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MODIFIED QUASILINEAR FILTERING M E T H O D FOR 
ESTIMATION OF PROCESSES IN MULTIDIMENSIONAL 
NONLINEAR STOCHASTIC SYSTEMS 

M Y O U N G H O O H AND V L A D I M I R IGNATEVICH SHIN 

The modified quasilinear filtering method has been proposed. This method produces 
more accurate filter coefficients than the standard quasilinear filtering method. To compute 
these coefficients, it suffices to know the distribution of the state vector of a stochastic sys
tem. It can be determined by using the software for statistical analysis of multidimensional 
nonlinear stochastic systems. All computations connected with the determination of coef
ficients of the modified quasilinear filters do not use the results of observations. Therefore 
they can be computed before the filter design. An example is also presented. 

1. INTRODUCTION 

The methods of optimal filtering of processes determined by nonlinear stochastic 
differential equations usually yield complicated solutions that are difficult to realize. 
In practical problems, it is common to use suboptimal filtering methods for estima
tion of state vari ,bles and unknown parameters in stochastic systems. In the case of 
multidimensional nonlinear systems the practical realization of the extended Kalman 
filter, as well as similar filters [5], involves considerable computational difficulties. 
The use of a continuous extended Kalman filter is based on solving n{n -f 3 ) /2 , n 
being the dimension of state vector, differential equations for estimation of the state 
vector directly during the process of observation results. The quasilinear filtering 
method is therefore used in the case of multidimensional systems. 

This method is based on statistical linearization of nonlinear functions of the 
original system, followed by Kalman filtering of the thus-obtained linearized sys
tem. The statistical linearization coefficients are computed under the assumption of 
normality of the distribution of the state vector. The practical merit of quasilinear 
filters is the simple realization of these filters in real time, especially in the case of 
dynamic systems of large dimensions. 

The aim of this paper is to develop alternative methods for more accurate com
putation of the statistical linearization and quasilinear filter coefficients. These 
methods can improve the accuracy of quasilinear filters. 
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2. STATEMENT OF THE PROBLEM 

Let us consider a continuous dynamic system determined by a stochastic differential 
equation 

x = f(x,t) + G(t)w(t), t>t0. (I) 

The observed process y = y(t) is determined by 

y=h(x,t) + v(t). (2) 

In equations (1) and (2), x £ R* is the state vector of the system, y £ Wd is the 
vector of observations, f(x,t) and h(x,t) are given functions mapping l " x l into 
W1 and M.d respectively, G(t) is (n x r) matrix, M" is an n-dimensional Euclidean 
space, w £ E r and v £ Ed are independent normal white noises, E[w(t)] = E[v(t)] = 
0, E[w(t) W(T)T] = Q(t)6(t - T) and E[v(t)v(T)T] = R(t) 6(t - r ) . Initial value 
x0 = x(t0) is independent of v(t) and w(t), t > t0. The matrix R(t) is uniformly 
nonsingular in t. 

On the basis of observations y\o = {y(T), t0 < r < t} it is required to estimate the 
state vector x(t) by the minimum mean square error criterion. For approximately 
solving this nonlinear filtering problem, we shall use statistical linearization method. 

3. THE MODIFIED QUASILINEAR FILTERING METHOD 

Let us approximate the nonlinear functions f(x,t) and h(x,t) in the equations (1) 
and (2) by using statistical linearization method [3, 10]. Then we obtain 

f(x,t) = a0 + a\(x — m), h(x,t) = b0 + b±(x — m), m = E[x] . (3) 

The statistical linearization coefficients ao,ai,&o and 6i are determined by minimiz
ing the mean square error. The formulae for these coefficients take the form 

a0 = E[f(x,t)], a1 = E[f(x,t)(x-m)]K-\ (4) 
60 = E[h(x,t)], 6i = E[h(x,t)(x-m)]K~1 . (5) 

Here m = E[x] and A' = E[(x — m)(x — m)T] are expectation and covariance matrix 
of the state vector x = x(t), respectively. Substituting the expressions (3) into (1) 
and (2), we have 

x = a\x + a0 — a\m +Gw, y = b\x + b0 — b\m +v . (6) 

The system (5) is a model of system (1) and (2). To this model the Kalman filter 
equations take the form 

x = a\x + a0 — a\m +PblR~1(y — b\x — b0 + b\m) , (7) 

P = aiP + PaT - PbTR-lbiP + GQGT , (8) 

where x = x(t) is the estimate of the state vector x = x(t) and P = P(t) is 
the auxiliary n x n symmetric matrix. The initial conditions for (6) and (7) are 
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XQ — E[XQ] and po = E[(XQ — XQ) (XQ — XQ)T), respectively. We notice that as different 
from optimal linear Kalman filter the matrix P is not the conditional covariance 
matrix of the filtering error. It is assumed that observability conditions for the 
nonlinear system (1), (2) and the linearized system (5) are fulfilled [4, 6]. 

