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PIECEWISE LINEAR CLASSIFIERS 
PRESERVING HIGH LOCAL RECOGNITION RATES 

HIROSHI TENMOTO, MINEICHI KUDO AND MASARU SHIMBO 

We propose a new method to construct piecewise linear classifiers. This method con
structs hyperplanes of a piecewise linear classifier so as to keep the correct recognition 
rate over a threshold for a training set. The threshold is determined automatically by the 
MDL (Minimum Description Length) criterion so as to avoid overfitting of the classifier to 
the training set. The proposed method showed better results in some experiments than a 
previous method. 

1. INTRODUCTION 

In pattern recognition, nonparametric classifiers are effective when the assumption 
of a statistical model cannot be made on the basis of the underlying distribution of 
samples. A piecewise linear classifier is a typical nonparametric classifier and ap
proximates the true discrimination boundary by a combination of some, hyperplanes. 

Many methods have been proposed for construction of piecewise linear classifiers 
[4-7,9-11]. Park and Sklansky's method [7] is the most effective and least restric
tive one. It aims to separate prototypes belonging to different classes, where the 
prototypes are the cluster centers of the training samples of each class. Therefore, 
unless the prototypes properly represent the samples around them, the method does 
not work well. It is especially difficult for prototypes to represent training samples 
located at class boundaries. Their method, therefore, depends strongly on the result 
of clustering and often fails to discriminate even the training samples. 

In our method, prototypes and training samples are evenly used, and hyperplanes 
are constructed incrementally so as to keep the local recognition rate over a thresh
old. However, in general, a high recognition rate for the training samples does not 
imply the same performance for many unknown samples. Overfitting to the train
ing samples causes the degradation of performance. Therefore, we determine an 
appropriate value of the threshold on the basis of the MDL criterion [8]. 

2. CONSTRUCTION OF PIECEWISE LINEAR CLASSIFIERS 

2.1. Basic a lgo r i thm 

Our method is based on Park and Sklansky's method [7]. Both methods are sum
marized by the following basic algorithm. 
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Step 1: Using a clustering method (e.g., Forgy's algorithm [2]), find some clusters 
over the training samples in each class, and let the cluster centers be proto
types. 

Step 2: Among all links connecting pairs of different-class prototypes, find Tomek 
links [12], where a link is said to be a Tomek link when the hypersphere with 
the link as the diameter does not include other prototypes. For simplicity, we 
refer to a Tomek link as a link. 

Step 3: Find some hyperplanes so as to cut all the (Tomek) links. 

Step 4: Assign a class label to each region surrounded by the hyperplanes by apply
ing the majority rule to the number of training samples that fall in the region. 
Classify an unknown sample according to the label of the region where the 
sample falls in. For a region without the label, reject the sample (with-reject 
mode) or adopt the nearest region to the sample (without-reject mode). 

The primary part of the algorithm is Step 3. In Step 3, the previous method 
finds the nearly minimum number of hyperplanes that is enough for separating all 
the prototypes. However, there is no guarantee that the hyperplanes can separate 
all training samples as well. This problem may be solved by increasing the number 
of prototypes, although it increases the computational cost. 

In our method, a hyperplane is first found on the basis of the prototypes, and 
then the location is corrected on the basis of the training samples. An addition of 
a link to the same hyperplane is carried out only when the addition keeps the local 
recognition rate high. The previous method also has a similar correction mechanism, 
but the cutting of many links has priority over such a correction. 

2.2. Incremental construction of hyperplanes 

Next, we show our concrete procedure for the construction of hyperplanes. 

Step 0: Let the set of links be L. The value of the upper bound emax of the local 
error rate is determined. 

Step 1: Repeat the following steps until L becomes empty. 

Step 2: Select the longest link / E L as an initial link, and let the perpendicular 
bisector be an initial hyperplane h. Let Lh = {/} and L = L — {/}. Let p 
and n be the prototypes of / located on the positive side and the negative side 
with respect to h, respectively. Let a positive prototype set P = {p} and a 
negative prototype set N = {n}. Make a local positive set Sp of the training 
samples belonging to the same cluster with p £ P. In a similar way, make a 
local negative set, SN (Figure 1(a)). Next, train h locally so as to classify Sp 
and SN more correctly by Window Training Procedure [10]. Copy L to V. 

