein [10] proved that its density is also given by (1.5) but N must be replaced by $M-1$ where $M=n+\alpha(6-5 \alpha) /\left(1-\alpha^{2}\right)$.

A simple procedure for testing statistical significance of r was suggested by Hannan [7], namely to use r "as an ordinary correlation from $n\left(1-\rho_{1} \rho_{2}\right) /\left(1+\rho_{1} \rho_{2}\right)$ observations. (Of course, ρ_{1} and ρ_{2} would need to be estimated from the data and mean corrections would have to be made.)" Hannan notes that this procedure was suggested by Bartlett in 1935. In statistical papers this procedure is called Bartlett's
approximation. Let r_{1} and r_{2} be sample first-lag autocorrelations calculated from X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n}, respectively. Nakamura et al [12] published a table of critical values for r given r_{1} and r_{2} when $n=30$. Their critical values are based on a simulation study. It is shown that in some cases Bartlett's approximation is not very satisfactory. For example, if $n=30$ and $\rho_{1}=\rho_{2}=0.9$ the five per cent two-sided critical value for r given by Bartlett's approximation is 0.87 but the critical value obtained from simulations is 0.71 . Nakamura et al also investigated the approximation

$$
\operatorname{var} r^{*} \sim V_{2}=\frac{1}{n} \frac{1+\rho_{1} \rho_{2}}{1-\rho_{1} \rho_{2}}-\frac{1}{n^{2}} \frac{2 \rho_{1} \rho_{2}}{\left(1-\rho_{1} \rho_{2}\right)^{2}}
$$

and a sample modification of it. Bartlett's approximation based on V_{2} was found to be better especially when ρ_{1} and ρ_{2} have their absolute values near to 1 .

It is also possible to calculate critical values for r using the density f introduced in (1.6). McGregor [9] calculated values of $f(r)$ and published some graphs of this density. Although "the corresponding approximate values of the cumulative distribution function $P(r)=\int_{-1}^{r} p(r) \mathrm{d} r$ were found as a check" they were not published in the paper.

Hannan [6] proposed an exact test for correlation between two autoregressive processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$. However, to make the test exact, not all information in the data is used. Haugh [8] introduced a general method for testing the correlation using the residuals. Tests based on comovements between time series are described by Goodman and Grunfeld [5]. Some tests in frequency domain are reviewed in Anděl [1].

In this paper we proceed as follows. In Section 2 we discuss some properties of the theoretical correlation coefficient ρ between the variables X_{t} and Y_{t} when $\left(X_{t}, Y_{t}\right)^{\prime}$ is a stationary two-dimensional $\operatorname{AR}(1)$ process. Critical values based on McGregor's density, critical values based on Bartlett's approximation and critical values obtained from a simulation study are given in Section 3. Some conclusions and recommendations are given in Section 4.

2. CORRELATION COEFFICIENT IN A TWO-DIMENSIONAL AR(1) PROCESS

Consider a stationary two-dimensional $\operatorname{AR}(1)$ process $\boldsymbol{Z}_{t}=\left(X_{t}, Y_{t}\right)^{\prime}$ given by $\boldsymbol{Z}_{\boldsymbol{t}}=$ $U Z_{t-1}+\varepsilon_{t}$ where ε_{t} is a white noise such that $E \varepsilon_{t}=0$ and var $\varepsilon_{t}=S$ where

$$
\boldsymbol{U}=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right), \quad S=\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right)
$$

Of course, $s_{12}=s_{21}$. Assume that $\left\{Z_{t}\right\}$ is stationary, i.e., that both the roots of the matrix \boldsymbol{U}

$$
\lambda_{12}=\frac{1}{2}\left[u_{11}+u_{22} \pm \sqrt{\left(u_{11}-u_{22}\right)^{2}+4 u_{12} u_{21}}\right]
$$

are inside the unit circle. Define $u=u_{11} u_{22}-u_{12} u_{21}$. It is known that the variance matrix $B=\operatorname{var} Z_{t}$ is given by the formula

$$
\begin{align*}
{\left[\left(1-u_{11}^{2}\right)\left(1-u_{22}^{2}\right)\right.} & \left.-u_{12} u_{21}\left(u+u_{11} u_{22}+2\right)\right](1-u) \boldsymbol{B} \\
& =(1+u) \boldsymbol{U} \boldsymbol{S} \boldsymbol{U}^{\prime}-u\left(u_{11}+u_{22}\right)\left(\boldsymbol{S} \boldsymbol{U}^{\prime}+\boldsymbol{U} \boldsymbol{S}\right) \\
& +\left[\left(1-u_{11}^{2}\right)\left(1-u_{22}^{2}\right)-u_{12} u_{21}\left(u+u_{11} u_{22}+2\right)\right. \tag{2.1}\\
& \left.+u\left(u_{11}^{2}+u_{22}^{2}+u_{12} u_{21}+u_{11} u_{22}-1\right)\right] \boldsymbol{S}
\end{align*}
$$

