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SECOND ORDER LINEAR DIFFERENCE EQUATIONS 
OVER DISCRETE HARDY FIELDS 

A. RAMAYYAN AND E . THANDAPANI 

We shall investigate the properties of solutions of second order linear difference equations 
defined over a discrete Hardy field via canonical valuations. 

1. INTRODUCTION 

Recently Boshernitzan [3] introduced the notion of discrete hardy field and studied 
the properties of the sequences satisfying some difference equations. In this paper we 
shall study the properties of solutions of the second order linear difference equations 
over a perfect discrete Hardy field via canonical valuations. For related results see 
[2,5,7,8] and the references contained therein. 

The results obtained in this paper have applications in the fields of discrete time 
systems, numerical analysis, biology, population dynamics, economics, control theo
ry, computer science e tc , see [1,4]. The motivation of the present work stems from 
[6,8]. 

2. DEFINITIONS AND NOTATIONS 

Denote BSJ the class of real valued sequences {an} where an is defined for large values 
of n. The set Bs is a ring with respect to pointwise addition and multiplication and 
is partially ordered by the relation "*>>" defined by {an} >• {bn} if and only if 
an > bn for large n. Two sequences {an} and {bn} are said to be comparable if 
either {an} > {bn} or {an} = {bn} or \an} < {bn}. 

The subrings (subfields) of the ring Bs will be called 5.,-rings (5,-fields). A Bs-
ring (Bs-field) is said to be ordered if every sequence in it is ultimately of definite 
sign. An ordered 5,,-field which is closed under translation is called an ordered 
A B5-field or discrete Hardy field and it is denoted by K. A sequence {an} is said to 
be A consistent with a discrete Hardy field K if there exists a discrete Hardy field 
K1 containing both K and {an}. The intersection of all minimal discrete Hardy 
fields is denoted by Es and it is equal to the set of sequences {an} £ Bs which are 
A consistent with every discrete Hardy field [3]. The rational constants belong to 
Es. It should be noted that every ordered Bs-field contains rational constants and 



182 A. RAMAYYAN AND E. THANDAPANI 

so any sequence {rn} in it being comparable with a rational constant must have a 
limit finite or infinite. 

The perfect closure of a discrete Hardy field K is denoted by ES(K) and is defined 
as the intersection of all maximal discrete Hardy fields containing K. A discrete 
Hardy field K is said to be perfect if ES(K) = K. The field Es of sequences is the 
minimal discrete Hardy field. For further details one can refer to [3]. 

3. THE CANONICAL VALUATIONS OF A DISCRETE HARDY FIELD 

Throughout we assume that the discrete Hardy field K is perfect. We now discuss 
the valuation that is naturally associated with any discrete Hardy field K. We begin 
with the following theorem which is a discrete analogue of Theorem 4 of [6]. 

Theorem 1. Let K be a perfect discrete Hardy field. Then there exists a ho-
momorphism v from the set K* of nonzero elements of K onto an ordered abelian 
group T such that 

(i) if an, 6n G K*} then v(abn) = v(an) + v(bn)\ 
(ii) if an G K* then v(an) > 0 if and only if limn_oo an € R where R denotes the 

field of real numbers; 
(iii) writing symbolically i/(0) = co, if an, 6nG K then l/(an-f6n)>min{i/(an), v(bn)} 

with equality if v(an) ^ v(bn)\ 

(iv) if an, 6n G K* and v(an)) v(bn) ^ 0 then v(Aan) > v(Abn) if and only if 

v(an) > v(bn)\ 

(v) if an G K* and v(an) > v(bn) ^ 0 then v(Aan) > v(Abn). 

P r o o f . Let an, 6n G K*. Define the relation « by an « 6n if limn_f0o f*- is a finite 
nonzero number. Then clearly this relation on K* is an equivalence relation. Hence 
the equivalence relation decomposes K* into union of mutually disjoint equivalent 
classes. Let v(an) denote the equivalence class of an G K*. Denote by T, the set 
of equivalence classes on K*. Thus T = {v(an) : an G K*}. If an , 6n, en , dn G A'* 
and an w 6n and en « dn then an en « 6n dn so that multiplication on K* induces 
a composition of elements of T. Thus T becomes an abelian group with identity 
element v(l) and the map v : K* —> T is a homomorphism. This group T is called 
the value group of K. 