In the standard case the statistical linearization coefficients ao, cti, feo and b\ in (4) 
are determined approximately under the assumption of normality of the distribution 
of the state vector x(t). In this case the filter (6) and (7) is called the quasilinear 
filter (QLF) [2,3, 10]. 

To increase the accuracy of computation of the coefficients ao, Oi, 60 and 61 of the 
QLF (6) and (7), the various approximate methods based on the parametrization of 
distributions of the state vector are proposed. Approximating the unknown density 
p(x;t) or characteristic function g(X;t) of the state vector x(t) by some known func
tions p*(x; 6) and g* (A; 6) depending on a finite-dimensional vector parameter 6, we 
reduce the problem of approximate determination of the distribution to the problem 
of determination of the vector parameter 8 = 0(t) as function of time t. The vector 
parameter 9 may be represented by the set of moments, semi-invariants(cumulants) 
and quasi- moments [7]. This vector 6 is defined by ordinary differential equations. 
The filter (6) and (7) with coefficients ao, a\, 60 and b\ determined by using the 
various methods based on parametrization of distributions such as the method of 
moments, the method of semi-invariants, the method of quasi-moments and others, 
we shall call the modified quasilinear filter (MQLF). 

Now we pay attention to two circumstances. First, equations determining the sta
tistical linearization coefficients ao, a\, &o, &i and the auxiliary matrix P in (6) and 
(7) do not contain the results of observations y(t) and consequently, may be deter
mined separately (beforehand when the observations are not yet performed). Then 
the estimate x will be determined by the integration of equation of the MQLF(6) 
with only the current results of the observations. The equation (6) is sufficient
ly simple and rray be integrated in real time basis during the observation of the 
studied dynamic system behavior. Secondly, the methods based on parametriza
tion of distributions enable us to determine the true mean square filtering error 
E [(x — x)T(x — x)] with any degree of accuracy. The calculations of the accuracy 
of MQLF do not use the results of observations and prior data are only necessary to 
fulfill them. 

4. PARAMETRIZATION OF DISTRIBUTIONS. METHOD OF MOMENTS 
FOR CALCULATING THE COEFFICIENTS OF THE MQLF 

The coefficients a, and 6,- of the MQLF (6) and (7) depend on the expectations in 
(4). To calculate these expectations it is sufficient to know the one-dimensional dis
tribution (density or characteristic function) of the state vector x determined by (1). 
In the general case the density of vector x is determined by the multi-dimensional 
Fokker-Planck-Kolmogorov (FPK) equation. The most general methods to find 
an approximate solution of FPK equation are based on parametrization of distri
butions, i.e., representation of unknown density in the form of various truncated 
series (in particular, the Edgeworth series). Among these are the moments method, 
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the semi-invariants method and the quasi-moments method [7]. These methods allow 
a practical solution with any degree of accuracy. 

To be specific, let us consider the method of moments for calculating the coeffi
cients of the MQLF. In this method the vector parameter 9 on which depends the 
function p*(x; 9) approximating the unknown density represent? the set of initial or 
central moments of the state vector x _ Mn up to a given order N : 

all...ln(t) = E[x1(ty
i---xn(ty

n], (9) 

/-7i-7»(*) = £ [ ( x l ( 0 - m l ) 7 1 • • '(*n(t) - mn)7n], 

m. = E[xi(t)}, i = 1 , . . . , n, ji-\ \- j n = 1, .. ., N, 

where X\,... ,Xn and mi, . . ., mn are the components of the state vector x and its 
expectation m = E[x], respectively. 

We obtain from (1) the exact ordinary differential equations for the initial mo
ments a7l...7n [7] 

n 

a 7 i - - 7 n — ___-^s ^J[js(X't)xi •••XS_1XS
S X$ + 1 •••Xn

n] 

s — i 

+ \ _t 7.(7. - i)*..-Ei*? • -*:i-i*r'2*T+\1 • -*w 
Z 5 = 1 

+ E E ^ T ^ . ^ K 1 -»::-ii»j--i*:ai •••*iiv«jfc"l«?+
+t •••*w, 

h-2 5 = 1 
71 + . . . + 7n = l , . . . )N ) (11) 

where 

f(x,t) = [h(x,t) • • -fn(x,t)]T , a(t) = G(t)Q(t)G(t)T, a = [ash] (s, h = 1 , . . . , n). 