(see Anděl [2], p.242). If we denote

$$
\boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

then the correlation coefficient ρ between X_{t} and Y_{t} can be written in the form $\rho=$ $b_{12} / \sqrt{b_{11} b_{22}}$. Inserting from (2.1) we get after some computations that $\rho=A / \sqrt{B C}$ where

$$
\begin{aligned}
& A=s_{12}\left[\left(1-u_{11}^{2}\right)\left(1-u_{22}^{2}\right)-u_{12}^{2} u_{21}^{2}\right]+s_{11} u_{21}\left(u_{11}-u_{22} u\right)+s_{22} u_{12}\left(u_{22}-u_{11} u\right) \\
& B=s_{22}\left[1-u_{11} u_{22}-u_{12} u_{21}-u_{11}^{2}(1-u)\right]+2 s_{12} u_{21}\left(u_{22}-u_{11} u\right)+s_{11} u_{21}^{2}(1+u), \\
& C=s_{11}\left[1-u_{11} u_{22}-u_{12} u_{21}-u_{22}^{2}(1-u)\right]+2 s_{12} u_{12}\left(u_{11}-u_{22} u\right)+s_{22} u_{12}^{2}(1+u)
\end{aligned}
$$

The formula for ρ is quite complicated. It can be simplified in special cases, e.g. when $s_{12}=0$ or when $u_{12}=u_{21}=0$. If $s_{12}=0$ and $u_{12}=u_{21}=0$ then, of course, $\rho=0$.

It must be stressed, however, that ρ is not a good measure of dependence between $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ since there exist two-dimensional AR(1) processes $Z_{t}=\left(X_{t}, Y_{t}\right)^{\prime}$ such that $\rho=0$ although $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are dependent. We introduce some examples.

Example 1. Let $\left\{\eta_{t}\right\}$ be a one-dimensional white noise with $E \eta_{t}=0$ and var $\eta_{t}>0$. If we define $X_{t}=\eta_{t}$ and $Y_{t}=\eta_{t-1}$ then $\operatorname{cov}\left(X_{t}, Y_{t}\right)=0$ but $\operatorname{cov}\left(X_{t-1}, Y_{t}\right)=$ var $\eta_{t-1}>0$. This process can be expressed in the form

$$
\boldsymbol{Z}_{t}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \boldsymbol{Z}_{t-1}+\binom{\eta_{t}}{0}
$$

i. e., $\boldsymbol{Z}_{\boldsymbol{t}}$ is a two-dimensional stationary $\mathrm{AR}(1)$ process.

Example 2. One could object that Example 1 is in some sense degenerated. However, it is possible to construct a "normal" model with correlated components such that $\rho=0$. Define $\boldsymbol{Z}_{t}=\boldsymbol{U} \boldsymbol{Z}_{t-1}+\varepsilon_{t}$ where

$$
\boldsymbol{U}=\left(\begin{array}{cc}
0.7 & 0.3 \\
0.1 & 0.5
\end{array}\right), \quad \boldsymbol{S}=\left(\begin{array}{cc}
1 & -1368 / 3816 \\
-1368 / 3816 & 1
\end{array}\right)
$$

The process $\left\{Z_{t}\right\}$ is stationary since $\lambda_{1}=0.8, \lambda_{2}=0.4$ and S is positive definite. Inserting into (2.1) we get

$$
\boldsymbol{B}=\left(\begin{array}{ll}
2.20126 & 0 \\
0 & 1.36268
\end{array}\right)
$$

and thus $\rho=0$. Since the covariance function $\boldsymbol{R}(s)$ of $\operatorname{AR}(1)$ process satisfies

$$
\boldsymbol{R}(s)-\boldsymbol{U R}(s-1)=0 \quad \text { for } s \geq 0
$$

and $\boldsymbol{R}(0)=\boldsymbol{B}$ we get

$$
\boldsymbol{R}(1)=\boldsymbol{U B}=\left(\begin{array}{ll}
1.54088 & 0.40880 \\
0.22013 & 0.68134
\end{array}\right)
$$

Then

$$
\begin{aligned}
\operatorname{corr}\left(X_{t+1}, Y_{t}\right) & =\frac{0.40880}{\sqrt{2.20126 \times 1.36268}}=0.23604 \\
\operatorname{corr}\left(X_{t}, Y_{t+1}\right) & =\frac{0.22013}{\sqrt{2.20126 \times 1.36268}}=0.12710
\end{aligned}
$$

3. CRITICAL VALUES

In Tables 1-9 we summarize selected critical values suitable for the testing of statistical significance of the correlation coefficient between two AR(1) processes. We used following approaches to obtain them:

- simulations,
- Bartlett's approximation,
- numerical integration.

