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A COMPARATIVE EVALUATION OF MEDIUM-
AND LARGE-SCALE FEATURE SELECTORS 
FOR PATTERN CLASSIFIERS 

MINEICHI KUDO 1 AND JACK SKLANSKY 

Needs of feature selection in medium and large problems increases in many fields includ
ing medical and image processing fields. Previous comparative studies of feature selection 
algorithms are not satisfactory in problem size and in criterion function. In addition, no 
way has not shown to compare algorithms with different objectives. In this study, we pro
pose a unified way to compare a large variety of algorithms. Our results show that the 
sequential floating algorithms promises for up to medium problems and genetic algorithms 
for medium and large problems. 

1. INTRODUCTION 

Feature selection aims mainly two goals: (1) reduction of the cost of extracting 
features and (2) improvement of the classification accuracy of a practical classifier. 
Especially, the second goal has received a great deal of attention in recent years 
according to the increase of the problem size. We compare many algorithms on 
medium (20-40 in feature number) and large problems (40- in feature number) 
(medium- and large-scale feature selection). In medium- and large-scale feature 
selection, there exist many garbage features which can degrade the performance of 
a practical classifier. In such a case, removing garbage features is useful to improve 
the classification accuracy of the classifier. 

So far, a large number of algorithms have been proposed for feature selection and 
many comparative studies have been done [1, 3, 5, 10]. However, these studies do 
not treat large problems or use only monotonic criterion in which an addition of a 
feature improves or keeps the criterion value before. Since the latter limitation is 
not practical, we use the error rate of a classifier as our non-monotonic criterion. 
The error rate is estimated directly from the training data using the leave-one-out 
technique or the cross validation technique. 

Another problem of previous comparative studies is that they compare algorithms 
in the entire range of the number of features. However, usually our main concern is 
in only a part where the classification accuracy is not degraded so much. We propose 
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a methodology to compare algorithms with diffrent objectives in a range where a 
loss of the classification accuracy is small. 

2. ALGORITHMS 

Let the original feature set be Y, \Y\ = n, and a criterion function be J(X) to 
evaluate a feature subset X. Algorithms for feature selection are divided into three 
categories in objective: (A) algorithms aim to find the best X of a given size m(< n), 
(B) algorithms aim to find the smallest Â  with J(X) > #, and (C) algorithms aim 
to find the optimal X in an optimization function O(X). 

Algorithms compared are shown in Table 1 along with their objective types and 
search types. For the detail of the first six algorithms, see Kittler [3]. 

Table 1. Feature selection algorithms (the search types is (S) Sequential or (P) Parallel). 

Obj. Search Algorithms 
A s SFS, SBS, GSFStø), GSBS(ff), PTA(/,r), GPTA(/,r), 

SBFS, BAB+ 
sғғs 

B s RBAB 
C P GA, PARA 

SFS, SBS, GSF3(#), GSBS(#): (Generalized) sequential forward (back
ward) serach method . SFS selects the best significant feature and then the best 
pair including the first one, and so on. SBS is the backward version. These algo
rithms are generalized to GSFS(#) and GSBS(g) in such a way that the best (/-feature 
subsets is chosen for addition or deletion in the algorithms. 

PTA(/ ,r ) , GPTA(/ ,r): (Generalized) Plus-/ take-away-r algorithm. Go / 
stages forward (by adding / features) by SFS and go r stages backward (by deleting r 
features by SBS) and repeat this process. In the generalized algorithm (GPTA(/, r)), 
GSFS(/) and GSBS(r) are used instead of SFS and SBS. 

SFFS, SBFS: The floating version of PTA(/, r ) . Unlike PTA(/, r), SFFS can 
backtrack unlimitedly as long as the backtrack finds a better feature subset than the 
feature subset obtained so far at the same size [5]. 

B A B + : The improved branch and bound method [9], This method gives 
the optimal solution when the criterion function J is monotonic. 

RBAB: The relaxed branch and bound method [2]. RBAB aims to find the 
smallest subset for which the criterion value is not under a given threshold 9 and 
the search is carried out for a larger set of subsets for which the criterion values are 
over 9 — 6(6 > 0), where 6 is called a margin. 
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GA: The genetic algorithm [6, 8]. In GA, a feature subset is represented by a 
binary string with length n, called a chromosome, with a zero or one in position i 
denoting the absence or presence of feature i. Each chromosome is evaluated in its 
fitness through an optimization function in order to survive to the next generation. A 
population of chromosomes is maintained and evolved by two operators of crossover 
and mutation. We use the following two optimization function for GA in accord 
with Type-A and B algorithms, 

0A(X) = 

and 

J(X)-e\X\ (\X\<m) 

Jmin-e\X\ (\X\>m) 

, „ , . (J (X ) - Jm .n)/(Imax - Imin + €) (J{X) > 9) 

°B(X) = { . {J{X) _ Jm.n)/(Jmax _ Jm.n + e) {J{X) < 0) 
í -\x\ + 

where e is an arbitrary small positive constant and Jmax and Jmin are upper and 
lower bounds of J which are estimated in a preliminary feature selection described 
later. In addition, we use one more criterion Oc as Oc(X) = J(X). 

GA has arbitrariness in the population size N, the maximum number of genera
tions T, the probability of crossover pc, and the probability of mutation pm. In this 
study, N = 2n and T = 50. We use mainly two pairs of (0.8,0.1) and (0.6,0.4) for 
(PcPm)- We use the following two types of initial populations of chromosomes: (PI) 
2n extreme feature subsets consisting of n distinct 1-feature subsets and n distinct 
(n — l)-feature subsets and (P2) 2n random feature subsets in which the number of 
features is in [m — 2, m + 2] and all features appear as evenly as possible. 

