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PARALLEL METHOD FOR INITIAL VALUE PROBLEMS 
FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS: 
SPEED UP ESTIMATION 

M I R O N PAVLUS AND I G O R P O D L U B N Y 

Speed up of a new parallel algorithm for solving initial value problems for linear ODEs 
on large parallel MIMD computers is determined. Arithmetical opreations are considered 
and a time for information interchange is neglected. The determined speed up is evaluated 
as a ratio between the number of arithmetical operations needed for serial algorithm and 
the number of arithmetical operations needed for parallel algorithm on large parallel MIMD 
computers. The used numerical method for solving initial value problems of linear ODEs 
is the Runge-Kutta method. An optimal number of subintervals (or processors) and an 
opti ia l number of equidistant points for one processor are determined if a total interval 
is subdivided into N equal parts. It is proved the speed up is proportional to N1'2. An 
elementary example, illustrating the idea of the speed up estimation, is given. 

1. INTRODUCTION 

This paper is a continuation of a research started by Podlubny [3]. In addition to 
the references mentioned there, we would like to give here a brief additional survey 
of related approaches, some of which are not widely known. 

In the past, several authors paid specific attention to the parallel solution of 
ordinary differential equations. In 1964, Nievergelt [2] suggested the so-called branch 
method. In 1967, Miranker and Liniger [1] developed a certain class of numerical 
integration formulas of linear multi-step type. In 1976, Worland [7] studied so-
called block implicit methods. All the mentioned methods are approximate methods 
and can be used on MIMD machines for the approximate solution of the problem 
y' = f(x,y), y(xo) -= yo to speed-up the process of computation. 

Recently Podlubny [3] suggested a parallel algorithm for solving linear ODE and 
their systems with non-constant coefficients; the method is based on the solutions 
of the so-called local problems. Among other methods, the Nievergelt's approach 
is the closest to Podlubny's method. The common feature is that in both methods 
the entire interval [a,b], in which we look for the solution of the global problem, is 
divided into subintervals, and certain auxiliary (local) problems must be solved in 
those subintervals. 
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Podlubny's approach even allows construction of an exact closed-form analyti
cal solution of the global problem, if one knows exact closed-form solutions of local 
problems. However, Nievergelt's approach allows only approximate numerical solu
tion of the global problem. The linearity of the problem allowed Podlubny to obtain 
analytical solution of a global problem as a linear combination of solutions of the 
local problems. On the other hand, it is always possible to use any known numerical 
method for the solution of the local problems. Two independent approaches devel
oped in [2] and [3] shows wide possibilities for the potential development of similar 
ideas in the future. A modification of Podlubny's method for linear systems of ODEs 
with constant coefficients was given by Torok [6]. 

One of the most important characteristics of each parallel algorithm — the speed 
up — was not investigated in the papers [3] and [6]. The first estimate for Podlubny's 
algorithm speed up for a particular case (a sample problem y' — y = x, y(~o) = yo) 
was given by Podlubny, Pavlus and Purcz [4] under the assumption that the Runge-
Kut ta method was used for the solution of local problems. The estimates of speed 
up of Podlubny's algorithm for other seven known numerical methods for the same 
sample problem were derived by Purcz [5]. 

This paper is devoted to the further study of the speed up of Podlubny's algorithm 
for solving an initial-value problem for a general linear ordinary differential equation 
of the mth order with non-constant coefficients and an arbitrary right-hand side. 

2. T H E STUDIED METHOD 

Let us briefly remind the parallel algorithm for solving Cauchy's problem for a non-
homogeneous linear ordinary differential equations (ODEs) which has been described 
in detail in [3]. 

Let us consider the following Cauchy problem: 

Lm[y] = f(x), xe[a,b) (1) 

yCf-D(a) = Vi- i , ( j = l , . . . , m ) (2) 

where Lm[y] = £JL 0__(*)lr**H- J) . Pk(x) (* — 0 , . . . , m ) and f(x) are continuous 
in the closed interval [a, b]. We look for the solution of the problem ( l ) - ( 2 ) in the 
interval [a,b]. 