For $n \in\{10,20,30,40,50,100,200,500\}$ and for each couple (ρ_{X}, ρ_{Y}) such that $\rho_{X} \in\{0.1,0.4,0.8\}$ and $\rho_{Y} \in\{0.2,0.6,0.9\}$ we generated 100000 independent realizations $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{Y_{1}, \ldots, Y_{n}\right\}$ where $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are independent AR(1) processes with the autocorrelations ρ_{X} and ρ_{Y}, respectively. From the each pair $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{Y_{1}, \ldots, Y_{n}\right\}$ of realizations the statistics r and r^{\prime} were calculated. Based on these values we found corresponding 0.95 and 0.99 sample quantiles. Programs for simulations were coded in Matlab v.4.2.1c and run on both Pentium based PC and DEC workstations. In Tables 1-9 we denote these sample quantiles R_{S} if the sample correlation coefficient r was used and R_{S}^{\prime} if the usual sample correlation coefficient r^{\prime} was used.

For the calculation of Bartlett's approximation we applied procedure Quantile [StudentTDistribution[n] , q] implemented in Mathematica v. 2.2 for DEC workstations. The results were checked using the function tinv implemented in the Statistical Toolbox v. 2.0 for Matlab. In Tables 1-9 we denote these critical values by R_{B}. Principal advantage of mentioned procedures is that one can use them even in the case when the number of degrees of freedom is not an integer.

Numerical integration was calculated using the procedure NIntegrate implemented in Mathematica v. 2.2 for DEC workstations. In Tables $1-9$ we denote by R_{I} the quantiles based on the density f given by (1.6) and by R_{I}^{\prime} the quantiles based on the analogical density of r^{\prime}.

Much more detailed results covering broader range of values of ρ_{X} and ρ_{Y} etc. are available from the authors on request.

Table 1. $\rho_{X}=0.1, \rho_{Y}=0.2$.

	$\alpha=0.95$						$\alpha=0.99$			
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}
10	.529	.555	.562	.527	.554	.689	.724	.728	.690	.719
20	.376	.383	.386	.374	.384	.511	.523	.526	.510	.522
30	.306	.311	.312	.306	.311	.420	.427	.431	.422	.429
40	.264	.267	.269	.265	.268	.366	.369	.374	.368	.372
50	.238	.241	.240	.237	.239	.329	.334	.335	.331	.334
100	.169	.169	.169	.168	.169	.236	.237	.237	.236	.237
200	.119	.119	.119	.119	.119	.167	.167	.168	.168	.168
500	.074	.075	.075	.075	.075	.105	.106	.106	.106	.106

Table 2. $\rho_{X}=0.1, \rho_{Y}=0.6$.

	$\alpha=0.95$						$\alpha=0.99$				
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	
10	.538	.564	.587	.539	.563	.704	.729	.755	.701	.726	
20	.385	.393	.403	.386	.395	.526	.537	.546	.524	.534	
30	.315	.320	.326	.317	.321	.434	.441	.448	.435	.441	
40	.272	.276	.281	.275	.278	.380	.385	.389	.380	.384	
50	.246	.249	.250	.246	.248	.341	.346	.348	.342	.345	
100	.175	.176	.176	.174	.175	.246	.247	.247	.244	.246	
200	.124	.124	.124	.123	.124	.173	.173	.175	.174	.174	
500	.078	.078	.078	.078	.078	.110	.110	.110	.110	.110	

Table 3. $\rho_{X}=0.1, \rho_{Y}=0.9$.

	$\alpha=0.95$						$\alpha=0.99$			
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}
10	.551	.571	.607	.548	.570	.711	.734	.775	.709	.732
20	.396	.401	.416	.395	.403	.535	.540	.563	.534	.544
30	.323	.327	.336	.325	.329	.445	.448	.462	.445	.451
40	.281	.282	.290	.282	.285	.391	.393	.401	.390	.394
50	.251	.255	.258	.253	.255	.347	.352	.359	.351	.354
100	.179	.181	.181	.179	.180	.252	.253	.254	.251	.252
200	.127	.127	.128	.127	.127	.180	.180	.180	.179	.179
500	.081	.080	.081	.080	.081	.113	.113	.114	.114	.114

Table 4. $\rho_{X}=0.4, \rho_{Y}=0.2$.