The method of moments computes the expectations in (10) by replacing the true 
unknown density p(x;t) of the state vector x(t) with some approximate function 
p*(x;9), which is entirely determined by the moments up to the Nth order (Edge-
worth series). We have 

p(x;t) ^p*(x; ) = N(m,K 
l o i i 1 ^ 1 " "П• 

kzzЗ ui-\ \-ľn=k 
(12) 

where 9 is the vector parameter consisting of the moments up to the Nth order, 
N(m, K) is normal density with the expectation m and the covariance matrix K and 
{Hv(x)} is the sequence of Hermite polynomials which satisfy the biorthogonality 
condition 

w(x) Hv(x)G^(x)dx = z/i! • • -vn\bvp. 
JЋ< 

with another sequence of polynomials {Gv(x)}. Here w(x) = N(0,K) is the weight 
function, v = [<vi...<vn] and /i = [/ii.../in] are multi-indexes, 8VI_ is the Kronecker 
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symbol, 6VV = 1 and 6Vfi = 0 (v -^ fi). Let w(x) be some density in the n-dimensional 
space E n . A system of pairs of polynomials pt(x) and qt(x) (i = 0 , 1 , 2 , . . . ) is called 
a biorthogonal system with the weight w(x) if 

Jw 

_ _ _ •! 9- j 
w(x)pi(x)qj(x)dx= <j (13) 

In special case where Pi(x) = <L(z) (i = 0 , 1 , 2 , . . . ) the condition (12) takes the form 

f 0 , i -4 j 
w(x)Pl(x)Pj(x)dx= t (14) 

In this case the system of polynomials {Pi(x)} is orthogonal if it satisfies the condition 
(13). The sequences of Hermite polynomials {pz(x), q~i(x)} = {H{(x), Gi(x)} may 
serve as examples of biorthogonal systems [7]. Hermite polynomials are often used 
for an approximate representation of densities. 

The coefficients cv(t) = cVl...Vn(t) in (11) are given by 

cv ~ I p(x;t)Gv(x - m)dx = E[Gv(x-m)} = Gv(fi), (15) 

where Gv(fi) is a linear combination of central moments of the state vector x = x(t) 
obtained as a result of replacement in Gv(x — m) of every monomials 

( r c i - m ! ) 7 1 1 • • • ( ! „ -mn)
hn 

by the corresponding central moment fAhi—hn (9). 
Substituting approximate density p*(x;0) into the expectations in (10) and eval

uating that for the coefficients cv (14) expressed in terms of initial moments, we 
obtain the differential equations for all initial moments up to the Nth order. These 
equations are numerically integrated with the initial conditions 

a 7i-7»(*o) = £[zi (*o) 7 1 • • •xn(t0)"
rn] , 71 H hTn = ' 1 , . . . , - V . 

In particular case of N = 2 and normal density p*(x;9) = N(m,K), (10) repre
sents the equations for the first- and second-order moments m and K of the state 
vector x. And in this case the equations of the MQLF coincide with those of the 
QLF. Thus the coefficients of the MQLF (6) and (7) may be determined by the 
method of moments. Software for determining the distributions of the state vector 
x of the continuous and discrete stochastic systems has been developed for various 
classes of computers. It contains various methods of statistical analysis of the dy
namic systems based on parametrization of distributions [1, 8, 9]. This computer 
software include s tandard programs for automatic derivation and solution of the 
differential and difference equations for the distribution parameters (such as mo
ments, semi-invariants and quasi-moments) of the state vector of stochastic systems 
of arbitrary dimensions with polynomial and some nonpolynomial nonlinearities. 

Note that while using a truncated orthogonal expansion small negative values of 
the density are sometimes obtained. It is natural tha t any truncated series gives 
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only an approximate value of the function. In using the approximate methods in 
the form of various truncated series, it is recommended to vary both the number of 
terms of the series and the form of series. For this purpose the special software is 
used [1, 8, 9]. 

We summarize these results in the following theorem. 