Let us divide this interval in n subintervals: 

a = XQ < xi < x2 < ... < _ n _ i < xn = b 

and look for the solution of the problem ( l ) - ( 2 ) in the form: 

Z_fc=i aikUik(x) + Vi(x), x G I., 

(3) 
•-,«) 

The function Uik(x) is equal to 0 outside /.• and it is equal to the solution of the 
problem 
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{ Lm[uik] = o, x e Ii 

(• 1 ) ( 4 ) 

uil (xi-i) = -»i-i,fc-i. i = l | . . - i W » i ( « - _ l , . . . , m ) 
when x G I» ( fy.fc is Kronecker's delta). 

Similarly, v,(x) is equal to 0 outside I, and it is equal to the solution of the 
problem 

{ Lm[vi] = f(x), xeU 
(5) 

vY 1 )(x,_1) = 0, i = l , . . . , m , 
when x £ Ii. 

The constant a,-* must be determined by satisfying the initial conditions (2) and 
the condition of continuity of y( J - 1)(x), (j = 1,..., m) in [a, b]. The second condition 
leads to satisfying continuity of y^\x) at the points x = x,-, (i = 1 , . . . , n — 1). 

The above considerations along with the use of Picard's theorem lead to the 
following result: 

Theorem 1. If pu(x), (v = 0 , . . . , m) and f(x) are continuous in [a,b], then the 
solution of the Cauchy problem ( l ) - (2 ) for the interval [a, b] can be obtained in the 
form (3), where functions Uik(x) and v,(x) are defined above and the coefficients a,* 
are :iven by the recurrence relations: 

an = yk-i, 
m 

aik =y2ai-i, j ui-1j(xi -1) + W-i (*<-i). (•' = 2 , . . . , n; k=l,...,m) (6) 
j - l 

These are main results given in the article [3] regarding to the new parallel algo
rithm for initial value problems for linear ODEs on large parallel MIMD computers. 

In this paper we determine the speed up for the Cauchy problem ( l ) - (2 ) if 
the Runge-Kutta (RK) method is applied for the solution. We neglect time of 
information interchange between processors. The idea of the speed up estimation is 
illustrated by the following simple example. 

3. EXAMPLE 

Let us consider the problem 
f y'(x) + Po(x)y(x) = /(_•) ._. 
1 y(a) = Va K ' 

to find its numerical solution in the interval [a,b]. 
We divide the interval [a, b] into N = nq equal parts by equidistant points 

a = x0 < xi < . . . < xi.9 < . . . . < *2f < . . . < x n ,_ i < xnq = b 
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with the step h = (b — a)/(nq). We have m = 1 (the order of the equation) for the 
problem (7). 

According to (4), (5) we have two following problems 

u'a(x) + p0(x)uil(x) = 0 .g. 
_ i i ( - ( i - i ) , ) = - ^ 

*_(-)+P(_)t>i(_) = / ( - ) 
Vi (_(,-_!),) = 0 (9) 

for each interval U = [.C(i-i)?, - i ? ] , » = 1, • • •, n. Problems (8) and (9) can be solved 
numerically by the well-known RK method: 

Zj+1 = Zj + tr_.cn + 2 ( A f ) + Af)) + Km} 

where 
I<[j) = g(Xj,Zj) 

K2

Ш-^.+^i+^lOÌ) 

2' J + 2 Kз = -0-_ +õ»-_ + õA'2 

/vf} = flf (_ i + i , Zj + _.___.}) (t -l)q<j< iq-

For problem (8) we suppose g(x,z) = — po(x) z(x) and ~(i-i) f = 1- For problem 
(9) we put g(x, z) = f(x) — po(x) z(x) and _(j_i)g = 0. Let us suppose the constants 
4 , 4 in RK method have been computed and stored in advance. Let r0, rj are 
integer non-negative numbers of arithmetical operations needed for computation of 
some single values of functions po(x), f(x). Now it is easy to calculate the number 
of arithmetical operations for one RK step. Results are given in the following table 

problem (8) (9) 

total number of opeгations 4(r0 + 2) + 13 4(r0 + rj + 2) + 13 

For example, according to (8), for the Cauchy problem y'(x) — y(x) = _, y(a) = ya 

we have g(x, z) = —•(—-) and r 0 = 0 i.e. r 0 + 2 = 3. According to (9), for the same 
problem we have g(x, z) = —(—z) + x and r 0 = 1, rj = 0 i.e. r 0 + rj + 2 = 3. 
However, the same problem can be considered with g(x, z) = z or g(x, z) = z + x as 
it has been done in [4], where expressions r 0 + 2 and r 0 + rj + 2 took the values of 
0 and 1 respectively. 