PARA: A parallel algorithm devised to compare with GA. This algorithm 
maintains a population of IV feature subsets as the same as GA has but it updates the 
population only by local hill-climbing, that is, the population of the next generation 
is made from IV best feature subsets from all unvisited supersets and subsets of the 
present IV features subsets. In PARA, IV = 2n and T = 50. 

3. METHODOLOGY OF COMPARISON 

Once an algorithm is carried out over the entire range of the number of features, 
we can get a curve, called a criterion curve, of the algorithm. This is possible only 
when the algorithms are sequential (Type-A algorithms). Many previous studies 
compared algorithms in criterion curves. However, our main concern is in only a 
range of the number of features in which the criterion value does not decrease so 
much. To cope with this difficulty, we take the following approach. First, to capture 
the problem, we have one or two criterion curves using algorithms with a lower time 
complexity (in this paper, SFS and SBS). This approach is inspired by Siedlecki and 
Sklansky [7]. Then, based on this criterion curve(s), we classify the problem into one 
of three cases: (1) monotonic case (m.), (2) approximate monotonic case (a.m.) and 
(3) non-monotonic case (n.m.). Second, we choose either of two different settings 
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according to these cases (Figure 1). When the problem is monotonicor approximate 
monotonic, we determine a parameter a(= 1%, 5%) and find the point that is 
degraded with a as compared to the maximum criterion value J m a x. From this 
a-degradation point, we determine a criterion value Ja as a threshold 0 and the 
corresponding number of features ma. 

Criterion curve by preliminary 
feature selection 

Criterion curve by preliminary 
feature selection 

"a 
Monotonie Approximate Monotonic 

Fig. 1. Categories of problems. 
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Fig. 2. Result graphs for mammogram (large) data, (a) m vs. J(X). (b) the number of 
evaluation vs. J(X)/(11 - 10) - |X|/(65 - 1). 

Then, ma is passed to Type-A algorithms and Ja to Type-B algorithms. For 
Type-C algorithms, both values are used in their optimization functions OA and 
OB* In addition, an upper bound J m a x and a lower bound J m i n in J are read from 
the criterion curve and used in OA and O^. If the problem is non-monotonic, we 
use Type-A and Type-C algorithms only. A Type-A algorithm is carried out so as 
to get the maximum point of the criterion curve (Figure 1). For Type-C algorithms, 
we use Oc as the optimization function, that is, J itself. 
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4. EXPERIMENTS 

Used datasets are summarized in Table 2 with problem type. As an artificial data, 
we used a well-known Kittler's data [3, 5, 10] . The mammogram data are gathered 
from University of California, San Francisco (UCSF), the Mammographic Image 
Analysis Society (MIAS), and the University of California, Los Angels (UCLA). 
Other data are taken from UCI Repository of machine learning databases [4]. Some 
data are used again after some features are pre-selected. The results are shown in 
Table 3. The results of mammogram (large) data are shown in Figure 2. In two large 
problems, the results show that SFFS, SBFS and GA succeeded to find near-optimal 
solutions in the criterion function. In evaluation number, GA is superior to others. 

Table 2. Experimental data (n: # of features, M: # of classes, K: # of training 

samples per class). 

Database n M K Criterion J Type 
Vehicle [4] 18 4 199-218 (9-CV) linear classifier a. m. 

Mammogram (small) 19 2 57 and 29 (L) weighted 5-NN a. m. 
Kittler's data 20 2 1000 each Mahalanobis m. 
Sonar (small) 20 2 111 and 97 (L) 1-NN a. m. 
Sonar (large) 60 2 111 and 97 (L) 1-NN n.m. 

Mammogram (large) 65 2 57 and 29 (L) weighted 5-NN n.m. 

Table 3. Summary of results. 

Database n Top three algorithms in J Best 
(m if tie) algorithms in 

J and Time 
Vehicle 18 GA,SBS,BAB+ SBS, BAB+ 

Mammogram (small) 19 SBS,SBFS,PTA(1,2) sвs, sвғs 
Kittler's data 20 BAB+,SBS,SBFS BAB+, SBS 
Sonar (small) 20 PARA,GA,GPTA(1,2) GSBS(2) 
Sonar (large) 60 GA,SFFS,SBFS GA, PARA 

Mammogram (large) 65 GA,SBFS,GPTA(1,2) GA 

5. CONCLUDING REMARKS 

Through many experiments, we obtained some conclusions as follows: 

1. Preliminary feature selection using algorithms with a low time complexity is 
effective to capture the problem and to determine some parameters needed for 
algorithms in the further fine feature selection. 

2. Among sequential search algorithms, the floating search algorithms (SFFS and 
SBFS) are effective in small and medium problems, but are time-consuming 
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in large problems. We recommend to use both forward and backward search 
algorithms together because of their dependance on problems. 

3. GA is suitable for finding optimal solutions and is efficient in large problems. 
A repetition of a few runs with different sets of parameters are recommended. 
GA is also effective for finding the smallest feature subset with sufficient dis
criminatory information in approximate monotonic problems. 

4. BAB+ can be very efficient in monotonic problems and RBAB has a high 
possibility to find the best solution in approximate monotonic problems. 

(Received December 18, 1997.) 
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