Now we follow the convention of writing the composition law of T additively as it 
is done in the continuous case [7]. If an, 6n G K*, then define v(an) > v(bn) (v(an) < 
v(bn)) if limn—oo 5^ = 0. This definition depends only on the equivalence class v(an) 
and v(bn) of an and 6n respectively. Further it includes a total ordering on the set 
T. By the above definition if an G K* then v(an) > 0 (= v(l)). This means simply 
that limn_>oo a>n = 0. If an bn G K* and if v(an) > v(bn) > 0 then linv^oo an = 0 
and limn_».oo 6n = 0 and so v(an) + v(bn) (v(an,bn)) > 0. Thus T is an order abelian 
group with identity element v(l). Also if an, 6n G K* then v(an) > v(bn) means 
limn_oo §* is finite. Thus if an G K* then v(an) > 0 if and only if limn_>oo ^n G R 
where R is the set of all real numbers. 
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Hence we have associated with the discrete Hardy field K an ordered abelian 
group T and an onto map v : K* —• T such that (i) if an , bn G K* then v(an, bn) = 
v(an)+v(bn)i (ii) if an , bn G K* and an ^ - 6 n then v(an+bn) > min{i/(an), v(bn)}. 
This map v is called the canonical valuation of K with value group T. 

Thus we have established the existence of a surjective map v from the nonzero 
elements A"* of K onto an ordered abelian group T satisfying conditions (i), (ii) and 
(iii). The order conditions (iv) and (v) can be easily proved by applying discrete 
L'Hospital rule [2]. This completes the proof of the theorem. • 

Remark. The kernel of this homomorphism v consists of all fn G K* such that 
limn—oo fn is finite and nonzero, while v(an) > 0 if and only if limn_>oo fn = 0 and 
v(fn) < 0 if and only if l im^oo fn = ±oo. 

If an, bn G K* then v(an) > v(bn) if limn_,oo f*- = 0 and v(an) > v(bn) if and 
only if limn_+oo §*• is finite. 

4. APPLICATION TO SECOND ORDER LINEAR DIFFERENCE 
EQUATIONS 

Consider the second order difference equations of the form 

A 2 2 / n - p n t / n + i = 0, (Ei) 

over a perfect discrete Hardy field K. In the following we establish conditions for 
the solutions of (Ei) to lie in a perfect Hardy field K and study their properties 
using the canonical valuation v. A solution (Ei) means a nontrivial solution for 
large values of n. 

A sequence {an} G Bs is said to be nonoscillatory if an an+i > 0 for all n sufficient
ly large; otherwise it is called oscillatory. Thus a solution of (Ei) is nonoscillatory if 
it is eventually positive or eventually negative. Moreover, if all solutions of (Ei) are 
nonoscillatory then (Ei) is called nonoscillatory otherwise (Ei) is called oscillatory. 

Theorem 2. Let K be any discrete Hardy field and Bs denote the 5,-field of 
real sequences. Assume that {yn} G Bs satisfies the difference equation (Ei) with 
pn G K a rational sequence. If equation (Ei) is nonoscillatory, then {yn} G ES[K]. 

P r o o f . Let {yn} G Bs be nonoscillatory solution of (Ei). Define Zn = ^ ^ then 
Zn G Bs is positive and satisfies the Riccati difference equation 

Zn+i = p(Zn,kn) 

where p(Zn) kn) = —1/Zn + pn + 2. It is easy to see that p(Zn, kn) satisfies all the 
conditions of Theorem 5.1 [5] and so Zn G ES[K]. But yn+i = yn Zn and so 

Vn = ZuZ2,...,Zn-lUl€E.[K]. D 
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Remark 2. Theorem 2 shows that any nonoscillatory sequence satisfying (Ei) 
belongs to ES[K]. This is a partial discrete analogue of Theorem 16.7 of [3] because 
here the pn G K is a rational sequence where as <f> G K in Theorem 16.7 of [3] need 
not be so. 

Example 1. Consider the difference equation 

A 2 y n - 4 y n + i = 0 (1) 

over a minimal perfect discrete Hardy field Es. From Proposition 1 [9] equation (1) 
is nonoscillatory and hence every solution of (1) belongs to Es. In fact {(3 + 2\/2)n } 
and {(3 — 2>/2)n} are nonoscillatory solutions of (1) that belong to Es. 

Theorem 3. Let K be any discrete Hardy field and the difference equation (Ei) 
be nonoscillatory. If Qn G K, then the solutions of the non-homogeneous equation 

A 2y n -Pnyn+i =Qn (E2) 

belongs to ES[K]. 

P r o o f . Let {yn} and {yn} be two linearly independent solutions of equation 
(Ei). By Theorem 2, they belong to ES[K]. The general solution of (E2) is of the 
form 

yn =c1y
l
n + c2yn + yn 

where c\ and c2 are arbitrary constants and yv
n is the particular integral. To prove 

the theorem is is enough to show that yn G ES[K]. From variation of constants 
method we have 

n - l n - 1 

yn = ylY^Qjyhi-ynJ2Qjyhi 
i = i i= i 

where we choose the Casoration (the discrete analog of Wronskian) [4, p. 93] is unity. 
Clearly y£ G ES[K]. This completes the proof of the theorem. • 

Example 2. Consider the difference equation 

A 2 y n - i y n + i = 4 n + 3n (2) 

over a discrete hardy field Es. The homogeneous part of nonoscillatory with solution 
basis {2n, l /2 n } G Es. Thus all conditions of Theorem 3 are satisfied and so the 
solution of (3) belongs to Es. 