According to the table, 2(4r0 + 2r/ + 21) q arithmetical operations are necessary 
for solving both (8) and (9) problems in the interval U = [-(i-i) ? ) ~i ?], i = 1,... ,n. 
If we suppose to use n processors for the simultaneous solution in n intervals L 
i = 1,.. ., n, then we have in total only 2(4r0 + 2r/ + 21) q arithmetical operations 
for problems (8) and (9). To form the solution of the problem (7) we have to 
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determine coefficients an- in expression (3), which are given by recurrence relations 
(6). In our particular example recurrence relations (6) take on the following form: 

a n = Va 

an = _i-i,i-i_i,i(~(i_i) f f) + Vi_i(x(,_i)ff) i = 2,...,n (10) 

where U i - i . i ^ i - i j f ) , fi-i(~(t-i) f f) must be replaced by the values of RK solutions 
of problems (8) and (9) in the interval L_i = [_(i_2)?iaj(i-l)f]- We need n — 1 
multiplications and n—1 additions for the computations using the recurrence relation 
(10). In our case solution (3) 

y(x) = a ti_,i(x) + Vi(x) x Eli =[«(*_i)f,-5iff]. i = l , . . . , n 

requires 2q arithmetical operations. 
Therefore, the problem (7) requires 2[2(2r0 + r/ + 11) q + n — 1] arithmetical 

operations if n processors are used for the simultaneous solution in n subintervals L 
i = 1 , . . . , n and RK method is applied on each subinterval. 

Naturally, the problem (7) can be solved on the entire interval [a, b] by the RK 
method using step h, g(x,z) = f(x) — po(x) z(x) and z0 = ya. The RK method is 
analogical to the problem (9) as to the one step of arithmetical operations and its 
characteristic numbers are given in the last column of the table above. Therefore, 
we can conclude that the total number of arithmetical operations for the problem 
(7) "Tith serial RK method in the interval [a, b] is 

[4(r0 + r/ + 2) + 13]r9 (11) 

Finally, the ratio of the number of operations (11) for the serial RK method in the 
entire interval [a, b] and the number of arithmetical operations 2[2(2r0 + r/ + 11) q + 
n — 1] for suggested parallel version of the RK method in n intervals L, i = 1 , . . . , n, 
gives the function 

F(n, q) = F(N, n) = \ [4(r0 + ry + 2) + 13] ng 
K iH} K ' ; 2 2(2r0 + r/ + l l ) ? + n - l v ' 

characterizing the method's speed-up for problem (7). Under the obvious constraint 
nq = N, the function (12) takes on its maximum value at the point 

(n*,q*) = ((NB)l/2,(N/B)1'2) 

where B = 2(r0 + r/ + 11). For large N the maximum value at this point is approx
imately equal 

p{n" ̂  K WynNl" <13> 
where A = [4(r0 + r/ + 2) + 13]/2. The proof of these statements is analogical to the 
proof of the Theorem 2 given below, and we omit the proof here. 

To make these estimates more clear, let us consider the case of r0 = r/ = 1, which 
means that only one arithmetical orepation is necessary for the computation of each 
function of po(x) and f(x). 
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The shape of the speed up function E(N, n) is shown in Figure 1, in which the 
"square-root law" dependence of the maximal speed up given by relationship (13) 
is also clearly observed. Another view on the speed up is presented in Figure 2, in 
which each particular plot corresponds to a certain value of N. 

In both figures we neglected the discrete nature of N and n to make the general 
enhancement more clear. 

Я 50-Ѓ 

2000 

N, numboг ot nodot 

n, nurntмr ot local kitorvalt 

Fig. 1. Shape of E(N,n). 

0 1000 2000 3000 4000 8000 6000 7000 8000 9000 10000 
n, numbor ot loeal Intervale 

Fig. 2. Speed-up for various N as a function of n. 
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4. SPEED UP ESTIMATION IN A GENERAL CASE 

Let us consider problem ( l ) - ( 2 ) for a general natural m. Let us introduce the 
following substitutions 

u>m-i = ym~1(x),...,wi(x) = y'(x),w0(x) = y(x) 

Then problem ( l ) - ( 2 ) can be written in the matrix form 

W'(x) = P(x)W(x) + F(x) 

W(a) = Y0 

where 

P(x) = 

( -Pm-l(x) 

V o o 

W(x) 

( Wm-l(x) \ 

wm-2(x) 

\ wo(x) ) 

