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INTRINSIC DIMENSIONALITY AND SMALL SAMPLE 
PROPERTIES OF CLASSIFIERS 

SARUNAS RAUDYS 

Small learning-set properties of the Euclidean distance, the Parzen window, the min
imum empirical error and the nonlinear single layer perceptron classifiers depend on an 
"intrinsic dimensionality" of the data, however the Fisher linear discriminant function is 
sensitive to all dimensions. There is no unique definition of the "intrinsic dimensionality". 
The dimensionality of the subspace where the data points are situated is not a sufficient 
definition of the "intrinsic dimensionality". An exact definition depends both, on a true 
distribution of the pattern classes, and on the type of the classifier used. 

1. INTRODUCTION 

In statistical literature, it is well known that small sample properties of statistical 
classifiers heavily depend on dimensionality of the data. Estimates exist that show 
that in high-dimensional cases, the learning-set size should be very large. Practice, 
however, indicates that often some of the statistical classifiers have been perfectly 
trained in cases when learning-set sizes were small in comparison with a number 
of dimensions [1]. Most often such comments are related with a usage of artificial 
neural nets. This paper develops an idea originally presented by Duin [1] concerning 
effect of the intrinsic dimensionality on the small sample properties of statistical 
classifiers. We analyze known theoretical results concerning dimensionality-sample 
size relationships and show that for several parametric and non-parametric classi
fiers, as well as a non-linear single-layer perceptron not the real, but an intrinsic 
dimensionality of the data should be taken into account while determining the small 
sample properties. 

2. SMALL SAMPLE PROPERTIES OF PARAMETRIC CLASSIFIERS 

The simplest statistical classifier is the Euclidean distance (the nearest means) clas
sifier. It is a linear discriminant function (DF) designed to classify two spherical 
multivariate Gaussian populations differing in mean vectors ^1,^2? but sharing the 
same identity covariance matrix E = Icr2. 
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In [2] the generalization error was first considered in asymptotic, when the dimen
sionality p and learning set sizes Ni, N2 are large and are increasing simultaneously. 
Moreover, true distributions of the pattern classes was considered to be Gaussian 
with common covariance matrix E(GCCM): 1V(/i,-, E). 

Note that while designing the EDC classifier one assumes, the covariance matrix 
E = Icr2, and in the analysis of the generalization error, we consider the case when 
the probabilistic model of the pattern classes is different, i.e., E ^ la2. This ap
proach implies that asymptotically conditional distribution of the random variable 
#(X, X , X ) tends to Gaussian distribution and allows us to obtain very simple, 
however very accurate estimates. 

Let N2 = N\ = JV, #2 = #i- For large p and 1V, following expression for the 
expected PMC was obtained 
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where 4>{a} = J ^ T T ) - 1 / 2 * - 1 exp{-*2/(2or2)} dt, 6* = -jfe, fi = ^ - ^ T; = 

* + T&ff' P* ~ (pS/!p— *s a n effec^ive dimensionality. 

Asymptotically, as iV —> oo we obtain the asymptotic PMC of EDC: Pso = 
${—6*/2}. Equation (1) shows that small learning-set properties of EDC heavily 
depend on true distributions of the pattern classes (parameters p and E). For the 
spherical Gaussian case we have E = Icr2. Then p* = p, 6* = 6, where 62 = // 'E" 1 ^ 
is a squared Mahalanobis distance. 

In a more general case (when a ^ Icr2), 6* < <5, and p* ^ p. In principle, p* can 
be arbitrary large. An example is two 100-variate (p = 100) Gaussian classes with 
common covariance matrix; unit variances; p\ = —p,2 = 0.0018805 x ( 1 , 1 , . . . , 1), 
correlations between all the variables p = -0.0101, and Pso = 0.03. Then p* « 108. 
From (1) for N = 200 we calculate EP^ = 0.497. We have obtained the same 
result by simulation experiments too. It is a very high generalization error. Another 
example is two pattern classes that are distributed on two very close parallel straight 
lines in the multivariate feature space. 

Theoretically, situations exist where p* is close to 1. It means that distribu
tions of the pattern classes lie in a one-variate linear subspace, i.e. the intrinsic 
dimensionality of the data is equal to 1. An example is two 100-variate (p = 100) 
Gaussian classes sharing common covariance matrix: unit variances; correlations 
between all the variables p = 0.3, p\ = —^2 = 1.042 x ( 1 , 1 , . . . , 1). For this data 
p* « 1.05, 6* = 6 = 3.76 and Poo ' = 0.03. Due to the small effective dimensionality 
p*, for this specific choice of parameters, we can train the EDC with very small 
learning-sets: from (1) for N = 5 we calculate EP^ ' = 0.0318. Simulation experi
ments confirm this theoretical estimate. We see that for this very favorable case, in 
spite of the high formal number of variables (p = 100), only five vectors per class 
are sufficient to train the classifier. 