Theorem 4. Suppose the equation (Ei) has two linearly independent solutions in 
K. Then there are linearly independent solutions {yn} and {y2} such that v(yn) > 
v(yn). If {yn} and {yn} are chosen positive their Casoration C[yn, yn] is a positive 

constant d, A ( £ ) = - ^ - and A ( g ) = ^ . If further ,,• = *$, (i = 

1, 2) then t>2 - t/i = -j-^r > 0. 
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Proof . Since any two linearly independent solutions of the difference equation 
(Ei) with the same i/-value have a quotient that approaches a nonzero real limit 
as n —• oo, they have a nonzero real linear combination with higher v-value. This 
shows the existence of {y n } and {y 2 } as desired. Since 

C[y n,y 2] = y n A y 2 - y 2 A y n 

we have 
A (C[yl

n, yn)) = y n + 1 A2 y n - y n + 1 A 2 yn = 0 

and hence C[yn}y
2] is a constant d G -ft. This d zfi 0, for otherwise fa would be 

a constant. Since yn, y2 > 0 and v(yn) > v(yn) we have fa —• 0 as n -+ oo, 

hence decreasing, so A f^f-) = — -y-4— < 0. Since {y 2 } is nonoscillatory, we have 

y2 y 2

+ 1 > 0 and therefore d > 0. Further 

lyjЛ = G[У„,У„] = _ _ £ _ 
\ У „ / УnУn+i УkУnA »+l J/n J/n+1 

and 
_ A y 2 A y n _ _ C [ y n , y 2 ] _ d 

t;2 - V2 = — J j — = , 2 = - 7 — 7 > 0. 1-1 

ys y\ ykyl ynyl 

Theorem 5. Let {pn} and {qn} be elements of a discrete Hardy field K in which 
each of the difference equations (Ei) and A 2 zn — qn zn+\ = 0 has two linearly inde
pendent solutions. Let {y n }, {y 2 } and { z n } , {z 2 } respectively, be linearly indepen
dent solutions of the given difference equations with v(yn) > v(yn) and v(zn) > v(zn) 
and suppose that v(yn) > v(zn). Then 

(i) v(yl) < v(zn), 
At/1 A zl 

(ii) fi|» < fifa 
y„ *„ 

(iii) A # < A # , and 
y„ -•„ 

(iv) p„ > g„. 

Proof . Since i/(yn) > v(zn) and i/(zn) > v(z%) we have ""flff) > 0 > v (j*t)-

It follows from Theorem 1, 

-K$))>'Kf)) 
or 

v(znAyn-ynAz\) ^ v (zn A zn - zn A zn) 

*n z n + l 
Лrl'.\ ^ r l r l 
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or 
v(znAyn-ynAzn)>i,(znAz2

n-znAz1
n) = 0. 

Assuming, as we may that yn) zn > 0, we have yn/zn is positive and approaching 
zero as n —• oo, hence A(yn/zn) < 0. Thus we have v (zn Ayn—ynAzn)>Q and 
* n A < / n - t / n A z n < 0 o r 

A2/n ^Azn 

Vn Zn 

Since zn A yn—yn A zn < 0 and approaches zero as n —> oo it follows that A(zn A t/n — 
yn A zn) > 0. An easy approximation shows that (pn — qn) z n + 1 yn+i > 0 which im
plies that pn > qn. To prove (i) it suffices to prove that 

and therefore 

which implies that 

-HIÚM*®) 

- <>($))<«$)) - -{ikh'ted 
or v(yn) > v(zn)} which was assumed. Finally, since v(yn) < v(zn), we have 
v \v^) ^ "̂ taking zn> 2/n positive, as we may, the positive function (jf-H ~* 0 

as n -* oo, hence A (4-) < 0. Then yn A ^ - z* A ^ < 0 or ~4^ < ~ T ^ , which 

proves (iv). The proof of the theorem is complete. ---

Theorem 6. Let (Ei) be nonoscillatory with solution basic {yni yn} (yn > 0, i = 
1, 2). If v(yn) > 0 or v(y2

n) > 0 then pn > 0. 

P r o o f . Assume v(yn) .» 0 > J'(n). By Theorem 1, it follows that 

v(Ayn)>v(An) = 0. (3) 

Also from v(yn) > 0 we have 

Ayi<0. (4) 
From (4) and (5) we obtain A(A yn) > 0, which gives pn j / n + 1 > 0 and so pn > 0. 
Similarly we can prove that pn > 0 if v(yn) > 0. D 

(Received April 16, 1996.) 
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