Theorem 4 .1 . (Modified Quasilinear Filter) Given x and P, the modified quasi-
linear filter for the model (1) and (2) is obtained by the following relations: 

x = ai.r + ao — aim + Pbx R~l(y — b1x — bo + b1m), (16) 

P = aiP + Pa\ - PbjR-HiP + GQGT , (17) 

where coefficients ao, a1} bo and 6i are determined by using the various methods 
based on parametrization of distributions. In the case of the method of moments, 
ao and ai are obtained by (10). 

5. EXAMPLE 

Let the dynamic system be described by scalar equation 

x = -x
3 + w, t>Q (18) 

and the observed process y(t) be determined by 

y = x + v . (19) 

Here w = w(t) and v = v(t) are independent normal white noises, E[w(t) W(T)] = 
Q6(t — r) and E[v(t) V(T)] = R6(t — T), where Q and R are known constants. Initial 
state XQ = x(0) is normal random variable with known expectation mo = E[XQ] 
and variance VQ = E[(XQ — mo)2]. The statistical linearization of the function 
f(x,t) = —x3 takes the form (3) 

- x 3 _ ao + a i ( x - m ) , m = m(t) = E[x(t)]. (20) 

The coefficients ao and ai are determined by the formulae (4) 

a0 = -E[x3], ai = -E[x3(x - m)]/V, V = V(t) = E[(x(t) - m(t))2]. (21) 

For finding the estimate of the state variable x, we shall apply the QLF and 
MQLF. The equations of the QLF take the form 

x = a1x + a~o — aim + P(y — x)/R , XQ = mo , 
_ _ 2 _ (22) 

P = 2a1P-P2/R+Q, PQ = VQ, 

where x = x(t) is the estimate of the state variable x = x(t) and the statistical lin
earization coefficients ao and ai are evaluated for normal density p*(x; 0) = N(m, V) 
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by using the recursive formula for high-order moments ajt = E[x ] of normal dis
tributed random variable, 

ajfc = aiajfc_i + („ - l)Da,t_2, a i = E[x], V = a2-al, fc = 3 .4, . . . . (23) 

We have 

a0 = a0 = — ( a i a 2 + 2Dai) = 2a^ — 3 a i a 2 , 

ai = ai = —3 (a 2 + D) = —3a2 . 

The differential equations for a i and a 2 take the form (10) 

di = - a 3 , a2 = - 2 a 4 + Q , (24) 

where the high-order moments a 3 and a 4 are evaluated for normal density by using 
the formula (22), i.e., 

a 3 = a i a 2 + 2Dai = 3 a i a 2 — 2a^, a 4 = a i a 3 + 3Da 2 = 3a 2 — 2a\ . 

The equations of the MQLF take the form 

x = aix + a 0 — aim + P(y — x)/R, XQ = ra0 , 

P = 2aiP-P2/R+Q, PQ = V0 

(25) 

where x = x(t) is the estimate of the state variable x = x(t) and the statistical 
linearization coefficients a0 and ai are determined by the formulae (4) 

ao = - a 3 , ai = ( - a 4 + a i a 3 ) / (a 2 - a\) (26) 

For determining the initial moments a^ = a ^ ) , k = 1, 2,3,4, we use the method 
of moments of the fourth order (N = 4). According to (10) the differential equations 
for ak take the form 

a i = —<*3j a 2 = - 2 a 4 + Q, d 3 = ~3a 5 + 3Qalt d 4 = - 4 a 6 + 6Qa 2 . (27) 

The approximation of the density p(x; t) of the state variable x take the form (11) 

(28) p(x;t) ^ p*(x; ) = N(m,V) 1 + Џн3(x - ra) + ^Hą(x - m) 

where Hermite polynomials Hv(x), Gv(x) and the coefficients c3 and c4 are deter
mined by the formulae 

„.(*) = ( - l Г e X p ^ j — 
i Л d̂  

exp (-. 

G„(x) W*{w){ìř[ 
áU 

V 2D 

e x p | — _ - J _ 
c3 = E [G3(x - m)} , C 4 = E [GA(x - ra)] 

y=x/V 
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These formulae give the following recursive expressions for Hermite polynomials 

Hv+1(x) = ^Hv(x) - ^Hu_x(x), Gv+i(x) = xGv(x) - vVGv-X(x). 