Another popular parametric classification rule is the standard Fisher linear DF. 
It is an asymptotically optimal classifier designed to classify two multivariate GCCM 
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populations. Its generalization error can be expressed by (1) with T^T^ instead of 
T* [5]. The term T^ = l + ^ i ^ arises from the inexact sample estimation of the mean 
vectors of the classes and the term Ts = 1 + 27Nf a l > i s e s from the inexact sample 
estimation of the covariance matrix. For GCCM model, however, the generalization 
error depends on the rue dimensionality p, and not on p*: for both above examples 
with p = 100 from asymptotical formula we obtain EP^ ' = 0.0577. 

3. SMALL SAMPLE PROPERTIES OF NON-PARAMETRIC CLASSIFIERS 

The most popular version of a non-parametric Parzen window (PW) classifier is 
based on following estimate of the multivariate density function 

fpw(x\wt) = -J-£>(x,xf ,IA2), (2) 

where N(x,//,£) stands for multivariate density function and A is a smoothing 
constant. 

At the fixed point x of the multivariate feature space £2, a value of the Parzen 
window distribution density estimate depends on JVj random vectors of the learning-
set Xj , . . . , X ^ . Therefore it can be analyzed as a random variable. According 
to the central limit theorem when TV,- —• oo the sum (2) of JV,- random contribution 
terms 1V(x, Xy , IA2) tends to the Gaussian distribution. Thus, at one particular 
point x, a conditional probability of misclassification approximately is determined 
by means E and variances V of estimates /piy(x | 7ir) and fpw(* \ ^2) 

P(misclassiRcation\x, x G ^ ) « $ { Ef(*W) ~ Ef(x\n2) ^ y 1 ( 3 ) 

y/(Vf(x\^) + Vf(x\w2))/2 

Consider the GCCM model with parameters \i{ and S. The conditional mean of the 
nonparametric density estimate (conditioned at fixed point x) with respect to all 
possible learning sets, consisting of JVt- observations, is 

NІ 

Ef(x\Tt) = ]J-X;yAr(xf)//<)I).V(x,xf,IA2)dxf = 

= JV(x,/ . , ,£ + IA2). (4) 

For above model of the true densities the variance of the PW density estimate is 

(5) Vf(x\xi) = ±. П 2 Ľ + I Л 2 | 1 / - ( N ( x , ц t 2S + IЛ 2 ) ) 2 - (Ef(x\ҡt)ү 
\P 

Let T be a p * p orthonormal matrix such that G E G ' = D (D is a diagonal matrix 
of eigenvalues with elements di, d 2 , . . . , dp). Then 

Vf(x\ҡt) = ± Ц )/l + ^ И - - . ł « . , 2 E + IЛa))a - (Ef(x\ҡt)ү (6) 
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For very small A2, the variance of the PW estimate is determined primarily by the 
term 

This term decreases with an increase in a value of the smoothing parameter A2 

and decreases with an increase in JV,-, the number of learning examples. Let the 
eigenvalues of covariance matrix S are equal: d\ = d^ = . . . = dp = d and let the 
number of features p be increased. Then for small A2 we can conclude that in order 
to keep variance (6) constant, the number of learning vectors N{ should increase as 
a degree of the dimensionality p: 

Ni=(l+ &)''* (8) 

Let now several eigenvalues of the covariance matrix £ be very small: d\ = <I2 = 
. . . = dr = d, dr+i = dr+2 = . . . = dp = £0. We call number r, the intrinsic 
dimensionality of the data for the GCCM model. For this data model instead of (8) 
we have 

2 ^ " 2 

"••{H-J?) (9) 
It means that smaii learning-set properties of the nonparametric Parzen window 
density estimate (2) are determined not by the formal dimensionality of the data, 
but by the true-intrinsic dimensionality r. Therefore the number of learning vec
tors required to design this classifier should increase as a degree of the intrinsic 
dimensionality r. Note definition of r differs from that of p*. 

For the GCCM model, similar conclusions can be obtained also for a &-NN clas
sification rule that uses the Euclidean distance to determine distances between the 
pattern vectors in the multivariate feature space. 

4. SMALL SAMPLE PROPERTIES OF A NON-PARAMETRIC LINEAR 
ZERO EMPIRICAL ERROR CLASSIFIER 

The non-parametric linear zero empirical error classifier is obtained when while 
training the minimum empirical error classifier, we succeed to discriminate the lear
ning-set vectors without errors. Different criteria and optimization techniques are 
used to design the classifier that classifies the learning-set with a minimal number of 
misclassifications. In small learning-set analysis, a useful training model is a random 
search optimization procedure. 