Step 3: Find the link /' G V nearest to Lh, where the nearness is measured by the 
distance D(l',Lh) = minje/^ d(/',/), here c/(-,-) is the distance between two 
link centers. Next, let V <— V — {/'} and Lh *— LhU {/'}. If h also cuts 
/' simultaneously, try to add both prototypes of /' to P and N according to 
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the signs with respect to h. If both prototypes are located on the negative 
side, the prototype nearer to h is added to P , and the other is added to N. 
If both prototypes are located on the positive side, add them to N and P , 
conversely. Then, reconstruct Sp and SN by collecting the training samples 
belonging to the same cluster as at least one prototype of P and IV, respectively 
(Figure 1(b)). 

Step 4: Train h locally for Sp and SN (Figure 1(c)). Calculate the local error rate e. 

Step 5: If e < emax , update L and Lh as L = L — {/'} and V <— L. Furthermore, 
we limit the addition of the links only when at least one side of h is always of 
one class. If both the limitations are satisfied, return to Step 3. Otherwise, 
cancel the addition as Lh <— Lh — {/'} (P and N are returned to the situation 
they were in before the addition of / ' ) , and return to Step 3 in order to find a 
second nearest link to Lh- If there is no link to satisfy the limitations, or if the 
number of canceled links is beyond a given number K, terminate the addition 
to Lh, and return to Step 2 for finding another hyperplane, hf. 

Fig. 1. Construction of hyperplanes by the proposed method. The small and large 
symbols denote the training samples and the prototypes, respectively. 

2.3. Determination of threshold by MDL criterion 

In the proposed method, the recognition rate for the training samples is control
lable by a threshold em a x . With a small emax, we can obtain a classifier which can 
discriminate the training samples well. However, fitting a classifier too close to the 
samples does not necessarily improve the performance for many unknown samples. 
There is an appropriate value of emax for every given problem. 

To estimate the appropriate value, we use the MDL criterion [8], which is one of 
the probabilistic model selection criteria. The MDL criterion selects a certain model 
M from a model class M. such that M minimizes the description length of the data 
and M simultaneously. That is, we require the classifier to be as simple as possible 
and to classify correctly as many training samples as possible at the same time. 

The MDL value is denoted by LMDL = L(XN\9) + L(9\M) + L(M), where XN 

denotes given N training samples and 9 is a real-valued parametric vector of the 
model M. The first term is the description length of XN under a particular 9 of M. 
It is calculated as the log-likelihood of 9 with respect to XN, i.e., — log2 P(XN\9). 
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The second term is the description length of 0, and the third term is the description 
length of M. By summing up these lengths, we obtain the value of LMDL-

The practical calculation is as follows. We consider a finite partitioning model (for 
example, see reference [13]). The universal region is assumed to be partitioned into 
R regions {7JI,7^2J • • • ^R] by the hyperplanes. In region Hri let Nr, Nr

+ and N~ 
be the number of samples, the number of samples of the most dominant class and the 
number of samples of the other classes, respectively. Then, a maximum likelihood 
estimator of a binomial distribution for TZr is given by 0r = N*/Nr. Thus, the 

first term is calculated by £ ? = 1 - log2 §?* (1 - 0 r ) N 7 = £ ? = 1 Nr{-0r log2 §r - (1 -
6r) log2(l — #r)}- For the second term, we use ^(D + l)H(log2 N + log2 e), where D 
and H are the number of features and the number of hyperplanes, respectively. In 
the last term of LM D L, we identify model M by encoding the number of hyperplanes 
as log2 H, where log2 H = 1.519 + log2 H + log2 log2 # + ••-, and the summation is 
taken only for positive terms [8]. We choose an appropriate number of hyperplanes 
where LMDL takes the minimum. 