In this particular case, we have 

H0 = l , Hi = x/V, H2=(x2-V)/V2, 

H3 = (x3 - Wx)/V3, H4 = (x4 - 6Vx2 + 3 D 2 ) / D 4 , 

G 0 = l , Gi = x, G2 = x2-V, 

G3 = x3 - Wx, G4 = x4- 6Vx2 + 3D2 

(29) 

c3 = a3 — 3 a i a 2 + 2a x , c4 = a 4 — 4 a i a 3 + 1 2 a 2 a 2 — 3a 2 — Qa4 . (30) 

Thus the vector parameter 6 in (27) represents a 4-dimensional vector 

9= [ai a 2 a 3 a4] . 
To close the equations (26) it is necessary to represent the high-order moments 

a$ and a$ in terms of lower-order moments ak (k = 1,2,3,4). According to the 
method of moments and using the approximation of density p*(x;6) (27), (28) and 
(29), we obtain 

/

oo 

xkp*(x; 6) dx 
-oo 

/

oo />oo 

xkN(m,V)dx+-^ xkH3(x-m)N(m,V)dx (31) 
-oo ^ J — oo 

CA f°° 
+ 9A / xkHA(x-m)N(m,V)dx (atifc = 5 ,6 ) . 

"4 J-oo 
Denote by 

/

OO pOO 

xkN(m,V)dx, Jk,v= xkHv(x-m)N(m,V)dx. (32) 
-oo J — oo 

Then the integrals Ik and Jk,v are calculated by the recursive formulae 

Ik = mlk-i+(k-l)VIk-2, h=m = ai, I2 = V+m2 = a2, 

Jk,v+i = -ZZ (Jk+i,v — mJk,v — vJk,v-i), Jk,o = Ik, Jk,i = 7JZ (Jk+i — mlk) -(33) 

Thus the system of ordinary differential equations for initial moments ak (26) in 
which the high-order moments a*, and a$ are calculated by the formulae (30), (31) 
and (32) completely determine the method of moments of the fourth-order. 

All the differential equations for the moments (23) and (26) have been numerically 
integrated by the Euler and Adams-Moulton method, respectively, with a step At = 
0.01. Initial values are given by Q = 0.05, R = 0.05, m 0 = 4.0 and L>0 = 0.05. The 
results of Monte-Carlo simulation, performed with identical noise sequences for the 
QLF algorithm (21) and the MQLF algorithm (24), are compared in Figure 1. 
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Fig. 1. Performance of the QLF and MQLF. 

Figure 2 shows the true mean square filtering errors 

Pqlf = E(X - X)2 , Pmqlf = E(x - x)2 

for the QLF and MQLF, respectively. The mean square filtering errors Pq\j and 
Pmqlf have been calculated by solving the corresponding statistical analysis prob-

„ i T 
lems of the 2-dimensional random processes [x x] and [x x] determined by the 
stochastic differential equations (17), (18) and (21) and (17), (18) and (24), respec-
ti-ely. 

Fig . 2. Mean Square Filtering Errors. 

The joint density of x and x (x and x) have been calculated by using the method 
of moments of the fourth-order. The mean square errors Pq\f and Pmqif estimate 
the accuracy of filters. As illustrated in Figure 2 the MQLF is bet ter than the 
QLF. At t = 1.0 we have P m g , / ( L 0 ) = 0.015, Pg i /(1.0) = 0.0163 and relative error 
e = e(1.0) = \(Pmqif — Pqlf)/Pmqif \ x 100% = 8.6%. It is a good result especially 
for high-accuracy control system design (the oscillations of an aircraft in a tubulent 
air, the gyroscope drift and others). We note that the increasing of accuracy of the 
MQLF during the filtering is achieved without increasing complexity of computa
tions since the calculations of a,- and 6; of the MQLF (6) and (7) don' t depend on 



408 M. OH AND V. I. SHIN 

measurements and therefore they can be calculated before the filter design. Thus 
the results of a comparative analysis show that the MQLF are more accurate than 
the QLF. 

6. CONCLUSION 

The MQLF can be used for a wide range of control problems of large dimensional 
systems. As a linear Kalman filtering theory, all the computations connected with 
the determination of a filter gains (ao, a\ and P) are based on a priori da ta about 
the model (1) and (2) and do not use the results of observations. Therefore they 
can be carried out before the MQLF design. The determination of the estimate x(t) 
from the results of observations reduces to integration of the differential equation 
(6), which can be done in a real time. 

The MQLF also enable us to estimate the state of the system under conditions 
of uncertainty, when the functions / and h in (1) and (2) depend on unknown 
parameters. For this purpose it is necessary to extend the state vector x by including 
in it the unknown parameters as additional components. The MQLF can be used 
for the discrete and continuous-discrete filtering problems. 

(Received July 12, 1995.) 
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