	$\alpha=0.95$					$\alpha=0.99$				
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}
10	.547	.570	.600	.545	.567	.708	.734	.768	.706	.730
20	.393	.401	.412	.392	.400	.530	.542	.557	.531	.541
30	.332	.328	.333	.322	.327	.441	.448	.457	.442	.448
40	.278	.281	.287	.280	.283	.387	.390	.397	.387	.391
50	.251	.253	.255	.250	.253	.346	.349	.355	.348	.351
100	.178	.179	.179	.178	.178	.248	.249	.252	.249	.250
200	.126	.126	.126	.126	.126	.178	.178	.178	.177	.178
500	.079	.080	.080	.080	.080	.113	.112	.113	.112	.113

Table 5. $\rho_{X}=0.4, \rho_{Y}=0.6$.

	$\alpha=0.95$						$\alpha=0.99$			
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}
10	.603	.613	.721	.597	.613	.760	.772	.876	.753	.768
20	.445	.449	.492	.445	.451	.596	.601	.652	.590	.597
30	.369	.373	.396	.370	.373	.499	.504	.537	.500	.505
40	.321	.324	.340	.323	.326	.442	.445	.467	.442	.445
50	.291	.292	.303	.291	.292	.398	.400	.418	.400	.402
100	.209	.209	.212	.208	.208	.291	.291	.297	.290	.291
200	.148	.148	.149	.148	.148	.207	.206	.210	.207	.208
500	.094	.094	.094	.094	.094	.133	.132	.133	.132	.132

Table 6. $\rho_{X}=0.4, \rho_{Y}=0.9$.

	$\alpha=0.95$						$\alpha=0.99$			
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}
10	.652	.638	.831	.643	.654	.800	.793	.949	.792	.801
20	.494	.485	.568	.491	.496	.644	.634	.735	.640	.646
30	.412	.409	.455	.413	.416	.550	.546	.610	.551	.554
40	.363	.358	.391	.362	.364	.492	.488	.531	.490	.493
50	.325	.325	.347	.327	.328	.442	.444	.476	.446	.448
100	.236	.236	.243	.235	.236	.328	.326	.338	.327	.327
200	.168	.168	.171	.168	.168	.237	.236	.239	.235	.236
500	.107	.107	.107	.107	.107	.151	.150	.152	.151	.151

Table 7. $\rho_{X}=0.8, \rho_{Y}=0.2$.

	$\alpha=0.95$					$\alpha=0.99$				
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}
10	.572	.589	.657	0.570	.589	.736	.753	.822	.729	.747
20	.419	.423	.449	0.417	.425	.562	.572	.602	.558	.568
30	.345	.349	.362	0.345	.349	.474	.474	.495	.470	.475
40	.299	.301	.312	0.300	.303	.411	.414	.430	.413	.417
50	.270	.272	.278	0.270	.272	.373	.377	.385	.373	.375
100	.192	.192	.195	0.192	.193	.269	.270	.273	.268	.269
200	.137	.137	.137	0.136	.136	.192	.192	.193	.192	.192
500	.086	.086	.087	0.086	.086	.122	.122	.122	.122	.122

Table 8. $\rho_{X}=0.8, \rho_{Y}=0.6$.

	$\alpha=0.95$						$\alpha=0.99$				
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	
10	.701	.674	.948	.695	.702	.837	.823	.994	.833	.839	
20	.548	.536	.668	.546	.550	.697	.687	.832	.696	.700	
30	.465	.459	.534	.464	.466	.608	.601	.699	.609	.611	
40	.410	.406	.457	.410	.412	.546	.543	.611	.547	.549	
50	.373	.371	.405	.372	.373	.500	.501	.549	.501	.502	
100	.269	.269	.282	.270	.270	.372	.372	.391	.372	.373	
200	.193	.194	.198	.194	.194	.271	.272	.277	.270	.270	
500	.123	.124	.125	.123	.123	.174	.174	.175	.174	.174	

Table 9. $\rho_{X}=0.8, \rho_{Y}=0.9$.