3. EXPERIMENTS 

All experiments were performed on an Intel Pentium 200MHz machine with BSD/OS. 
Throughout all the experiments, we determined the value of K for the terminal con
dition by 2.D, i.e., twice the number of features. 

A. Artificial d a t a 

An experiment was performed using a two-class set of artificial data, in which two 
distributions form double rings with the center at the origin in a 2-dimensional space. 
The radius of Class 1 varies according to the normal distribution N(ri, 1), and that 
of Class 2 varies according to N(r 2, 1). There is a considerable overlap between 
the two classes when |ri — r 2 | is small. For each class, we used n (10 < n < 2511) 
samples for training and 1000 samples for test. 
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Fig. 2, Recognition rates of the proposed method and the previous method with changes 
in (a) the value of r2 and (b) the value of n. 
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We examined the robustness of the proposed method, changing (a) the separabil
ity of the two distributions and (b) the number of training samples. In test (a), r i 
is fixed at 10, r2 is varied from 10 to 17 and n is fixed at 250. In test (b), r i is fixed 
at 10, r2 is fixed at 12 and n is increased from 10 to 2511 with a log scale step such 
as [10fcJ (k = 1,1.1,.. .,3.4). Figure 2 shows the results. The proposed method 
outperformed the previous method in discrimination, except when the classes were 
very close (r2 < 12) or the number of the training samples was very small (n < 100). 

Under conditions of such a small amount of information, the number of hyper-
planes in the proposed method was too small. The MDL criterion generally tends 
to underestimate in such a case. By the proposed method with an optimal number 
of hyperplanes, we can expect a better result. As an alternative, we may adopt a 
constant value (e.g., 0.1) for e m a x without MDL estimation. 

B. Real data 

Experiments were performed on two practical problems: (a) 26-class, 10-feature 
alphabetical character recognition (ETL-3 database [1]) and (b) 5-class, 6-feature 
Japanese vowel recognition (ETL-WD-Idatabase [3]). In experiment (a), the num
ber of training samples per class is 100, and that of test samples is 100. In experiment 
(b), the number of training samples per class is 100, and that of test samples is 500. 
For all experiments, ten prototypes are used. The values of e m a x estimated by the 
MDL criterion were 0.12 in (a) and 0.08 in (b), respectively. 

The results are shown in Table 1. Especially in with-reject mode, the proposed 
method was better than the previous method in the recognition rate, while the 
number of hyperplanes of the proposed method was smaller than that of the previous 
method. This means that our MDL criterion works sufficiently to avoid overfitting 
to the training samples. The results without MDL estimation (in this case, e m a x = 
0.1) were also good. These results indicate the usefulness of a constant value for 
e m a x when we want to economize the computational cost. 

Table 1. Experimental results. Here, M, R\ and R2 correspond to the number of 
hyperplanes, the recognition rate in with-reject mode, and the recognition rate in 

without-reject mode, respectively. 

Dataset Method M LMDЬ Ri R2 

(a) ETL-3 Pгoposed with MDL (e m a x = 0.12) 
Proposed (fixed e m a x =0.1) 
Previous 

33 2519 75.04 93.27 
35 2643 74.23 93.04 
44 3157 51.65 92.23 

(b) ETL-WD-I Proposed with MDL (e m a x = 0.08) 
Proposed (fixed e m a x = 0.1) 
Previous 

10 470.7 77.88 82.44 
11 505.4 77.12 81.52 
19 721.3 57.08 82.20 

4. DISCUSSION AND CONCLUSION 

We proposed a new method for constructing piecewise linear classifiers, in which 
each hyperplane is constructed so as to keep the local error rate under a threshold 
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that is determined by the MDL criterion. The results of experiments showed the 
effectiveness of the proposed method. 

As in the case of the previous method, our method also depends on the result 
of clustering, i.e., the prototypes. In a future study, we will try to develop a con
struction method without clustering. The use of computational geometry techniques 
with probabilistic algorithms may be one possibility. Determination of the optimal 
number of clusters using the MDL criterion will also be studied. 

(Received December 18, 1997.) 
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