-pi(x) -po(x) \ 
0 0 

1 

/ /(-) \ 
0 

F(x) = 

- V o / 

Ya = 

I 
( ym-i \ 

•Vm-2 

V yo 7 

(14) 

(15) 

Let us solve the Cauchy problem (14)-(15) numerically by the RK method: 

Zm = Zi + k^P + 2(4j) + 4j)) + fcf] 

where 

K\ 0) 

K 

K 

0) 

0) 

tф 

= Ç(XJ,ZJ) 

= Ç(xj+l,Zj+ҺK,<i)) 

Zj+i, Zj, Ki, K2 , K$ , and K4 are vectors of m components. Let us suppose 
the constants | , !^ in RK method have been computed and stored in advance. We 
consider the addition Xj + 4 as one arithmetical operation in one vector RK step. 

Analizing one step of the vector RK method we can count 1 + 12m arithmetical 
operations if we exclude arithmetical operations needed for vector evaluation of the 
vector function Q(XJ,ZJ). One vector value of the function Q(XJ,ZJ) = P(XJ)ZJ + 

F(XJ) requires 
m - l 

2m + rj + y ^ rk 

ifc=0 
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of arithmetical operations. This means that the total number of arithmetical oper
ations for one RK step is 

After nq steps we have 

( m - l * 

5m + rj + У^ rfc 

fc=o 

( m - l л 

5m + rj + У^ Гfc 
Jfc=0 

nq 

(16) 

(17) 

arithmetical operations. This is the number of operations needed for the serial RK 
method in the entire interval [a,b]. Note, if m = 1 then the expression (17) is just 
the same like we have had for (11). m local problems (4) can be after substitutions 

u»m_l(x) = u,pk~
1(x),...,w1(x) = u'ik(x),w0(x) = uik(x) 

rewritten as 

where k = 1,... ,m and 

W'(x) = P(x)W(x) 

W(x{i_1)q) =ek 

/ o \ 

(18) 

(19) 

Єfc 
(*) ' 

V o y 
Problem (5) after substitutions 

i~m_i(x) = ^ m ~ 1 ( x )> • • •, ™l(x) = v'i(x)' ^o(x) = Vi(x) 

can be rewritten as 
W'(x) = P(x) W(x) + F(x) (20) 

W(x{i_1)q) = 0 (21) 

If for m problems in (18) — (19) we suppose G(xj,zj) = P(xj)zj, z(i-i)q = efc> 
k = 1,.. ., m then the number of arithmetical operations after q vector RK steps is 
equal to 

qm 1 + 4 j Ьm + 53 Гk ) 
\ k=0 ) 

For problem (20)-(21) we put G(xj,Zj) = P(xj)zj + F(xj), Z(i-i)q = °> a n d 

according to (16) we receive 

(
m - l 

5m + rj + 5Z Гk 

fc=0 
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for q vector RK steps in a general interval Ii = [_(.-_i)g, x i g ] . Summation of two last 
expresions give us the total number of arithmetical operations 

m—1 m —1 

1 + 4ŕ/ + 4 J Г rfc + m í 21 + 4 ]ŞГ r* j + 20m2 

jfc=0 fc=0 

(22) 

needed for both (18)-(19) and (20)-(21) problems. Note, if m = 1, then this 
general expression give us 2q(21 + 2r/ + 4ro) arithmetical operations — the same 
number we had in the previous example. 

According to Theorem 1 we need m(m-\- l)(n — 1) additional arithmetical opera
tions for the computation of the coefficients a;* and for obtaining the solution accord
ing to (3) we need (m+1) q arithmetical operations in the interval 1% = [_•(,•_ i ) ? , Xiq]. 
Again if m = 1 obtaining the results coincide the results of the previous example. 