	$\alpha=0.95$						$\alpha=0.99$				
n	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	R_{S}	R_{S}^{\prime}	R_{B}	R_{I}	R_{I}^{\prime}	
10	.825	.736	-	.820	.822	.919	.865	-	.918	.919	
20	.695	.636	.971	.696	.698	.829	.781	.998	.830	.831	
30	.613	.557	.815	.614	.615	.758	.721	.940	.759	.760	
40	.554	.532	.697	.555	.556	.703	.678	.856	.703	.703	
50	.507	.494	.616	.510	.511	.649	.636	.783	.657	.657	
100	.382	.378	.422	.382	.382	.514	.509	.569	.512	.513	
200	.279	.278	.293	.279	.279	.384	.383	.406	.383	.383	
500	.180	.180	.184	.180	.180	.252	.252	.257	.251	.251	

4. CONCLUSIONS

The difference between R_{S} and R_{S}^{\prime} typically grows either if ρ_{X} and/or ρ_{Y} increases or if n decreases. However, this difference is practically negligible for $n \geq 50$ irrespective of the values of ρ_{X} and/or ρ_{Y}. For smaller values of n is R_{S} usually larger than R_{S}^{\prime}.

On the contrary, the difference between R_{I} and R_{I}^{\prime} increases both if n decreases and if ρ_{X} and/or ρ_{Y} decreases. However, the difference in all considered situations is practically negligible provided $n \geq 50$.

Difference between R_{S} and R_{I} is very small already for $n=10$ and practically negligible for $n \geq 20$. The situation is almost the same in the case of R_{S}^{\prime} and R_{I}^{\prime} and small values of ρ_{X} and ρ_{Y}. On the other hand, the situation is worse in the case of R_{S}^{\prime} and R_{I}^{\prime} and larger values of ρ_{X} and ρ_{Y}. The values of R_{I}^{\prime} are typically greater than those of R_{S}^{\prime} and the difference start to be negligible only for $n \geq 100$.

As for Bartlett's approximation, it gives in all cases more conservative values (as expected). While this approximation seems to give very well acceptable results for $n \geq 50$ and at least one of ρ 's small, the discrepancy is quite big even for $n=200$ and both ρ_{X} and ρ_{Y} large.

The values R_{I} are closer to R_{S} than the values R_{B}. Similarly, R_{I}^{\prime} are closer to R_{S}^{\prime} than the values R_{B}. This leads to the recommendation that the approximations R_{I} and R_{I}^{\prime} should be preferred to the approximation R_{B}.

ACKNOWLEDGEMENTS

The research has been supported by grant 188 from the Grant Agency of Charles University.
(Received October 3, 1997.)

REFERENCES

[1] J. Andèl: Modern trends in multivariate time-series analysis. Math. Operationsforsch. Statist., Ser. Statistics 9 (1978), 141-158.
[2] J. Andël: Statistische Analyse von Zeitreihen. Akademie-Verlag, Berlin 1984.
[3] M.S. Bartlett: Some aspects of the time-correlation problem in regard to tests of significance. J. Roy. Statist. Soc. 98 (1935), 536-543.
[4] H. Cramér: Mathematical Methods of Statistics. Princeton Univ. Press, Princeton 1946.
[5] L. A. Goodman and Y. Grunfeld: Some nonparametric tests for comovements between time series. J. Amer. Statist. Assoc. 56 (1961), 11-26.
[6] E. J. Hannan: An exact test for correlation between time series. Biometrika 42 (1955), 316-326.
[7] E. J. Hannan: Multiple Time Series. Wiley, New York 1970.
[8] L.D. Haugh: Checking the independence of two covariance stationary time series: a univariate residual cross-correlation approach. J. Amer. Statist. Assoc. 71 (1976), 378-385.
[9] J. R. McGregor: The approximate distribution of the correlation between two stationary linear Markov series. Biometrika 49 (1962), 379-388.
[10] J. R. McGregor and U. M. Bielenstein: The approximate distribution of the correlation between two stationary linear Markov series II. Biometrika 52 (1965), 301-302.
[11] G. H. Orcutt and S.F. James: Testing the significance of correlation between time series. Biometrika 35 (1948), 397-413.
[12] A. O. Nakamura, M. Nakamura and G. H. Orcutt: Testing for relationships between time series. J. Amer. Statist. Assoc. 71 (1976), 214-222.

Prof. RNDr. Jiří Andēl, DrSc. and RNDr. Jaromír Antoch, CSc., Charles Univesity Faculty of Mathematics and Physics, Sokolovská 83, 18600 Praha 8. Czech Republic. e-mails: andel@karlin.mff.cuni.cz, antoch@karlin.mff.cuni.cz