The random search optimization procedure generates many (say, t times) random 
discriminant hyperplanes w'x -f iv0 = 0 according to a certain prior distribution of 
the weights, determined by a priori density fprior(w,uVo), and selects those that 
classify learning sets LSl and LS2, each of size 1V, without error. 

In [4], an equation for a mean expected probability of misclassification for pattern 
vectors which did not participate in the training was derived. The pattern classes 
were considered to be spherical Gaussian, and the prior density fprior (w, WQ) of the 
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(p+ l)-variate weight vector was considered to be N(0, I). The derivation is based 
on following representation 

Prob{w'x + wo < 0 | x G »",•} = $ ( ( - l ) ť - ^ Í ± ^ \ 
L vw'w J 

(10) 

Consider the GCCM model N(/Lf,E) with /ii = - ^ 2 = A*, £ = G'DG, where 
G is p x p orthonormal matrix of eigenvalues of S, D is a p x p diagonal matrix 

"IT 0 
0 Elp-rm 

components rri2j of (p—r)-variate vector m.2, (/i'G' = (m^m^)) , m2j <C £, and can 
be ignored. In this model of the data, we have the intrinsic dimensionality equal to 
r <p. Then 

of eigenvectors, such that D = e is small such that (p — r)e <C 1, 

l \ / Ä J l wG'< 
Gtíi + wQ \ __ f w^m/2 + w0 

GSG'Gw J I \Mw7 

where wi = gw, an r-variate subvector of vector Gw, and G = 
LS2. 

Therefore for this model with the intrinsic dimensionality equal to r, the small 
learning-set properties of the zero empirical error classifier can be analyzed in the 
r-variate space. In this space, the r-variate vector Y = gX is Gaussian N(m/2,Ir), 
or N(—m/2,Ir). It means that the small sample properties of the zero empirical 
error classifier are determined not by the real but by the intrinsic dimensionality of 
the data r. 

5. THE NON-LINEAR SINGLE-LAYER PERCEPTRON CLASSIFIER 

Recently it was shown that while training the non-linear SLP the weights are in
creasing. Therefore during the iterative training process, a cost function used to 
obtain the weights changes its statistical properties. In principle, under certain con
ditions, the SLP pereptron can realize decision boundaries of seven known statistical 
classifiers, beginning with the simplest EDC, following the regularized discriminant 
analysis, the standard linear Fisher DF, a generalized Fisher linear DF, the mini
mum empirical error and the most complex - the maximum margin classifiers [3]. 
Small sample properties of some of these classifiers are determined not by the real 
but by the intrinsic dimensionalities of the data, p* or r. We performed numerous 
simulation experiments with a singular multivariate Gaussian data that lies in the 
linear r-variate subspace, and the nonlinear SLP classifier with a sigmoid activation 
function, and targets t = 0 and 1. The experiments have confirmed that the small 
sample properties of the nonlinear SLP are determined by the intrinsic dimension
ality p* at the beginning, the formal dimensionality p later (if one uses non-limiting 
target values, e.g. 0.1 and 0.9), and the intrinsic dimensionality r at last. 
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6. CONCLUDING REMARKS 

It is a common belief that in real world problems, there exist comparatively small 
number of "main factors" tha t determine a variability of pat terns in the multivariate 
feature space. Thus it is postulated tha t pat tern vectors lie in the non-linear sub-
space of low dimensionality. Abundant experimental investigations confirm this 
belief. Unfortunately, in addition to the "main factors" mentioned, a number of 
extra "noisy factors" influence the data . Therefore the da ta lies in a "non-linear 
blanket of a certain thickness" [1]. Extra, non-zero width directions worsen the 
small sample properties of the classification algorithms. 

We have demonstrated tha t small learning-set properties of several classification 
rules depend on the "intrinsic dimensionality" of the data . There is no unique defi
nition of the "intrinsic dimensionality". The dimensionality r of the subspace where 
the data points are situated is not a sufficient definition of the intrinsic dimensional
ity. An exact definition depends both, on a true distribution of the pattern classes, 
and on the type of the classifier used. Therefore the definition of the "intrinsic di
mensionality" p* of EDC for the GCCM model is different from the definition of 
the "intrinsic dimensionality" of the Parzen window classifier for the same GCCM 
model. One such example has been presented above: two Gaussian pat tern classes 
tha t are distributed on two close parallel lines in the multivariate feature space. In 
this model, the da ta is distributed in the one-variate subspace. Only one eigenvalue 
of the covariance matr ix is different from zero. Thus, r « 1. Nevertheless, the 
effective dimensionality p* for EDC can be arbitrarily high. 

(Received December 18, 1997.) 
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