The total number of arithmetical operations needed for parallel performance in 
n subintervals 1% = [_(;_i)?, x%q], i = 1,. . ., n (or on n processors) of the problem 
( l ) - ( 2 ) i s 

m— 1 m— 1 

2 + 4r/ + 4 ] T r„ + m 22 + 4 ][_ r* + 20. 
k=0 \ k=Q 

Now we can define the speed up function 

T(m, n, q) 

+ ( n - l ) ( m + l ) m . (23) 

nqA(m) 

B(m) q + n — 1 
(24) 

as a ratio of the number of arithmetical operations needed for serial (17) and parallel 
(23) version of the RK method for problem ( l ) - ( 2 ) . We denote 

A(m) ( m - l 

5m + Гf + У^ rk 

k = 0 

( ( m + l ) m ) (25) 

B(m) = 
m—1 m—1 

2 + 4r/ + 4 J^ rk + m 22 + 4 ] Г r k ) + 20? 
k=0 k=0 

((m + l ) m ) . (26) 

T h e o r e m 2. If the interval [a,b] is divided into N = nq equal parts then for 
parallel performance of the problem ( l )-(2) by RK method an optimal number of 
intervals L = [x(t-_i)?, x%q], i = 1, , n (or processors) is equal to n* = (NH) 1/ 2 and 

an optimal number of RK steps within each interval is equal to q* = (N/H) 1/ 2. For 
large N the speed up function value in the optimal point (m, n*, q*) is approximately 
equal to 

Tim n* a*) fit ------ N1!"2 

1 ' , q } 2(B(m)yi* 

where A(m), B(m) are given by relations (25)-(26). 
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P r o o f . We use the Lagrange multipliers method for the optimal point determi
nation. Under constrain N = nq we introduce the Lagrange function 

*(m, n, j) = nf{'n) + A(„, - N) 
B(m)q + n — 1 

where A(m), B(m) are given by relations (25) -(26) and A is the Lagrange multiplier. 
If we put the first-order derivatives 

0 * n „, x B(m)q-1 . — = q[X + A(m) \ J2 7T2 
on (B(m) q-{-n — l)z 

8® r. A, \ n ~ l 1 
—— = n A + A(m)——— ---=• 
5? L v y ( H ( m ) 9 + n - 1 ) 2 J 

to zeros and use constraint equation N = nq then we have three equations for 
unknown n*, q*, A*. The solution is 

»• = (*B(m))'/> (• = WB(m))>/> y = A ( m)_Izg|gp_ 
Using these results we come to the extremal value of the speed up function 

NA(m) 
T(m, n*, q*) 

2(NB(m))ll2 - 1 

which is close to 2 ( ^ f f L a Nll2 for large N. 
Finally, we prove that the extremal point is the point of maximum value of the speed 
up function (24). The second derivatives are 

d2$ l - t j B ( m ) 
= 2qA(m) ' dn2 * v ' (qB(m) + n - l ) 3 

d2$ 1 - n 
^ - = 2nA(m)H(m) — — i — 
a? 2 v y v ' (gH-(m) + n - l ) 3 

*• = u^)ii^y, 
an<9g (qB(m) + n - I)6 

According to the general theory of the conditional extremum we compute the fol
lowing values at the extremal point (n*, Q*, A*): 

„,, - -2.1fm)f N ) » 2 l-(NB(m))^ 
1 1 _ dn>~ (™>(B(m)' ( p % ) ) ' / ! - l ) ä >n-

2tf> . .- 1 -ť/Vfíťrr^W2 

ű22 = ÿ-^^w^ 
<92Ф „ ч (NB(m))1'2 

aiг = -5-5- = A(m) 
d?<9n v y ( 2 ( N H ( m ) ) 1 / 2 - ! ) 3 
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and observe tha t a n < 0 for all considered N, A(m) and B(m). Moreover, the 

expression 

a„a„ - «f, = w$*2$l!iy [4d - W)r»? ~ H 

is positive for the same N,A(m), B(m). This ends the proof. • 

5. CONCLUDING REMARKS 

The introduced speed up function (24) lead us to the following conclusions. 

To achieve the speed up for a given LODE, one needs at least 

q(2 + 4 r / + 4r (m) + m(22 + 4r(m)) + 20m2) - m(m + 1 
Ì + S 

q[l + 4(5m + r(m) + r / ) ] — m(m + 1) 

processors for the realization of the considered parallel algorithm. We denote here 
£(x) the integer part of x and 

m — 1 
r ( m ) = 2-J Vk' 

Jk=0 

If one has a parallel computer system with n processors, then the considered 
method provides acceleration only if the order m of the LODE is greater than the 
largest root of the equation 

4mr (m) + 4 r ( m ) ( l — n) + 20m + m 2 2 _ 2 ( m + ћ - _ ł 2 
? 

г2 
+ ( 1 + 4 r / ) ( l - n) + 1 - - - - — ^ — = 0 

. , (n - 1) rrť 
n) + 1 - i '-

9 

(Received November 3, 1995.) 
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